用户名: 密码: 验证码:
几类随机微分系统的动力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随机微分系统一直以来都是广大学者研究和讨论的重点话题之一。最近涌现了许多关于随机系统的突破性成果,比如:关于随机系统的稳定性分析、鲁棒控制以及滤波设计等。本文主要讨论和研究了两大类随机系统的动力学行为,一类是关于离散随机神经网络系统的稳定性和耗散性的研究;另一类是关于带有马尔科夫跳跃系统的故障检测和无源控制分析。
     首先,讨论了几类不确定的离散随机神经网络的指数稳定性问题。通过构造合适的Lyapunov泛函,结合随机稳定性理论以及自由权矩阵方法,导出了一些充分条件以保证随机神经网络是全局均方指数稳定的,通过和已有结果比较发现,所得结论极大地降低了系统的保守性。最后给出了几个数值例子验证了结论的有效性。众所周知,稳定性问题的研究主要是关于系统平衡点的分析,然而从实际情况来看,系统的平衡点有可能不稳定或是根本不存在平衡点,这时系统的耗散性概念就被引入了。当前,很少有作者考虑关于离散随机神经网络的耗散性问题,因此这类问题具有很大的提升空间。鉴于此,本文又针对离散随机神经网络系统的耗散问题进行了研究。通过结合凸组合理论,获得了一个关于不确定离散随机神经网络系统的耗散性准则。
     其次,基于当前社会对高安全标准日益提高的要求,本文进一步研究了不确定的马尔科夫跳跃系统的故障检测滤波设计问题。通过使用一个可观测的故障检测滤波作为残差产生器,此问题最终归结为H∞滤波设计问题。特别的,本文使用两个不同的马尔科夫过程来描述系统矩阵模式和时滞模式,这不仅是理论研究的需要,也是实际应用的需要。通过使用倒凸的方法保证了结果的优越性。
     最后,针对转移率部分知道的不确定的马尔科夫跳跃系统的无源控制问题进行了讨论。无源性在电力系统和非线性控制系统中扮演着重要角色,并且提供了一个有效的工具用来讨论系统的稳定性,这也是研究无源性的主要原因。通过结合简森不等式,得到了一个理想的无源控制器且保证了闭环系统是无源的。
Stochastic differential system has been one of the most important discussion topicsfor the scholar. Recently, both analysis and synthesis problem for stochastic systems havebeen extensively studied and a great number of important results have been reported, suchas stability analysis for stochastic systems, robust control and filter design problems andso on. In this dissertation, the dynamical behavior about two kinds of stochastic systemsis discussed, one is stability and dissipativity analysis for discrete-time stochastic neuralnetworks with time-varying delays; other one is robust fault detection and passification ofMarkovian jump systems.
     Firstly, the problem of exponential stability for a class of uncertain discrete-timestochastic neural network with time-varying delays is investigated. By constructing asuitable Lyapunov-Krasovskii functional, combining the stochastic stability theory andthe free-weighting matrix method, some sufficient conditions are established to ensure thestochastic neural networks are globally exponential stability in the mean square, which areproved to be less conservative than previous results. Finally, some numerical examplesare given to demonstrate the effectiveness of the proposed results. To the best of ourknowledge, few authors have considered the problem on the dissipativity of discrete-timestochastic neural networks with time-varying delays and this problem also has much moreimprovement space. Motivated by the above discussions, the global exponential dissipa-tivity in mean for uncertain stochastic discrete-time neural networks is studied. By com-bining with the convex combination theory, a new sufficient condition for checking theglobal dissipativity of the addressed stochastic discrete-time neural networks is obtained.
     Secondly, with the rising demand for higher safety and reliability standards in themodern industries, the robust fault detection filter design problems for uncertain nonlin-ear Markovian jump systems is studied. By using a observer-based fault detection filter asresidual generator, the robust fault detection filter design is formulated as an H∞-filteringproblem. Particularly, two different Markov processes are considered for modeling therandomness of system matrix and the state delay, which is not only theoretically inter-esting and challenging, but also very important in practical applications. By using a newconvex polyhedron technique, it will reflect the superiority of our conclusions.
