用户名: 密码: 验证码:
窄线宽染料激光稳频系统设计、实现及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续波可调谐染料激光器的波长覆盖范围宽,在高分辨激光光谱和光频率标准中有较多应用,例如碘分子超精细光谱、镱原子光钟等。然而自由运转染料激光的频率噪声大,导致激光线宽较宽且频率漂移较大,影响了其在上述应用中的效果。为获得窄谱、高稳定的可调谐激光,我们对连续波染料激光的频率稳定进行了系统研究。本论文详述了关于窄线宽染料激光稳频系统的设计、实现与应用的工作。
     为了研究反馈控制系统的伺服环路设计及噪声分析,我们开展了基于电光幅度调制的长期、宽带激光功率稳定实验。利用主动反馈控制解决了单块电光晶体的长期光功率稳定问题,功率稳定度达到8×10-4(3小时);定量分析了两种电光晶体(LiNbO3和KTiOPO4)的机械谐振特性及其对环路带宽的影响;设计了高速伺服环路进行光功率的高频噪声压制,环路带宽达到2.51MHz;对两种激光器(氦氖激光和染料激光)进行功率稳定后的噪声做了定量分析。
     我们实现了连续波可调谐染料激光器的频率稳定,采用两级PDH锁频方式来压制染料激光器的频率噪声。在一级锁定中,针对染料激光频率噪声有较多的高频成分,设计、组装了一种高速腔内电光调制器。我们以该电光调制器和激光腔镜上的压电陶瓷作为频率反馈控制的执行机构,将激光光谱线宽从自由运转时的2.2MHz降低到了10kHz。在二级锁定中,采用声光调制器(AOM)为频率执行器件。为了避免AOM衍射光束方向变化同时还要提高AOM的频率动态范围,采用AOM的双次通过光路。为了评估稳频激光线宽,建立了两套独立的二级稳频系统,由拍频法给出稳频激光线宽为44Hz。
     我们研究了窄线宽激光在碘分子光谱中的应用。分别建立了自由态碘分子和I2-AEL晶体中碘分子的光谱探测装置。采用平衡探测及锁相放大技术,在1μW入射光下探测灵敏度达到了1‰。利用饱和吸收光谱技术,扫描窄线宽染料激光测量了气态碘分子的超精细光谱。在白光源的宽谱探测实验(光谱分辨率O.1nm)和染料激光的窄谱探测实验(光谱分辨率为MHz,约10-6nm)中,发现了I2-AEL晶体内的碘分子具有偏振吸收特性,并在扫描的波长范围内为连续光谱。
     最后,我们讨论了进一步改善窄线宽染料激光器性能的方案,为应用于高分辨率光谱和原子光钟打下基础。
Owing to their broad wavelength tuning range, continuous-wave dye laser have been widely used in the laser spectroscopy and optical frequency standards, such as the measurement of hyperfine transitions of molecular iodine and Yb optical lattice clocks. However, the large frequency noises of free-running dye lasers result in broadened linewidth and large frequency excursion, severely affecting their effectiveness in above-mentioned applications. To realize a tunable laser source with ultra-stable frequency and narrow linewidth, we performed systematic investigations on the frequency stabilization of a continuous-wave dye laser. This thesis details and summarizes the design, implementation, and application of the frequency-stabilized dye laser system.
     To investigate design of servo loops and noise analysis, long-term and wideband laser intensity stabilization with an electro-optic amplitude modulator was carried out. An active control scheme using a single crystal to realize the long-term power stabilization was applied and a power instability of8×10-4was achieved (3-h measurement). Mechanical resonances in two crystals (LiNbO3and KTiOPO4) were mapped out and their influences on the control bandwidth were quantitatively investigated. A fast loop was designed to suppress the noise in high frequency and a2.5MHz bandwidth was achieved. Residual noises of two intensity-stabilized lasers (a Helium-Neon laser and a dye laser) were analyzed in detail.
     The frequency stabilization of continuous-wave tunable dye laser was realized in the thesis. Considering frequency characteristics of the dye laser, we developed a two-stage PDH frequency locked system to suppress large frequency noise in the dye laser. In the first stage, to cope with relatively large high-frequency components in the dye laser frequency noise, a compact intracavity electro-optic modulator that serves as a fast frequency actuator was designed and assembled. By using the intracavity electro-optic modulator and piezoelectric transducers installed on the cavity mirrors, the linewidth of dye laser was suppressed from2.2MHz to10kHz. In the second stage, acousto-optic modulators were served as frequency actuators. To avoid the location shift of diffraction beam and increase frequency dynamic range, double-pass diffraction of AOM was employed. To judge the linewidth of stabilized dye laser, we established two independent2-nd stabilization systems, and a44Hz linewidth was measured by the beating method.
