用户名: 密码: 验证码:
海面舰船尾迹电磁散射研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海面舰船尾迹电磁散射特性研究在海洋遥感、舰船目标识别和特征参数反演等领域起着十分重要的作用。尤其当舰船在复杂海环境中运动时,该研究课题成为一项十分复杂且极具挑战性的工作,主要表现在以下几个方面:其一,与舰船尾迹相互作用的海浪因其运动方式复杂多变,仅针对时变海面电磁散射特性的研究就已经包含诸多难点,如海浪运动的非线性、二维海浪实时仿真所带来的巨大计算负担等等。尤其在微波波段下,目前仍然没有一种十分有效的时变特性分析模型;其二,海面上舰船尾迹往往具有电大尺寸和复杂精细的结构,使得舰船尾迹电磁散射的快速计算同样也是计算电磁学领域的难点;其三,舰船尾迹同海面之间的水动力相互作用十分复杂,从而使相应的散射问题变得更加复杂。因此,论文系统地研究了海面舰船尾迹的电磁散射特性,重点针对三种典型的海面舰船尾迹,开展快速几何建模和电磁散射建模方法研究,并且分析了运动舰船尾迹的多普勒谱特征。论文主要工作如下:
     1.研究了海面上舰船尾迹的产生机理,仿真得到了线性海面和非线性海面的Kelvin尾迹、湍流尾迹以及内波尾迹几何特征。同时,详细分析与验证了背景海面的电磁散射模型,即双尺度模型(TSM)和小斜率近似模型(SSA)。
     2.结合锥形波入射下的小斜率近似方法,重点研究了海面上舰船开尔文尾迹的电磁散射特性,对比分析了开尔文尾迹在理想导体(PEC)海面和一般介质海面上的散射特性差异。同时,讨论了风速、风向、舰船类型、舰船几何尺寸、船速以及非线性对开尔文尾迹电磁散射的影响。
     3.研究了主要由泡沫组成的湍流尾迹的体散射模型,利用辐射输运理论(VRT)和Mento-Carlo方法建立了湍流尾迹的体散射模型。
     4.基于内波尾迹粗糙度较小的特点,同时,结合而写小斜率近似方法(SSA-II),重点研究了低海况下内波尾迹的电磁散射特性。同时,考虑到内波尾迹覆盖范围大的因素,论文采用了分区域研究内波尾迹的电磁散射特性的方法。
     5.研究了运动舰船开尔文尾迹在动态线性和非线性海面上的多普勒谱特性,对比分析了海况参数和舰船参数对开尔文尾迹多普勒谱的影响。计算结果表明:归一化的多普勒谱对于SSA-I来说,两种同极化的结果是重合的,而对于SSA-II来说两种同极化结果是有明显差异的,这主要是由于SSA-I是直接和波高成比例的,而SSA-II是通过斜率对SSA-I的修正,因此SSA-II的结果与实际物理背景是相一致的。然而,从直接求和的方法计算SSA-II的结果,其计算量是非常大的,为了克服这一困难,我们采用了快速傅里叶变换(FFT)方法对SSA-II进行加速,这样就满足了在实际电磁仿真计算中的实时性要求。
The study of the electromagnetic (EM) scattering characteristics about the shipwakes on the sea surfaces plays an important role in the oceanic remote sensing, shipand submarine detection and identification, and the corresponding parameter inversions.The research subject will be much more complicated and challenging especially when aship is moving in the complex sea environments. It mainly displays in three aspects.First, for the sea waves interacting on the ship wakes, their motion always has a certainamount of polytropy, which makes the research on the scattering from time-varying seaa very difficult task. The major difficulties are the computational cost arises from thenonlinearity and real-time simulation of two-dimensional sea waves. At microwavefrequencies, the problem is still beyond a sufficient solution. Second, the ship wakes onthe sea surface are always with large electrical size and have refined structures, whichbring great challenge on the fast calculation on the ship-wake scattering. Third, thehydrodynamic interaction between the ship wake and sea surface is also very complex.In this case, the problem becomes much more cumbersome. Therefore, the paper carriesout a systematic study on the EM scattering features of ship wakes on the sea surfaces.Stress being laid on three kinds of typical ship wakes, fast geometrical modeling of shipwakes, the corresponding EM scattering methods and Doppler spectral characteristicsare developed and analyzed. The main work is as follows:
     1. The generating mechanisms of sea surfaces and ship wakes are studied in thethesis. The geometrical features are obtained through the simulations of linear andnonlinear sea surfaces, Kelvin wake, turbulent wake and internal wake. Meanwhile, theEM scattering models of the sea backgrounds, two-scale method (TSM) and small slopeapproximation (SSA), are analyzed and veryified in detail.
     2. The tapered incident EM wave is combined with the SSA method. The keyresearch on the EM scattering characteristics of ship Kelvin wakes is made. Thecomparative analysis on the scattering differences of Kelvin wakes between the perfectconductor (PEC) and general dielectric sea surfaces. Meanwhile, the effects of windvelocity, ship type, ship size, ship speed and nonlinearity on scattering features fromship Kelvin wakes are also discussed.
     3. The volume scattering models of the turbulent wakes mainly formed by the foamor bubbles are studied, which is performed through vector radiation transfer (VRT)theory and Mento-Carlo (MC) method.
     4. Based on the features of the internal wakes with the smaller roughness, together with the second-order small slope approximation (SSA-II) method, the EM scatteringcharacteristics from the ship internal wakes with low sea states are mainly studied. Inaddition, due to the fact that the ship internal wakes have the larger coverage, thecorresponding EM scattering researches are carried out through the regional separation.