     Finally, the problem of delay-dependent passivity analysis and passification of un-certain Markovian jump systems with partially known transition rates is investigated. Thepassivity and passification problem has played an efficient role in both electrical networkand nonlinear control systems, and provides a nice tool for analyzing the stability of sys-tems, this is a reason for our research. By combining with Jensen inequality, a desiredpassification controller is designed, which guarantees that the closed-loop system is pas-sive.
引文
[1] W. S. McCulloch, W. Pitts. A logical calculus of the ideas immanent in nervous activity[J].Bul. Math. Bio.,1943,5:115-133
    [2] J. J. Hopfield. Neuronal networks and physical systems with emergent collective computa-tional abilities[J]. Proceeding. National Aca. Sci.,1982,79:2554-2558
    [3] O. M. Kwon, J. H. Park. Exponential stability for uncertain cellular neural networks withdiscrete and distributed time-varying delays[J]. Appl. Math. Comput.,2008,203:813-823
    [4] W. J. Xiong, L. Z. Song, J. D. Cao. Adaptive robust convergence of neural networks withtime-varying delays[J]. Nonlinear Anal.,2008,9:1283-1291
    [5] Q. K. Song, J. D. Cao. Global robust stability of interval neural networks with multipletime-varying delays[J]. Math. Comput. Simu.,2007,74:38-46
    [6] B. Y. Zhang, S. Y. Xu, Y. Li. Delay-dependent robust exponential stability for uncertainrecurrent neural networks with time-varying delays[J]. Int. J. Neural Syst.,2007,17:207-218
    [7] O. M. Kwon, S. M. Lee, J. H. Park. Improved delay-dependent exponential stability foruncertain stochastic neural networks with time-varying delays[J]. Phys. Lett. A,2010,374:1232-1241
    [8] S. Q. Hu, J. Wang. Golbal robust stability of a class of discrete-time interval neural net-works[J]. IEEE Trans. Circuits Syst. I.,2006,53:129-138
    [9] Y. R. Liu, Z. D. Wang, X. H. Liu. Global exponential stability of generalized recurrentneural networks with discrete and distributed delays[J]. Neural Networks,2006,19:667-675
    [10] Y. R. Liu, Z. D. Wang, X. H. Liu. Discrete-time recurrent neural networks with time-varyingdelays: exponential stability analysis[J]. Phys. Lett. A,2007,364:480-488
    [11] Z. X. Liu, S. Lv, S. M. Zhong, et al. Improved exponential stability criteria for discrete-timeneural networks with time-varying delay[J]. Neurocomputing,2010,73:975-985
    [12] B. Y. Zhang, S. Y. Xu, Y. Zou. Improved delay-dependent exponential stability criteriafor discrete-time recurrent neural networks with time-varying delays[J]. Neurocomputing,2008,72:321-330
    [13] J. J. Yu, K. J. Zhang, S. M. Fei. Exponential stability criteria for discrete-time recurrentneural networks with time-varying delay[J]. Nonlinear Anal.: Real World Appl.,2010,11:207–216
    [14] H. Huang, W. C. Ho, Y. Z. Qu. Robust stability of stochastic delayed additive neural net-works with Markovian switching[J]. Neural Networks,2007,20:799-809
    [15] S. Zhu, Y. Shen. Robustness analysis for connection weight matrices of global exponentialstability of stochastic recurrent neural networks[J]. Neural Networks,2013,38:17-22
    [16] M. Syed Ali, P. Balasubramaniam. Exponential stability of uncertain stochastic fuzzy BAMneural networks with time-varying delays[J]. Neurocomputing,2009,72:1347-1354
    [17] Y. Lv, W. Lv, J. H. Sun. Convergence dynamics of stochastic reaction–diffusion recur-rent neural networks with continuously distributed delays[J]. Nonlinear Anal.: Real WorldAppl.,2008,9:1590-1606
    [18] Z. D. Wang, H. S. Shu, J. A. Fang, et al. Robust stability for stochastic Hopfield neuralnetworks with time delays[J]. Nonlinear Anal.: Real World Appl.,2006,7:1119-1128