     We applied the spectral narrow dye laser to the measurement of hyperfine transitions of molecular iodine. The spectral detecton devices of iodine molecule in free space and trapped in AEL crystal were built. Utilized balanced detection and lock-in amplified technology, with1μW of incident laser the detection sensitivity achieved to1‰. Using saturation spectroscopy technology, the high precision spectroscopy of iodine molecule in free space was measured by scanning the narrow dye laser frequency. In the experiment of low spectral resolution (0.1nm) with white light source and high spectral resolution (-MHz, or10-6nm) with dye laser, the iodine molecule confined in AEL crystal has polarized absorption and continuous spectroscopy in the scanning wavelength range.
     At the end of the thesis, we discussed the methods to improve the performance of spectrally narrow dye laser, and laid the foundation on the application in the high-resolution laser spectroscopy and optical frequency standards.
引文
[1]P. P. Sorokin and J. R. Lankard. Stimulated emission observed from an organic dye chloro-aluminum phthalocyanine[J]. IBM Journal of Research and Development,1966, 10(2):162-163.
    [2]S. J. Waldman. Status of LIGO at the start of the fifth science run[J]. Classical and Quantum Gravity,2006,23(19):653-660.
    [3]H. Muller, P. L. Stanwix, M. E. Tobar et al.. Tests of relativity by complementary rotating michelson-morley experiments[J]. Physical Review Letters,2007,99(5):050401.
    [4]A. Siegel, J. E. Lawler, B. Couillaud et al.. Doppler-free spectroscopy in a hollow-cathode discharge:Isotope-shift measurements in molybdenum [J]. Physical Review A,1981,23(5): 2457-2461.
    [5]M. M. Boyd, T. Zelevinsky, A. D. Ludlow et al.. Optical atomic coherence at the 1-second time scale[J]. Science,2006,314(5804):1430-1433.
    [6]L. S. Chen. High-precision spectroscopy of molecular iodine:From optical frequency standards to global descriptions of hyperfine interactions and associated electronic structure[D]. JILA, US,2002.
    [7]A. D. Ludlow, T. Zelevinsky, G. K. Campbell et al.. Sr lattice clock at 1 x 10-16 fractional uncertainty by remote optical evaluation with a Ca clock[J]. Science,2008,319(5871): 1805-1808.
    [8]J. L. Hall, L. S. Ma, M. Taubman et al.. Stabilization and frequency measurement of the I2-stabilized ND:YAG laser[J]. IEEE Transactions on Instrumentation and Measurement, 1999,48(2):583-586.
    [9]T. Rosenband, D. B. Hume, P. O. Schmidt et al.. Frequency ratio of Al+ and Hg+ single-ion optical clocks:Metrology at the 17th decimal place[J]. Science,2008,319(5871): 1808-1812.
    [10]A. L. Schawlow and C. H. Townes. Infrared and optical masers[J]. Physical Review, 1958,112(6):1940-1949.
    [11]G R. Hanes, K. M. Baird and J. Deremigi. Stability, reproducibility, and absolute wavelength of a 633-nm He-Ne laser stabilized to an iodine hyperfine component[J]. Applied Optics,1973,12(7):1600-1605.
    [12]N. Umeda, M. Tsukiji and H. Takasaki. Stabilized He-Ne transverse zeeman laser[J]. Applied Optics,1980,19(3):442-450.
    [13]R. W. P. Drever, J. L. Hall, F. V. Kowalski et al.. Laser phase and frequency stabilization using an optical-resonator [J]. Applied Physics B,1983,31(2):97-105.
    [14]J. Hough, D. Hils, M. D. Rayman et al.. Dye-laser frequency stabilization using optical resonators[J]. Applied Physics B,1984,33(3):179-185.
    [15]J. L. Hall, L. Hollberg, T. Baer et al.. Optical heterodyne saturation spectroscopy[J]. Applied Physics Letters,1981,39(9):680-682.