     5. The paper carried out the Doppler spectral studies of ship Kelvin wakes ontime-varying linear and nonlinear sea surfaces and comparatively analyzed the effects ofthe oceanic and ship parameters on the Doppler spectra of ship Kelvin wakes. Theobtained results show that, for the SSA-I method, the normalized Doppler spectra arethe same for both the two copolarization, however, for the SSA-II method, the obviousdiscrepancy occurs between HH and VV polarizations. The main reasons are that theSSA-I method is directly proportional to the wave elevation while the SSA-II methodfurther modifies the SSA-I through the slope of the simulated surfaces. Therefore, theSSA-II method can better describe practical physical backgrounds than the SSA-Imethod. However, from the view of direct summation, the SSA-II method reveals thelarge amount of calculation. Therefore, in order to overcome this difficulty, the fastFourier transform (FFT) technique is utilized to accelerate the SSA-II calculation, whichsatisfies the needs of the real-time calculation in actual EM simulated environments.
引文
[1] Allen T. D.. Satellite Mierowave Remote Sensing [R]. New York: Ellis HorwoodLimited,1983.
    [2] Huebner G. L.. The Marine Environment [M]. America: Manual of RemoteSensing Chapter20,1975.
    [3]索兹曼B..卫星海洋遥感[M].北京:海洋出版社,1991.
    [4] Long M. W.. Radar reflectivity of land and sea (The third edition)[M]. Boston:Artech House,2001.
    [5] Sullivan R. J.. Micowave Radar Imaging and Advanced Concepts [M]. Boston:Artech House,2000.
    [6] Soumekh M.. Synthetic Aperture Radar Signal Processing with MATLABAlgorithms [M]. John Wiley&Sons: Inc,1999.
    [7] Mingquan B., Bruning C., and Alpers W.. Simulation of ocean waves imaging byan along-track interferometric synthetic aperture radar [J]. IEEE TransactionGeoscience Remote Sensing,1986,35(3):618-631.
    [8] Reed A. M., Beck R. E., Griffin O. M., et al. Hydrodynamics of remotely sensedsurface ship wakes [J]. Tran Soc NayArch Marine Eng,1990,99(1):319-363.
    [9] Liu A. K., Peng Y. and Chang S. Y.. Waveletanalysis of satellite images forcoastal watch [J]. IEEE Jounal Of Oceanic Engneering,1997,22(1):1-9.
    [10] Geng X., Yan H., and Wang Y.. A two-dimensional spectrum model for generalbistatic SAR [J]. IEEE Transaction Geoscience Remote Sensing,2008,46(8):2216-2223.
    [11] Wang X. Q., Yu Y., Chen Y. Q., et al. Bistatic SAR raw data simulation for ocean[C]. IEEE International Geoscience Remote Sensing Symposium,2007,871-874.
    [12]冯芒,沙文钰,朱首贤.近岸海浪几种数值计算模型的比较[J].海洋预报,2003,20(1):52-59.
    [13] Guissard A., and Baufays C.. Fully and nonfully developed sea models formicrowave remote sensing applications [J]. Remote Sensing Environment,1994,48(1):25-38.
    [14] Apel J. R.. An improved model of the ocean surface wave vector spectrum and itseffects on radar backscatter [J]. J Geophys Res,1994,99(C8):16269-16291.
    [15] Neumann G.. On ocean wave spectra and a new method of forecastingwind-generated sea [J]. Beach Erosion Board Tech Mem,1953,43(1):42.
    [16] Pierson W. J., and Moscowitz L.. A proposed spectral form for fully developedwind seas based on the similarity theory of S Akitaigorodsrii [J]. J Geophys Res,1964,69(24):5181-5190.
    [17] Fung A. K., and Lee K. K., A Semi-Eempirical Sea-Spectrum Model forscattering coefficient estimation [J]. IEEE J Ocean Eng,1982,7(4):166-176.
    [18] Hasselmann K., Barnett T. P., Bouws E., et al. Measurements of wind-wavegrowth and swell decay during the Joint North Sea Wave Project (JONSWAP)[J].Dtsch Hydrogr Z Suppl,1973,12(A8):1-95.
    [19] Cox C., and W Munk.. Measurement of the roughness of the sea surface fromphotographs of the sun glitter [J]. J Opt SocAm,1954,44(11):838-850.
    [20] Elfouhaily T., Chapron B., Katsaros K., et al. A unified directional spectrum forlong and short wind-driven waves [J]. J Geophys Res,1997,102(C7):15781-15796.
    [21] Kitaigorodskii S. A., Krasitskii V. P., and Zaslavskii M. M.. On Phillips' theory ofequilibrium range in the spectra of wind-generated gravity waves [J]. J PhysOcean ogr,1975,5(3):410-420.
    [22] Bouws E., Günther H., Rosenthal W., et al. Similarity of the wind wave spectrumin finite depth water1: Spectral form [J]. J Geophys Res,1985,90(C1):975-986.
    [23] Bouws E., Günther H., Rosenthal W., et al. Similarity of the wind wave spectrumin finite depth water2: Statistical relations between shape and growth stageparameters [J]. Dtsch Hydrogr Z,1987,40(1):1-24.
    [24]文圣常,余宙文.海浪理论与计算原理[M].北京:科学出版社,1984.
    [25]徐德伦,于定勇.随机海浪理论[M].北京:高等教育出版社,2001.
    [26] Williams A. N., and Crull W. W.. Simulation of directional waves in a numericalbasin by a desingularized integral equation approach [J]. Ocean Engineering,2000,27(6):603-624.
    [27]马杰,田金文,柳健等.三维海浪场的数值模拟及其动态仿真[J].系统仿真学报,2001,13(21):39-44.
    [28] Schachter B.. Long crested wave models for Gaussian fields [J]. ComputerGraphics and Image Processing,1980,12(2):187-201.
    [29] Mastin G. A., Watterberg P. A., and Mareda J. F.. Fourier synthesis of oceansurfaces [J]. IEEE Comput GraphAppl,1987,7(3):16-23.