    [19] Y. H. Sun, J. D. Cao. Pth moment exponential stability of stochastic recurrent neural net-works with time-varying delays[J]. Nonlinear Anal.: Real World Appl.,2007,8:1171-1185
    [20] Q. X. Zhu, X. D. Li. Exponential and almost sure exponential stability of stochastic fuzzydelayed Cohen–Grossberg neural networks[J]. Fuzzy Sets. Syst.,2012,203:74-94
    [21] Q. Gan. Exponential synchronization of stochastic Cohen–Grossberg neural networks withmixed time-varying delays and reaction–diffusion via periodically intermittent control[J].Neural Networks,2012,31:12-21
    [22] Q. T. Gan. Global exponential synchronization of generalized stochastic neural networkswith mixed time-varying delays and reaction-diffusion terms[J]. Neurocomputing,2012,89:96-105
    [23] P. Balasubramaniam, R. Rakkiyappan. Global asymptotic stability of stochastic recurrentneural networks with multiple discrete delays and unbounded distributed delays[J]. Appl.Math. Comput.,2008,204:680-686
    [24] X. J. Meng, M. S. Tian, S. Q. Hu. Stability analysis of stochastic recurrent neural networkswith unbounded time-varying delays[J]. Neurocomputing,2011,74:949-953
    [25] Y. R. Liu, Z. D. Wang, X. H. Liu. On global exponential stability of generalized stochasticneural networks with mixed time-delays[J]. Neurocomputing,2006,70:314-326
    [26] X. W. Liu, T. P. Chen. Robust μ-stability for uncertain stochastic neural networks withunbounded time-varying delays[J]. Phys. A: Statis. Mech. Appl.,2008,387:2952-2962
    [27] M. Z. Luo, S. M. Zhong, R. J. Wang, et al. Robust stability analysis for discrete-timestochastic neural networks systems with time-varying delays[J]. Appl. Math. Comput.,2009,209:305-313
    [28] H. B. Chen. New delay-dependent stability criteria for uncertain stochastic neural networkswith discrete interval and distributed delays[J]. Neurocomputing,2013,101:1-9
    [29] L. J. Pan, J. D. Cao. Robust stability for uncertain stochastic neural network with delay andimpulses[J]. Neurocomputing,2012,94:102-110
    [30] H. Hang, J. D. Cao. Exponential stability analysis of uncertain stochastic neural networkswith multiple delays[J]. Nonlinear Anal.: Real World Appl.,2007,8:646-653
    [31] C. X. Huang, Y. G. He, H. N. Wang. Mean square exponential stability of stochastic recur-rent neural networks with time-varying delays[J]. Comput. Math. Appl.,2008,56:1773-1778
    [32] J. K. Hale, Y. He, H. Wang. Asymptotic Behavior of Dissipative Systems[M]. RI: AmericanMath. Society,1988,21-23
    [33] G. J. Wang, J. D. Cao, L. Wang. Global dissipativity of stochastic neural networks withtime delay[J]. J. Franklin Inst.,2009,346:784-807
    [34] J. T. Zhou, Q. K. Song, J. X. Yang. Dissipativity analysis of stochastic neuraln networkswith time-varying delays[J]. Lect. Notes Comput. Sci.,2010,6063:619-626
    [35] Z. M. Hou, S. Y. Liu, Y. Zhou. Dissipative control system for the stochastic nonlinear H∞problems[J]. J. Math. Anal. Appl.,2006,315:154-166
    [36] Y. T. Zhang, Q. Luo. Dissipativity in mean square of stochastic reaction diffusion sys-tems[C]. Proceedings of the Sixth International Conference on Machine and Cybernetics,Hong Kong,2007,19-22
    [37] Q. K. Song, J. D. Cao. Global Dissipativity on Uncertain Discrete-Time Neural Networkswith Time-Varying Delays[J]. Dis. Dyn. Nature. Society,2010, Article ID810408:1-19
    [38] Q. K. Song. Stochastic dissipativity analysis on discrete-time neural networks with time-varying delays[J]. Neurocomputing,2011,74:883-845
    [39] Z. H. Li, J. C. Wang, H. H. Shao. Delay-dependent dissipative control for linear time-delaysystems[J]. J. Franklin Inst.,2002,339:529-542