    [16]T. W. Hansch, M. D. Levenson and A. L. Schawlow. Complete hyperfine structure of a molecular iodine line[J]. Physical Review Letters,1971,26(16):946.
    [17]D. Bloch, R. K. Raj, J. J. Snyder et al.. High-frequency optically heterodyned saturation spectroscopy via resonant degenerate 4-wave mixing[J]. Journal of the Optical Society of America,1980,70(6):624-624.
    [18]A. Arie, S. Schiller, E. K. Gustafson et al.. Absolute frequency stabilization of diode-laser-pumped ND:YAG lasers to hyperfine transitions in molecular-iodine[J]. Optics Letters,1992,17(17):1204-1206.
    [19]G Camy, C. J. Borde and M. Ducloy. Heterodyne saturation spectroscopy through frequency-modulation of the saturating beam[J]. Optics Communications,1982,41(5): 325-330.
    [20]J. Ye, L. Robertsson, S. Picard et al.. Absolute frequency atlas of molecular I2 lines at 532 nm[J]. IEEE Transactions on Instrumentation and Measurement,1999,48(2):544-549.
    [21]左爱斌,李文博,彭月祥等.调制转移光谱稳频的研究[J].中国激光,2005,32(2):164-166.
    [22]T. Day, E. K. Gustafson and R. L. Byer. Sub-hertz relative frequency stabilization of two-diode laser-pumped ND:YAG lasers locked to a Fabry-Perot interferometer [J]. IEEE Journal of Quantum Electronics,1992,28(4):1106-1117.
    [23]B. C. Young, F. C. Cruz, W. M. Itano et al.. Visible lasers with subhertz linewidths[J]. Physical Review Letters,1999,82(19):3799-3802.
    [24]T. Kessler, C. Hagemann, C. Grebing et al.. A sub-40-mhz-linewidth laser based on a silicon single-crystal optical cavity [J]. Nature Photonics,2012,6(10):687-692.
    [25]E. D. Black. An introduction to pound-drever-hall laser frequency stabilization[J]. American Journal of Physics,2001,69(1):79-87.
    [26]E. D. Black, A. Villar and K. G. Libbrecht. Thermoelastic-damping noise from sapphire mirrors in a fundamental-noise-limited interferometer [J]. Physical Review Letters,2004, 93(24).
    [27]E. A. Whittaker, M. Gehrtz and G C. Bjorklund. Residual amplitude-modulation in laser electro-optic phase modulation[J]. Journal of the Optical Society of America B,1985, 2(8):1320-1326.
    [28]M. Notcutt, C. T. Taylor, A. G. Mann et al.. Temperature compensation for cryogenic cavity stabilized lasers[J]. Journal of Physics D-Applied Physics,1995,28(9): 1807-1810.
    [29]W. Demtroder. Laser spectroscopy basic concepts and instrumentation[M]. Springer, Berlin,1998.
    [30]A. Yariv. Quantumn electronics[M]. Wiley, New York,1989.
    [31]R. T. Denton, F. S. Chen and A. A. Ballman. Lithium tantalate light modulators[J]. Journal of Applied Physics,1967,38(4):1611.
    [32]J. Alnis, A. Matveev, N. Kolachevsky et al.. Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass fabry-perot cavities[J]. Physical Review A,2008,77(5):053809.
    [33]M. R. Biazzo. Fabrication of a lithium tantalate temperature-stabilized optical modulator[J]. Applied Optics,1971,10(5):1016.
    [34]G C. Bjorklund. Frequency-modulation spectroscopy- new method for measuring weak absorptions and dispersions [J]. Optics Letters,1980,5(1):15-17.
    [35]B. C. Buchler, M. B. Gray, D. A. Shaddock et al.. Suppression of classic and quantum radiation pressure noise by electro-optic feedback[J]. Optics Letters,1999,24(4): 259-261.
    [36]H. Stoehr, E. Mensing, J. Helmcke et al.. Diode laser with 1 Hz linewidth[J]. Optics Letters,2006,31(6):736-738.
    [37]J. Zhang, H. L. Ma, C. D. Xie et al.. Suppression of intensity noise of a laser-diode-pumped single-frequency ND:YVO4 laser by optoelectronic control[J]. Applied Optics,2003,42(6):1068-1074.