    [30] Langley R. S.. On the time domain simulation of second order wave forces andinduced responses [J]. Applied Ocean Research,1986,8(3):134-143.
    [31] Johnson J. T., Toporkov J. V., and Brown G. S.. A Numerical Study ofBackscattering From Time-Evolving Sea Surfaces: Comparison of HydrodynamicModels [J]. IEEE Trans Geosci Remote Sens,2001,39(11):2411-2420.
    [32] Thorsos E. I.. The validity of the Kirchhoff approximation for rough surfacescattering using a Gaussian roughness spectrum [J]. J Acoust Soc Am,1988,83(1):78-92.
    [33] Rino C. L., Crystal T. L., and Koide A. K.. Numerical simulation of backscatterfrom linear and nonlinear ocean surface realizations [J]. Radio Sci,1991,26(1):51-71.
    [34] Toporkov J. V., and Brown G. S.. Numerical simulations of scattering fromtime-varying randomly rough surfaces [J]. IEEE Trans Geosci Remote Sens,2000,38(4):1616-1625.
    [35] Kinsman B.. Wind waves: their generation and propagation on the ocean surface[M]. New York: Dover,1984.
    [36] Creamer D. B., Henyey F., Schult R., et al. Improved linear representation ofocean surface waves [J]. J Fluid Mech,1989,205(1):135-161.
    [37] Soriano G., Joelson M., and Saillard M.. Doppler spectra from a two-dimensionalocean surface at L-Band [J]. IEEE Trans Geosci Remote Sens,2006,39(11):2411-2420.
    [38] Watson K. M., and West B. J.. Atransport equation description of nonlinear oceansurface wave interactions [J]. J Fluid Mech,1975,70(1):815-826.
    [39] Hayslip A. R., Johnson J. T., and Baker G. R.. Further numerical studies ofbackscattering from time-evolving nonlinear sea surfaces [J]. IEEE Trans GeosciRemote Sens,2006,41(10):2287-2293.
    [40] Fournier A., and Reeves W. T.. A simple model of ocean waves [C]. ComputGraphics,1986,20(4):75-84.
    [41] Nouguier F., Guérin C. A., and Chapron B.. Choppy wave model for nonlineargravity waves [J]. J Geophys Res,2009,114(C13): C09012-1-C09012-16.
    [42] Nouguier F., Guérin C. A., and Chapron B.. Scattering from nonlinear gravitywaves: The “choppy wave” model [J]. IEEE Trans Geosci Remote Sens,2010,48(12):4184-4192.
    [43] Nouguier F., Guérin C. A., and Soriano G.. Analytical techniques for the Dopplersignature of sea surfaces in the microwave regime. II: Nonlinear surfaces [J].IEEE Trans Geosci Remote Sens,2011,49(12):4920-4927.
    [44] Mandelbrot. B.. The fractal geometry of nature [M]. San Francisco: Freeman,1982.
    [45] Jaggard D. L., and Kim Y.. Diffraction by band-limited fractal screens [J]. J OptSocAmA,1987,4(6):1055-1062.
    [46] Jaggard D. L., Sun X.. Scattering from fractally corrugated surfaces [J]. J Opt SocAmA,1990,7(6):1131-1139.
    [47] Franceschetti G., Iodice A., Riccio D., et al. Scattering from natural roughsurfaces modeled by fractional Brownian motion two-dimensional processes [J].IEEE Trans Antennas Propag,1999,47(9):1405-1415.
    [48] Jakeman E.. Scattering by a corrugated random surface with fractal slope [J]. JPhys AMath Gen,1982,15(2):55-59.
    [49] Flandrin P.. On the spectrum of fractional Brownian motions [J]. IEEE TransInform Theory,1989,35(1):197-199.
    [50] J Chen. T., Lo K. Y., and Leung H.. The use of fractals for modeling EM wavesscattering from rough sea surface [J]. IEEE Trans Geosci Remote Sens,1996,34(4):966-972.
    [51]郭立新,吴振森.二维导体粗糙面电磁散射的分形特征研究[J].物理学报,2000,49(6):1064-1069.
    [52] Guo L. X., and Wu Z. S.. Fractal model and electromagnetic scattering fromtime-verying sea surface [J]. Electron Lett,2000,36(21):1810-1812.
    [53] Thomson W.. On ship waves [C]. London: MacMillan,1887a:45-500,3.
    [54] Ekman V. W.. On the infuence of the earth's rotation on ocean currents [J]. ArkMat Aston Fys,1905,2(11):1-53.
    [55] Havelock T. H.. The propagation of groups of waves in dispersive media withapplication to waves on water produced by a traveling disturbance [J]. Proc RSoc Lond Ser A,1908,81(1):398-430.
    [56] Havelock T. H.. Wave patterns and wave resistance [J]. Trans Inst Nav Arch,1934,76(1):430-446.
    [57] Hogner E.. A contribution to the theory of ship waves [J]. Ark Mat Aston Fys,1923,17(12).
    [58] Pepters A. S.. A new treatment of the ship wave problem [J]. Comm Pure ApplMath,1949,2(2-3):123-148.
    [59] Lamb H.. Hydrodynamics [M]. London: Dover,1932.
    [60] Ursell F.. On Kelvin’s ship-wave pattern [J]. Journal of Fluid Mechanics,1960,8(3):418-431.
    [61] Crapper G. D.. Surface waves generated by a traveling pressure point [J]. Proc Ofthe Roy Soc Series A,1964,282(1388):547-558.
    [62] Tuck E. O.. On line distribution of Kelvin sources [J]. Journal of Ship Reasearch,1971,12(2):105-112.
    [63] Newman J. N.. Marine Hydrodynamics [M]. Cambridge MA: MIT Press,1977:402.
    [64] Yeung K. C., and Jin S. L.. A review of the Kelvin ship wave pattern [J]. Journalof Ship Research,1991,35(3):191-197.