    [40] L. P. Wen, W. S. Wang, Y. X. Yu. Dissipativity and asymptotic stability of nonlinear neurtraldelay integro-differential equations[J]. Nonlinear Anal.: Theory, Meth. Appl.,2010,72:1746-1754
    [41] H. J. Tian, N. Guo, A. L. Shen. Dissipativity of delay functional differential equations withbounded lag[J]. J. Math. Anal. Appl.,2009,355:778-782
    [42] Q. K. Song, Z. J. Zhao. Global dissipativity of neural networks with both variable andunbounded delays[J]. Chaos. Solitons. Fract.,2005,25:393-401
    [43] Y. M. Huang, D. Y. Xu, Z. C. Yang. Dissipativity and periodic attractor for non-autonomousneural networks with time-varying delays[J]. Neurocomputing,2007,70:2953-2958
    [44] L. Qin, G. R. Duan. Robust Dissipative Control for Uncertain Descriptor Linear Systemswith Time Delay[C]. Proceedings of the6th World Congress on Intelligent Control andAutomation, Dalian,2006,2327-2333
    [45] Z. G. Feng, James. Lam. Robust reliable dissipative filtering for discrete delay singularsystems[J]. Signal Process.,2012,72:3010-3025
    [46] M. Mariton. Jump Linear Systems in Automatic Control[M]. New York: Marcel Dekker,1990,43-51
    [47] B. Garca-Mora, C. Santamara, E. Navarro, et al. Modeling bladder cancer using a Markovprocess with multiple absorbing states[J]. Math. Comput. Model.,2010,52:977-982
    [48] K. P. Chung. Steady state solution and convergence rate of time-dependent Markov chainsof queuing networks[J]. Comput. Math. Appl.,1988,15:351-358
    [49] Z. D. Wang, Y. R. Liu, X. H. Liu. Exponential stability of delayed recurrent neural networkswith Markovian jumping parameters[J]. Phys. Lett. A,2006,356:346-352
    [50] Magdi. S. Mahmoud, P. Shi, Abdulla. Ismail. Robust Kalman filtering for discrete-timeMarkovian jump systems with parameter uncertainty[J]. J. Comput. Appl. Math.,2004,169:53-69
    [51] Ion. Matei, John. S. Baras. A linear distributed filter inspired by the Markovian jump linearsystem filtering problem[J]. Automatica,2012,48:1924-1928
    [52] X. M. Zhang, Y. F. Zheng. Nonlinear H∞filtering for interconnected Markovian jumpsystems[J]. J. Syst. Eng. Electr.,2006,17:138-146
    [53] B. Y. Zhang, Y. M. Li. Exponential L2-L∞filtering for distributed delay systems withMarkovian jumping parameters[J]. Signal Process.,2013,93:206-216
    [54] F. Zhao, W. L. Sun. Robust L2-L∞Filtering for Discrete-Time Systems with MarkovianSwitching and Mode-Dependent Time-Delays[J]. Procedia Eng.,2012,29:2458-2464
    [55] Z. G. Wu, P. Shi, H. Y. Su, et al. L2-L∞filter design for discrete-time singular Markovianjump systems with time-varying delays[J]. Inform. Sci.,2011,181:5534-5547
    [56] F. Dufour, P. Bertrand. The filtering problem for continuous-time linear systems withMarkovian switching coefficients[J]. Syst. Control Lett.,1994,23:453-461
    [57] P. Shi, Magdi. Mahmoud, Sing. Kiong. Nguang, et al. Robust filtering for jumping systemswith mode-dependent delays[J]. Signal Process.,2006,86:140-152
    [58] S. P. He, F. Liu. Robust peak-to-peak filtering for Markov jump systems[J]. Signal Process.,2010,90:513-522
    [59] Alim. P. C. Goncalves, André. R. Fioravanti, José. C. Geromel. Markov jump linear sys-tems and filtering through network transmitted measurements[J]. Signal Process.,2010,90:2842-2850
    [60] C. Y. Han, H. S. Zhang. Linear optimal filtering for discrete-time systems with randomjump delays[J]. Signal Process.,2009,89:1121-1128
    [61] Umut. Orguner, Mübeccel. Demirekler. Risk-sensitive filtering for jump Markov linear sys-tems[J]. Automatica,2008,44:109-118
    [62] Minyi. Huang, Subhrakanti. Dey. Stability of Kalman filtering with Markovian packetlosses[J]. Automatica,2007,43:598-607
    [63] X. D. Zhao, Q. S. Zeng. Delay-dependent Stability Analysis for Markovian Jump Systemswith Interval Time-varying-delays[J]. Int. J. Automat. comput.,2010,7:224-229