    [38]N. A. Robertson, S. Hoggan, J. B. Mangan et al.. Intensity stabilization of an Argon-laser using an electrooptic modulator-performance and limitations[J]. Applied Physics B-Photophysics and Laser Chemistry,1986,39(3):149-153.
    [39]C. D. Tran and R. J. Furlan. Indirect amplitude stabilization of a tunable laser through control of the intensity of a pump laser by an electrooptic modulator [J]. Applied Spectroscopy,1993,47(2):235-238.
    [40]N. C. Wong and J. L. Hall. Servo control of amplitude-modulation in frequency-modulation spectroscopy-demonstration of shot-noise-limited detection[J]. Journal of the Optical Society of America B,1985,2(9):1527-1533.
    [41]N. Ohmae, S. Moriwaki and N. Mio. High-efficiency electro-optic amplitude modulation with delayed coherent addition[J]. Optics Letters,2011,36(2):238-240.
    [42]M. B. Davies, P. H. Sarkies and J. K. Wright. Operation of a lithium niobate electrooptic Q switch at 1.06 mu[J]. IEEE Journal of Quantum Electronics,1968,4(9):533.
    [43]G. W. Day, O. L. Gaddy and K. C. Jungling. Electrooptic Q switching of CO2 laser[J]. IEEE Journal of Quantum Electronics,1970,6(9):553.
    [44]K. S. Lee. Electrooptic voltage sensor-birefringence effects and compensation methods[J]. Applied Optics,1990,29(30):4453-4461.
    [45]D. D. Hudson, K. W. Holman, R. J. Jones et al.. Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator [J]. Optics Letters,2005, 30(21):2948-2950.
    [46]J. C. Kemp. Piezo-optical birefringence modulators-new use for a long-known effect[Jj. Journal of the Optical Society of America,1969,59(8p1):950.
    [47]V. A. Rusov, V. A. Serebryakov, A. B. Kaplun et al.. Using modulators based on KTP crystals in ND:YAG lasers with high mean power[J]. Journal of Optical Technology, 2009,76(6):325-331.
    [48]M. Hyodo, K. S. Abedin and N. Onodera. Generation of millimeter-wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electro-optic crystal[J]. Optics Communications,1999,171(1):159-169.
    [49]L. F. Li, F. Liu, C. Wang et al.. Measurement and control of residual amplitude modulation in optical phase modulation[J]. Review of Scientific Instruments,2012,83(4): 043111.
    [50]N. G. Theofanous, M. Aillerie, M. D. Fontana et al.. A frequency doubling electro-optic modulation system for pockels effect measurements:Application in LiNbO3[J]. Review of Scientific Instruments,1997,68(5):2138-2143.
    [51]M. B. Gray, D. A. Shaddock, C. C. Harb et al.. Photodetector designs for low-noise, broadband, and high-power applications[J]. Review of Scientific Instruments,1998, 69(11):3755-3762.
    [52]H. Muller, S. W. Chiow, Q. Long et al.. Phase-locked, low-noise, frequency agile titanium:Sapphire lasers for simultaneous atom interferometers[J]. Optics Letters,2006, 31(2):202-204.
    [53]P. P. Sorokin and J. R. Lankard. Stimulated emission observed from an organic dye chloro-aluminum phthalocyanine[J]. IBM Journal of Research and Development,1966, 10(2):162.
    [54]B. H. Soffer and B. B. Mcfarlan. Continuously tunable narrow-band organic dye lasers[J]. Applied Physics Letters,1967,10(10):266.
    [55]O. G. Peterson, S. A. Tuccio and B. B. Snavely. CW operation of an organic dye solution laser[J]. Applied Physics Letters,1970,17(6):245.
    [56]张国威.可调谐激光技术[M].国防工业出版社,北京,2002.
    [57]T. W. Hansch. Repetitively pulsed tunable dye laser for high-resolution spectroscopy[J]. Applied Optics,1972,11(4):895.
    [58]M. G. Littman and H. J. Metcalf. Spectrally narrow pulsed dye-laser without beam expander[J]. Applied Optics,1978,17(14):2224-2227.
    [59]J. Helmcke, S. A. Lee and J. L. Hall. Dye-laser spectrometer for ultrahigh spectral resolution- design and performance[J]. Applied Optics,1982,21(9):1686-1694.
    [60]D. J. Mann and M. D. Halls. Water alignment and proton conduction inside carbon nanotubes[J]. Physical Review Letters,2003,90(19):155503.