    [65] Yih C. S., and Zhu S.. Patterns of ship waves [J]. Quarterly of AppliedMathematics,1989,47(1):17-33.
    [66] Fontaine E., Faltinsen O. M., and Cointe R.. New insight into the generation ofship bow waves [J]. Journal of Fluid Mechanics,2000,421(1):15-38.
    [67] Tunaley J. K. E., Buller E. H., Wu K. H., and Rey T.. The Simulation of the SARImage of a Ship Wake [J]. IEEE Trans Geosci Remote Sensing,1991,29(1):149-156.
    [68] Oumansour K., Wang Y., and Saillard J.. Multifrequency SAR observation of aship wake [C]. IEEE Proc-Radar Sonar Navig,1996,143(4):275-280.
    [69] Milgram J. H., Skop R. A., Pelter R. D., et al. Modeling short sea wave energydistributions in the far wakes of ships [J]. J Geophys Res,1993,89(C4):7115-7124.
    [70] Rey M. T., Tunaley J. K., Folinsbee J. T., et al. Application of Randon ransformtechniques to wake detection in Seasat-A SAR images [J]. IEEE Trans GeosciRemote Sensing,1990,28(4):553-560.
    [71] Atiquzzaman L., and Akhtar M. W.. A tobust Hough transform technique forcomplete line segment description [J]. Real Time Imaging,1995,1(6):419-426.
    [72] Hudimac A. A.. Ship waves in a stratified ocean [J]. Journal of Fluid Mechanics,1961,11(1):229-243.
    [73] Crapper G. D.. Ship waves in a stratified ocean [J]. Journal of Fluid Mechanics,1967,29(04):667-672.
    [74] Mei C. C., and Wu Y. T.. Gravity waves due to a point disturbance in a plane offree surface flow of stratified fluids [J]. Physics of Fluids,1964,7(8):1117-1133.
    [75]魏岗.分层流体中运动源生成的内波研究进展[J].力学进展,2006,36(1):111-124.
    [76] Overrein O., and Gjessing D. T.. Detection of ship generated internal waves inocean radar measurements using a combination of matched filter technique andwavelet transform [C]. Radar97IET,1997,449(1):219-223.
    [77] Munk W. H., Scully–Power P., and Zacharisen F.. Ships from space [J]. Proc RSoc LondA,1987,412(1843):231-254.
    [78] Gu D. F., and Phillips O. M.. On narrow V-like ships [J]. Journal of FluidMechanics,1994,275(1):301-321.
    [79] Havelock T. H. The collected papers of Sir Thomas Havelock on hydrodynamics
    [M]. Edited by Wigley, C., Ann arbor. Office of Naval Reaearch&United StatesGovernment Printing Office:1965.
    [80] Wehausen J. V.. Use of Lagrangian Coordinates for Ship Wave Resistance (firstand Second-order Thin-ship Theory)[R]. Journal of Ship Research,1969,13(1):12-22.
    [81] Vanden-Broeck J. M., and Miloh T.. The influence of a layer of mud on the trainof waves generated by a moving pressure distribution [J]. Journal of engineeringmathematics,1996,30(3):387-400.
    [82] Lanzano P.. Waves generated by a moving point-source within a finite-depthocean [J]. Earth Moon and Planets,1991,52(3):233-252.
    [83] Yeung R. W., and Nguyen T. C.. Waves generated by a moving source in atwo-layer ocean of finite depth [J]. Journal of engineering mathematics,1999,35(1-2):85-107.
    [84] Radko T. Ship waves in a stratified fluid [J]. Journal of ship research,2001, Vol.45(1).1-12.
    [85] Torsvik T., Dysthe K., and Pedersen G.. Influence of variable Froude number onwaves generated by ships in shallow water [J]. Physics of Fluids,2006,18(6):062102.
    [86] Beckmann P., and Spizzichino A.. The Scattering of Electromagnetic Waves fromRough Surfaces [J]. New York: Pergamon,1963.
    [87] Bass F. G., and Fuks I. M.. Wave scattering from statistcally rough surfaces [J].Oxford: Pergamon,1979.
    [88] Fung A. K., Li Z., and Chen K. S.. Backscattering from a randomly roughdielectric surface [J]. IEEE Trans Geosci Remote Sens,1992,30(2):356-369.
    [89] Chen K. S., and Fung A. K.. A comparison of backscattering models for roughsurfaces [J]. IEEE Trans Geosci Remote Sens,1995,33(1):195-200.
    [90] Ishimaru A.. Electromagnetic Wave Propagation, Radiation and Scattering [M].Englewood Cliffs: Prentice Hall,1991.
    [91] Ogilvy J. A.. Theory of Wave Scattering From Random Rough Surfaces [M].Bristol: institute of physics Publishing,1991.
    [92] Schroeder L. C., Schaffner P. R., Mitchell J. L., et al. AAFE RADSCAT13.9-GHz measurements and analysis: wind-speed signature of the ocean [J].IEEE J Ocean Eng,1985,10(4):346-357.
    [93] Wentz F. J., Peteherich S., and Thomas L. A.. A model function for ocean radarcross-section at14.6GHz. J Geophys Res,1984,89(C3):3689-3704.
    [94] Nghiem S. V., Li F. K., and Neumann G.. The dependence of ocean backscatter atKu-band on oceanic and atmospheric parameters [J]. IEEE Trans Geosci RemoteSens1997,35(3):581-600.
    [95] Yee K. S.. Numerical solution of initial boundary value problems involvingmaxwell's equations in isotropic media [J]. IEEE Trans Antennas Propag,1966,14(5):302-307..
    [96]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社,2002.
    [97] Fung A. K., Tjuatja S., and Terre C.. Numerical simulation of omnidirectionalscattering from three-dimensional randomly rough dielectric surfaces [C].International Geoscience and Remote Sensing Symposium,1994,1(1):261-263.