    [61]L. S. Chen, W. Y. Cheng and J. Ye. Hyperfine interactions and perturbation effects in the BO3+(3Πu) state of 127I2[J]. Journal of the Optical Society of America B,2004,21(4): 820-832.
    [62]J. Ye, L. S. Ma and J. L. Hall. Molecular iodine clock[J]. Physical Review Letters,2001, 87(27):270801.
    [63]E. J. Zang, J. P. Cao, Y. Li et al. Realization of four-pass I2 absorption cell in 532-nm optical frequency standard[J]. IEEE Transactions on Instrumentation and Measurement, 2007,56(2):673-676.
    [64]G M. Tino, L. Hollberg, A. Sasso et al.. Hyperfine-structure of the metastable 5S2 state of O17 using an algaas diode-laser at 777 nm[J]. Physical Review Letters,1990,64(25): 2999-3002.
    [65]G K. Campbell, A. D. Ludlow, S. Blatt et al., The absolute frequency of the 87Sr optical clock transition[J]. Metrologia,2008,45(5):539-548.
    [66]A. D. Ludlow, S. Blatt, T. Zelevinsky et al.. Ultracold strontium clock:Applications to the measurement of fundamental constant variations[J]. European Physical Journal-Special Topics,2008,163:9-18.
    [67]M. S. Sorem, R. L. Barger and J. L. Hall. Frequency stabilization of a CW dye laser[J]. IEEE Journal of Quantum Electronics,1973,9(6):699-699.
    [68]M. Zhu and J. L. Hall. Stabilization of optical-phase frequency of a laser system-application to a commercial dye-laser with an external stabilize[J]. Journal of the Optical Society of America B,1993,10(5):802-816.
    [69]常冬霞,刘侠,王宇,连续波ND:YVO4/LBO稳频倍频红光全固态激光器[J].中国激光,2008,35(3):323-327.
    [70]G. Di Domenico, S. Schilt and P. Thomann. Simple approach to the relation between laser frequency noise and laser line shape[J]. Applied Optics,2010,49(25):4801-4807.
    [71]M. Notcutt, L. S. Ma, J. Ye et al.. Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity[J]. Optics Letters,2005,30(14):1815-1817.
    [72]F. Liu, C. Wang, L. F. Li et al.. Long-term and wideband laser intensity stabilization with an electro-optic amplitude modulator[J]. Optics and Laser Technology,2013,45: 775-781.
    [73]L. S. Chen, J. L. Hall, J. Ye et al.. Vibration-induced elastic deformation of Fabry-Perot cavities[J]. Physical Review A,2006,74(5):053801.
    [74]A. D. Ludlow, X. Huang, M. Notcutt et al.. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1x10-15 [J]. Optics Letters,2007,32(6):641-643.
    [75]陈玉华,蒋燕义,毕志毅.利用法布里-珀罗腔抑制电光相位调制中的剩余幅度调制[J].光学学报,2007,27(10):1877-1882.
    [76]C. J. Borde. Saturated absorption spectroscopy of various molecules using lasers with carbonic gas and nitrogen protoxide[J]. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B,1970,271(6):371.
    [77]M. E. Poitzsch, J. C. Bergquist, W. M. Itano et al.. Cryogenic linear ion trap for accurate spectroscopy[J]. Review of Scientific Instruments,1996,67(1):129-134.
    [78]G C. Bjorklund and M. D. Levenson. Sub-doppler fin spectroscopy of I2[J]. Journal of the Optical Society of America,1980,70(11):1412-1413.
    [79]J. Ye, L. S. Ma and J. L. Hall. Sub-doppler optical frequency reference at 1.064 μm by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition[J]. Optics Letters,1996,21(13):1000-1002.
    [80]J. Ye, S. Swartz, P. Jungner et al.. Hyperfine structure and absolute frequency of the Rb87 5p3/2 state[J]. Optics Letters,1996,21(16):1280-1282.
    [81]M. L. Eickhoff and J. L. Hall. Optical frequency standard at 532 nm[J]. IEEE Transactions on Instrumentation and Measurement,1995,44(2):155-158.
    [82]Y. Bitou, K. Sasaki, S. Iwasaki et al.. Compact I2-stabilized frequency-doubled ND:YAG laser for long gauge block interferometer [J]. Japanese Journal of Applied Physics Part 1, 2003,42(5):2867-2871.