    [98] Dogaru T., and Carin L.. Time-domain sensing of targets buried under a Gaussianor exponential or fractal rough interface [J]. IEEE Trans Geosci Remote Sens,2001,39(8):1807-1819.
    [99] Chen Yinchao, Cao Qunsheng and Mittra Raj. Multiresolution Time DomainScheme for Electromagnetic Engineering [M]. New Jersey: John Wiley&Sons.,2005.
    [100] Harrigton R. F.. Field Computation by Moment Method [M]. New York:Macmillan Company,1968.
    [101] Kapp D. A., Brown G. S.. A new numerical method for rough surface scatteringcalculations [J]. IEEE Trans. Antennas Propag.1996, Vol.44(5).711-721.
    [102] Tsang L., Chan C. H., and Pak K.. Monte-Carlo simulations of large-scaleproblems of random rough surface scattering and applications to grazingincidence with the BMIA/canonical grid method [J]. IEEE Trans AntennasPropagat,1995,43(8):851-859.
    [103] Wagner R. L., Song J., and Chew W. C.. Monte Carlo simulation ofelectromagnetic scattering from two-dimensional random rough surfaces [J].IEEE Trans Antennas Propagat,1997,45(2):235-245.
    [104] Donohue D. J., et al. Application of Iterative Moment-Method Solutions to oceansurface radar scattering [J]. IEEE Trans Antennas Propagat,1998,46(1):121-132.
    [105] Johnson J. T.. A numerical study of low-grazing-angle backscatter fromocean-like impedance surfaces with the canonical grid method [J]. IEEE TransAntennas Propagat,1998,46(1):114-120.
    [106] Johnson J. T.. On the canonical grid method for two-dimensional scatteringproblems [J]. IEEE TransAntennas Propagat,1998,46(3):297-302.
    [107] Rokhlin V.. Rapid solution of integral equations of scattering theory in twodimensions [J]. J Comput Phys,1990,86(2):414-439.
    [108]聂在平,胡俊,姚海英.用于复杂目标三维矢量散射分析的快速多极子方法[J].电子学报,1999,27(6):104-109.
    [109] Johnson J. T., Shin R. T., Kong J. A., et al. A numerical study of the compositesurface model for ocean backscattering [J]. IEEE Trans Geosci Remote Sens,1998,36(1):72-83.
    [110] Xia M. Y., Chan C. H., Li S. Q., et al. An efficient algorithm for electromagneticscattering from rough surfaces using a single integral equation and multilevelsparse-matrix canonical-grid method [J]. IEEE Trans Antennas Propag,2003,51(6):1142-1149.
    [111] Huang S. W., and Xia M. Y.. A modified scheme of sparse-matrix canonical-gridmethod using Chebyshev interpolating Green’s function [J]. Micro Opt Tech Lett,2007,50(7):1844-1846.
    [112] Lu C. C., and Chew.W. C.. A multilevel algorithm for solving boundary integralequations of wave equations of wave scattering [J]. Microwave and Opt Tech Lett,1994,7(10):466-470.
    [113] Song J. M., and Chew W. C.. Multilevel fast multipole algorithm for solvingcombined field integral equation of electromagnetic scattering [J]. Micro OptTech Lett,1995,10(1):14-19.
    [114]聂在平,胡俊,姚海英.用于复杂目标三维矢量散射分析的快速多极子方法[J].电子学报,1999,27(6):104-109.
    [115] Hu J., and Nie Z. P.. Solving electromagnetic scattering from two-dimensionalcavity by FMM with complexifying k-technique [J]. Micro Opt Tech Lett,1999,20(6):430-433.
    [116] Hu J., Lei L., Nie Z. P., et al. Fast solution of electromagnetic scattering from thindielectric coated PEC by MLFMA and successive overrelaxation iterativetechnique [J]. IEEE Microw Wireless Compon Lett,2009,19(12):762-764.
    [117] Cui T. J., Chew W. C., Chen G., et al. Efficient MLFMA, RPFMA, and FAFFAAlgorithms for EM Scattering by Very Large Structures [J]. IEEE Trans AntennasPropag,2004,52(3):759-769.
    [118] Cui T. J., and Wiesbeck W.. Electromagnetic scattering by multiple three-dimensional scatterers buried under multilayered media-part II theory [J]. IEEETrans Geosci Remote Sens,1998,36(2):535-546.
    [119] Jin J. M. The Finite Element Method in Electromagnetics [M]. New York: Wiley,1993.
    [120] Liu P., and Jin Y. Q.. Numerical simulation of bistatic scattering from a target atlow altitude above rough sea surface under an EM-Wave incidence at low grazingangle by using the finite element method [J]. IEEE Trans Geosci Remote Sens,2004,52(5):1205-1220.
    [121]刘鹏,金业秋.动态起伏海面低飞目标电磁散射Doppler频谱的有限元-区域分解法数值模拟[J].中国科学(G辑),2004,34(3):265-278.
    [122] Holliday D., DeRaad L. L., and St-Cyr G. C.. Forward–backward: A new methodfor computing low-grazing angle scattering [J]. IEEE Trans Antennas Propagat,1996,44(5):722-729.
    [123] Chou H. T., and Johnson J. T.. Anovel acceleration algorithm for the computationof scattering from rough surfaces with the forward–backward method [J]. RadioSci,1998,33(5):1277-1287.
    [124] Antonio Iodice.. Forward–Backward Method for scattering from dielectric roughsurfaces [J]. IEEE Trans Antennas Propagat,2002,50(7):901–911.
    [125] Li Z. X., and Jin Y. Q.. Bistatic scattering and transmitting through a fractal roughsurface with high permittivity using the physics-based two-grid method inconjunction with the forward-backward method and spectrum accelerationalgorithm [J]. IEEE TransAntennas Propag,2002,50(9):1123-1127.
    [126] Weile D. S., Shanker B., and Michielssen E.. An accurate scheme for thenumerical solution of the time domain electric field integral equation [C]. IEEEAPS Int Symp Dig,2001,4(1):516-519.
    [127] Lam K. W., Zheng L. Z., and Li Q.. Statistical distributions of fields in scatteringby random rough surfaces based on Monte Carlo simulations of Maxwellequations [C]. IEEE International Antennas and Propagation Symposium,2003,1(1):573-576.
    [128] Liu L., and Li K.. Radiation From a Vertical Electric Dipole in the Presence of aThree-Layered Region [J]. IEEE Trans Antennas Propag,2007,55(12):3469-3475.
    [129] Holliday D.. Resolution of a controversy surrounding the Kirchhoff approach andthe small perturbation method in rough surface scattering theory [J]. IEEE TransAntennas Propagat,1987,35(1):120-122.
    [130] Ishimaru A., and Chen J. S.. Scattering from very rough metallic and dielectricsurfaces: a theory based on the modified Kirchhoff approximation [J]. Waves inRandom Media,1991,1(1):21-34.
    [131] Brekhovskikh L. M.. Wave Phenomena [M]. Berlin: Springer-Verlag,1994:17.
    [132] Brekhovskikh L. M.. Waves in Layered Media [M]. New York:Academic,1994.
    [133] Ulaby F. T., Moore R. K., and Fung A. K.. Microwave remote sensing active andpassive [J]. New York: Strech House,1994.
    [134] Voronorvich A. G.. Wave Scattering from Rough Surfaces [M]. Berlin: SpringerVerlag,1994.
    [135] Thorsos E. I.. The validity of the perturbation approximation for rough surfacescattering using a Gaussian roughness spectrum [J]. J Acoust Soc Am,1989,86(1):261-277.
    [136] Soto-Crespo J. M., Nieto-Vesperinas M., and Friberg A. T.. Scattering fromslightly rough random surfaces a detailed study on the validity of the smallperturbation method [J]. J Opt SocAmA,1990,7(7):1185-1201.
    [137] Ulaby F. T., Moore R. K., and Fung A. K.. Microwave Remote Sensing Activeand Passive [J]. Norwood MA: Artech House,1986: II.
    [138] Chan H. L., and Fung A. K.. A theory of sea scatter at large incident angles [J]. JGeophys Res,1977,82(24):3439-3444.
    [139] Khenchaf A., and Airiau O.. Bistatic radar moving returns from sea surface [J].IEICE Trans Electron,2000,83(12):1827-1835.
    [140]金亚秋.电磁散射和热辐射的遥感理论[M].北京:科学出版社,1993.
    [141]金亚秋,刘鹏,叶红霞.随机粗糙面与目标复合散射数值模拟理论与方法[M].北京:科学出版社,2008.
    [142]康士峰,张忠治,葛德彪. L波段HH极化机载雷达杂波特性分析[J].电子学报,2001,29(12):1608-1610.
    [143] Nie D., and Zhang M.. An angular cutoff composite model for investigation onelectromagnetic scattering from two-dimensional rough sea surfaces [J]. ChinPhys B2010,19(7):074101.
    [144] Zhang M., Chen H., Zhou P., et al. An efficient simulated sea slope model forbackscattering from a non-Gaussian sea surface [J]. Chin Phys Lett2009,26(9):094102.
    [145] Voronovich A. G., and Zavorotny V. U.. Theoretical model for scattering of radarsignals in Ku-and C-bands from a rough sea surface with breaking waves [J].Waves Random Media,2001,11(3):247-269.
    [146] Brown G. S.. Backscattering from a Gaussian-distributed perfectly conductingrough surface [J]. IEEE TransAntennas Propag,1978,26(3):472-482.
    [147] Plant W. J.. Two-scale model for short wind-generated waves and scatterometry[J]. J Geophys Res,1986,91(C9):10735-10749.
    [148] Thompson D. R.. Calculation of radar backscatter modulations from internalwaves [J]. J Geophys Res,1988,93(C10):12371-12380.
    [149] Soriano G., and Guérin C. A.. A cutoff invariant two-scale model inelectromagnetic scattering from sea surfaces [J]. IEEE Geosci Remote Sens Lett,2008,5(2):199-203.
    [150] Romeiser R., Schmidt A., and Alpers W.. A three-scale composite surface modelfor the ocean wave-radar modulation transfer function [J]. J Geophys Res,1994,99(C5):9785-9801.
    [151] Voronovich A. G.. Small-slope approximation for electromagnetic wavescattering at a rough interface of two dielectric half-spaces [J]. Waves RandomMedia,1994,4(3):337-367.
    [152] Voronovich A. G.. Waves Scattering from Rough Surfaces [M]. Berlin:Springer-Verlag,1994.
    [153] Soriano G., and Saillard M.. Scattering of electromagnetic waves fromtwo-dimensional rough surfaces with impedance approximation [J]. J Opt SocAm,2001,18(1):24-33.
    [154] Berginc G.. Small-slope approximation method: a further study of vector wavescattering from two dimensional surfaces and comparison with experimental data[J]. Progress In Electromagnetics Research,2002,37(1):251-287.
    [155] McDaniel S. T.. Small-slope predictions of microwave backscatter from the seasurface [J]. Waves Random Media,2001,11(3):343-360.
    [156] Awada A., et al. Bistatic scattering from an anisotropic sea surface: Numericalcomparison between the first-order SSA and the TSM models [J]. Waves inRandom and Complex Media,2006,16(3):383-394.
    [157] Voronovich A. G., and Zavorotny V. U.. Theoretical model for scattering of radarsignals in K u-and C-bands from a rough sea surface with breaking waves [J].Waves in Random Media,2001,11(3):247-269.