    [83]F. L. Hong, J.Ishikawa, K. Sugiyama et al.. Comparison of independent optical frequency measurements using a portable iodine-stabilized Nd:YAG laser[J]. IEEE Transactions on Instrumentation and Measurement,2003,52(2):240-244.
    [84]J. T. Ye, Z. K. Tang and G. G. Siu. Optical characterizations of iodine molecular wires formed inside the one-dimensional channels of an AIPO4-5 single crystal [J]. Applied Physics Letters,2006,88(7).
    [85]A. Congeduti, P. Postorino, P. Dore et al.. Infrared study of charge delocalization induced by pressure in the La0.75Ca0.25Mn03 manganite[J]. Physical Review B,2001,63(18): 184410.
    [86]J. P. Zhai, I. L. Li, S. C. Ruan et al.. Controlling the alignment of neutral iodine molecules in the elliptical channels of AIPO4-11 crystals[J]. Applied Physics Letters, 2008,92(4):043117.
    [87]F. Y. Jiang, J. P. Zhai, J. T. Ye et al.. Synthesis of large optically clear AlPO4-5 single crystals[J]. Journal of Crystal Growth,2005,283(1-2):108-114.
    [88]J. H. Thywissen, R. M. Westervelt and M. Prentiss. Quantum point contacts for neutral atoms[J]. Physical Review Letters,1999,83(19):3762-3765.
    [89]M. Drndic, G Zabow, C. S. Lee et al.. Properties of microelectromagnet mirrors as reflectors of cold Rb atoms[J]. Physical Review A,1999,60(5):4012-4015.
    [90]J. H. Thywissen, M. Olshanii, G Zabow et al.. Microfabricated magnetic waveguides for neutral atoms[J]. European Physical Journal D,1999,7(3):361-367.
    [91]J. Schmiedmayer. Quantum wires and quantum dots for neutral atoms[J]. European Physical Journal D,1998,4(1):57-62.
    [92]W. Wulfhekel and J. Kirschner. Spin-polarized scanning tunneling microscopy on ferromagnets[J]. Applied Physics Letters,1999,75(13):1944-1946.
    [93]L. Abelmann, S. Porthun, M. Haast et al.. Comparing the resolution of magnetic force microscopes using the camst reference samples[J]. Journal of Magnetism and Magnetic Materials,1998,190(1):135-147.
    [94]G. Binning, H. Rohrer, C. Gerber et al.. Surface studies by scanning tunneling microscopy[J]. Physical Review Letters,1982,49(1):57-61.
    [95]S. Osswald, E. Flahaut, H. Ye et al.. Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation[J]. Chemical Physics Letters,2005,402: 422-427.
    [96]J. M. Hu, D. D. Wang, W. H. Guo et al.. Reversible control of the orientation of iodine molecules inside the AIPO4-11 crystals[J]. Journal of Physical Chemistry C,2012,116(7): 4423-4430.
    [97]Y. S. Ning, J. Jiang, Z. L. Shi et al.. Single molecules conductance depending on its orientation[J]. Journal of Physical Chemistry C,2009,113(1):26-30.
    [98]W. H. Guo, D. D. Wang, J. M. Hu et al.. Raman spectroscopy of iodine molecules trapped in zeolite crystals[J]. Applied Physics Letters,2011,98(4):043105.
    [99]P. W. Wei. Raman characterization of iodine nanostructures formed in channels of an AIPO4-11 single crystal [D]. The Hong Kong University of Science and Technology Hong Kong,2009.
    [100]Z. J. Pang. Synthesis and characterization of ultra-small single walled carbon nanotubesproduced via template technique[D]. The Hong Kong University of Science and Technology, Hong Kong,2007.
    [101]A. Saiz-Lopez and J. M. C. Plane. Recent applications of differential optical absorption spectroscopy:Halogen chemistry in the lower troposphere[J]. Journal De Physique Iv, 2004,121:223-238.
    [102]A. Saiz-Lopez, R. W. Saunders, D. M. Joseph et al.. Absolute absorption cross-sectionand photolysis rate of I2[J]. Atmospheric Chemistry and Physics,2004,4: 1443-1450.
    [103]D. D. Wang, W. H. Guo, J. M. Hu et al.. Estimating atomic sizes with raman spectroscopy[J]. Scientific Reports,2013,3:1486.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700