    [158] Winebrenner D., and Ishimaru A.. Application of the phase perturbationtechnique to randomly rough surfaces [J]. J Opt Soc Am A,1985,2(12):2285-2294.
    [159] Ivanova K., Michalev M. A., and Yordanov O. I.. Study of the phase perturbationtechnique for scattering of waves by rough surfaces at intermediate and largevalues of the roughness parameter [J]. J Electrom Waves and Appl,1990,4(5):401-414.
    [160] Bahar E.. Scattering cross sections for random rough surfaces: Full wave analysis[J]. Radio Science,1981,16(3):331-341.
    [161] Bahar E. Full-wave solutions for the depolarization of the scattered radiationfields by rough surfaces of arbitrary slope [J]. IEEE Transactions on Antennasand Propagation.1981,29(3).443-454.
    [162] Bahar E., and Lee B. S.. Radar scatter cross sections for two-dimensional randomrough surfaces-Full wave solutions and comparisons with experiments [J]. WavesRandom Media,1996,6(1):1-23.
    [163] Nieto-Veperinas M.. Depolarization of electromagnetic waves scattered fromslightly rough random surfaces a study by means of the extinction theorem [J]. JOpt SocAmA,1982,72(5):539-547.
    [164] Lyden J. D., Hammond R. R., Lyzenga D. R., et al. SAR imaging of surface shipwakes [J]. Journal of Geophysical Research Oceans (1978–2012),1988,93(C10):12293-12303.
    [165] Shemdin O. H.. SAR imaging of ship wakes in the Gulf of Alaska [J]. Journal ofGeophysical Research Oceans (1978–2012),1990,95(C9):16319-16338.
    [166] Tunaley J. K. E., Buller E. H., Wu K. H., et al. The simulation of the SAR imageof a ship wake[J]. IEEE Transactions on Geoscience and Remote Sensing,1991,29(1):149-156.
    [167] Buller E., and Tunaley J.. The effect of ship's screws on the ship wake and itsimplications for the radar image of the wake [J]. Quantitative remote sensing Aneconomic tool for the Nineties,1989,1(1):362-365.
    [168] Wang A. M., and Zhu M. H.. Simulation of ship generated turbulent and vorticalwake imaging by SAR [J]. Journal of Electronics (China),2004,21(1):64-71.
    [169] Zilman G.., Zapolski A., and Marom M.. The speed and beam of a ship from itswake’s SAR images [J]. IEEE Trans Geosci Remote Sensing,2004,42(10):2335-2343.
    [170] Droppleman J. D.. Apparent microwave emissivity of sea foam [J]. J GeophysRes1970,75(3):696-698.
    [171] Rosenkranz P. W., and Staelin D. H.. Microwave emissivity of ocean foam and itseffect on nadiral radiometric measurements [J]. Journal of Geophysical Research,1972,77(33):6528-6538.
    [172]黄兴忠,金亚秋,殷杰羿.泡沫覆盖的随机粗糙海面的双站散射和热辐射[J].地球物理学报,1995,38(2):163-173.
    [173]金亚秋,殷杰羿.具有泡沫白帽的粗糙海面的后向散射[J].海洋学报,1994,16(4):63-72.
    [174] Huang X. Z., and Jin Y. Q.. Scattering and emission from two-scale randomlyrough sea surface with foam scatterers [J]. IEE Proceedings-MicrowavesAntennas and Propagation,1995,142(2):109-114.
    [175] Skolnik M. I. Radar handbook (The second edition)[M]. New York:McGraw-Hill,1990.
    [176]许小剑,黄培康.雷达系统及其信号处理[M].北京:电子工业出版社,2010.
    [177] Elfouhaily T. M., and Guérin C. A.. A critical survey of approximate scatteringwave theories from random rough surfaces [J]. Waves Random Media,2004,14(4): R1-R40.
    [178] Barrick D. E.. First-order theory and analysis of MF/HF/VHF scatter from the sea[J]. IEEE Trans Antennas Propag,1972,20(1):2-10.
    [179] Crombie D. D.. Doppler spectrum of sea echo at13.56Mc./s [J]. Nature,1955,175(1):681-682.
    [180] Ingalls R. P., and Stone M. L.. Characteristics of sea clutter at HF [J]. IRE TransAntennas Propagat,1957,5(1):164-165.
    [181] Bass F. G., Fuks I. M., Kalmykov A. I., et al. Very high frequency radio wavescattering by a disturbed sea surface part I scattering from a slightly disturbedboundary [J]. IEEE Trans Antennas Propag,1968,16(5):554-559.
    [182] Bass F. G., Fuks I. M., Kalmykov A. I., et al. Very high frequency radio wavescattering by a disturbed sea surface part II scattering from an actual sea surface[J]. IEEE Trans Antennas Propag,1968,16(5):560-568.
    [183] Thompson D. R., Gotwols B. L., and Keller W. C.. A comparison of Ku-banddoppler measurements at20o incidence with predictions from a time-dependentscattering model [J]. J Geophys Res1991,96(C3):4947-4955.
    [184] Kanevskii M. B., and Karaev V. Ya.. Spectrum of radar signal reflected from seasurface [J]. Radiophys and Quantum Electronics,1993,36(1):1-9.
    [185] Trizna D. B.. A model for Doppler peak spectral shift for low grazing angle seascatter [J]. IEEE J Oceanic Eng,1985,10(4):368-375.
    [186] Zhang M., Chen H., and Yin H. C.. Facet-based investigation on EM scatteringfrom electrically large sea surface with two-scale profiles: theoretical model [J].IEEE Trans Geosci Remote Sens,2011,49(7):1967-1975.
    [187]郭立新,王蕊,王运华等.二维粗糙海面散射回波多普勒谱频移及展宽特征[J].物理学报,2008,57(6):3464-3472.
    [188] Walker D.. Experimentally motivated model for low grazing angle radar Dopplerspectra of the sea surface [J]. IEE Proceedings-Radar Sonar Navig,2000,147(3):114-120.
    [189] Walker D.. Doppler modeling of radar sea clutter [J]. IEE Proc-Radar SonarNavig,2001,148(2):73-80.
    [190]李晓飞.时变海面电磁散射特性研究[D].北京航空航天大学博士学位论文,2010.
    [191] Rino C. L., Crystal T. L., and Koide A. K.. Numerical simulation ofbackscattering from linear and nonlinear ocean surface realizations [J]. Radio Sci,1991,26(1):51-71.
    [192] Toporkov J. V., and Brown G. S.. Numerical study of the extended kirchhoffapproach and the lowest order small slope approximation for scattering fromocean-like surfaces doppler analysis [J]. IEEE Trans Geosci Remote Sens,2002,50(4):417-425.
    [193] Li X. F., and Xu X. J.. Scattering and Doppler spectral analysis fortwo-dimensional linear and nonlinear sea surfaces [J]. IEEE Transactions onGeoscience and Remote Sensing,2011,49(2):603-611.
    [194] Nie D., Zhang M., Wang C., et al. Study of Microwave Backscattering FromTwo-Dimensional Nonlinear Surfaces of Finite-Depth Seas [J]. IEEETransactions on Geoscience and Remote Sensing,2012,50(11):4349-4357.
    [195] Nie D., Zhang M., Geng X., et al. Investigation on Doppler spectralcharacteristics of electromagnetic backscattered echoes from dynamic nonlinearsurfaces of finite-depth sea [J]. Progress In Electromagnetics Research,2012,130(1):169-186.
    [196]刘鹏,金亚秋.动态起伏海面上低飞目标电磁散射Doppler频谱的有限元-区域分解法数值模拟[J].中国科学G,2004,34(3):265-278.
    [197] Schroeder L. C., Boggs D. H., and Dome G.. The relationship between windvector and normalized radar cross section used to derive SEASAT-A satellitescatterometer winds [J]. J Geophys Res,1982,87(C5):3318-3336.
    [198] Masuko H., Okamoto K., Shimada M., et al. Measurement of microwavebackscattering signatures of the ocean surface using X band and Ka bandairborne scatterometers [J]. Journal of Geophysical Research Oceans(1978–2012),1986,91(C11):13065-13083.
    [199] Macelloni G., Nesti G., Pampaloni P., et al. Experimental validation of surfacescattering and emission models [J]. IEEE Transactions on Geoscience andRemote Sensing,2000,38(1):459-469.
    [200] Toporkov J. V.. Study of electromagnetic scattering from randomly roughocean-like surfaces using Integral-Equation-Based numerical technique [D]. PhDdissertation of Virginia Polytechnic Institute and State University,1998.
    [201] Kong J. A. Electromagnetic wave theory [M]. New York: Wiley,1990.
    [202] Zheng Q. A., Klemas V., Hayne G. S., et al. The effect of oceanic whitecaps andfoams on pulse‐limited radar altimeters [J]. Journal of Geophysical ResearchOceans (1978–2012),1983,88(C4):2571-2578.
    [203] Blanchard D. C.. The electrification of the atmosphere by particles from bubblesin the sea [J]. Progress in oceanography,1963,1(1):73-202.
    [204] Monahan E. C.. Oceanic whitecaps [J]. Journal of Physical Oceanography,1971,1(2):139-144.
    [205]徐德伦.深水风浪破碎发生率与风速和风区关系的测量[J].海洋大学学报,1994,24(1):1-9.
    [206] Wu J.. Oceanic whitecaps and sea state [J]. Journal of Physical Oceanography,1979,9(5):1064-1068.
    [207] Wu J.. Variations of whitecap coverage with wind stress and water temperature[J].Journal of physical oceanography,1988,18(10):1448-1453.
    [208] Xu D., Liu X., and Yu D.. Probability of wave breaking and whitecap coverage ina fetch‐limited sea [J]. Journal of Geophysical Research Oceans (1978–2012),2000,105(C6):14253-14259.
    [209] Snyder R. L., and Kennedy R. M.. On the formation of whitecaps by a thresholdmechanism. I: Basic formalism [J]. Journal of physical oceanography,1983,13(8):1482-1492.
    [210] Wiscombe W. J.. Mie scattering calculations: advances in technique and fast,vector-speed computer codes [M]. Atmospheric Analysis and Prediction Division,National Center for Atmospheric Research,1979.
    [211]金亚秋.矢量辐射传输理论和参数反演[M].河南:河南科学技术出版社,1994.
    [212] Villarino R., Camps A., Vall-llossera M., et al. Sea form effects on the brightnesstemperature at L-band [C]. IEEE International Geo-science and Remote SensingSymposium,2003,5(1):3067-3078.
    [213] Karam M. A., Fung A. K., et al. Electromagnetic Wave Scattering from SomeVegetation Sample [J]. IEEE Trans on Geoscience and Remote Sensing,1988,26(6):799-808.
    [214] Toan T. L., Ribbes F., Wang L.F., et al. Rice Crop Mapping and Monitoring UsingERS-1Data Based on Experiment and Modeling Results [J]. IEEE Trans OnGeoscience and Remote Sensing,1997,35(1):41-56.
    [215] Tsang L., Ding K. H., Zhang G., et al. Backscattering Enhancement andClustering Effects of Randomly Distributed Dielectric Cylinders Overlying aDielectric Half Space Based on Monte-Carlo Simulations [J]. IEEE Trans onAntennas and Propagation,1995,43(5):488-498.
    [216]金亚秋.随机粗糙面上后向散射的增强[J].物理学报,1989,38(10):1611-1620.
    [217] Ishimaru A., and Tsang L.. Backscattering Enhancement of Random DiscreteScatters of Moderate Size [J]. J Opt SocAmA,1988,5(2):228-236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700