    [64] H. Y. Li, Q. Zhou, B. Chen, et al. Parameter-dependent robust stability for uncertain Marko-vian jump systems with time delay[J]. J. Franklin Inst.,2011,38:738-748
    [65] Z. Shu, James. Lam, J. L. Xiong. Static output-feedback stabilization of discrete-timeMarkovian jump linear systems: a system augmentation approach[J]. Automatica,2010,46:687-694
    [66] J. F. Wang, C. F. Liu, H. Z. Yang. Stability of a class of networked control systems withMarkovian characterization[J]. Appl. Math. Model.,2012,36:3168-3175
    [67] Z. Y. Li, Y. Wang. Convergence rate analysis of discrete-time Markovian jump systems[J].Appl. Math. Lett.,2010,23:1056-1064
    [68] H. J. Wu, J. T. Sun. p-Moment stability of stochastic differential equations with impulsivejump and Markovian switching[J]. Automatica,2006,42:1753-1759
    [69] S. T. Pan, J. T. Sun, S. W. Zhao. Stabilization of discrete-time Markovian jump linear sys-tems via time-delayed and impulsive controllers[J]. Automatica,2008,44:2954-2958
    [70] Y. Chen, W. X. Zheng. Stochastic state estimation for neural networks with distributeddelays and Markovian jump[J]. Neural Networks,2012,25:14-20
    [71] J. L. Xiong, James. Lam. Stabilization of discrete-time Markovian jump linear systems viatime-delayed controllers[J]. Automatica,2006,42:747-753
    [72] Y. Q. Zhang, C. X. Liu, X. W. Mu. Robust finite-time stabilization of uncertain singularMarkovian jump systems[J]. Appl. Math. Model.,2012,36:5109-5121
    [73] Z. Y. Fei, H. J. Gao, P. Shi. New results on stabilization of Markovian jump systems withtime delay[J]. Automatica,2009,45:2300-2306
    [74] Z. G. Wu, H. U. Su, J. Chu. Robust exponential stability of uncertain singular Markovianjump time-delay systems[J]. Act. Automat. Sin.,2010,36:558-563
    [75] L. Ma, F. P. Da, L. Y. Wu. Delayed-state-feedback exponential stabilization of stochasticMarkovian jump systems with mode-dependent time-varying state delays [J]. Act. Au-tomat. Sin.,2010,36:1601-1610
    [76] P. Zhao. Practical stability, controllability and optimal control of stochastic Markovian jumpsystems with time-delays[J]. Automatica,2008,44:3120-3125
    [77] X. Zhao, Q. S. Zeng. New robust delay-dependent stability and H∞analysis for uncertainMarkovian jump systems with time-varying delays[J]. J. Franklin Inst.,2010,347:863-874
    [78] Amir. Hossein. Abolmasoumi, Hamid. Reza. Momeni. Robust observer-based H∞controlof a Markovian jump system with different delay and system modes[J]. Int. J. Control,Automat. Syst.,2011,9:768-776
    [79] Y. Kang, J. F. Zhang, S. Z. Ge. Robust output feedback H∞control uncertain Markovianjump systems with mode-dependent time-delays[J]. Int. J. Control,2008,81:43-61
    [80] E. K. Boukas, Z. K. Liu. Robust H∞control of discrete-time Markovian jump linear sys-tems with mode-dependent time-delays[J]. IEEE Trans. Automat. Control,2001,46:1918-1924
    [81] W. H. Chen, Z. H. Guan, P. Yu. Delay-dependent stability and H∞control of uncertaindiscrete-time Markovian jump systems with mode-dependent time delays[J]. Syst. ControlLett.,2004,52:361-376
    [82] J. W. Wang, H. N. Wu, L. Guo, et al. Robust H∞fuzzy control for uncertain nonlinearMarkovian jump systems with time-varying delay[J]. Fuzzy Sets. Syst.,2013,212:41-61
    [83] Y. C. Wang, H. G. Zhang. H∞control for uncertain Markovian jump systems with mode-dependent mixed delays[J]. Progress. Natural Sci.,2008,18:309-314
    [84] J. R. Wang, H. J. Wang, A. K. Xue, et al. Delay-dependent H∞control for singular Marko-vian jump systems with time delay[J]. Nonlinear Anal.: Hyb. Syst.,2013,8:1-12
    [85] Z. Y. Wang, L. H. Huang, X. X. Yang. H∞performance for a class of uncertain stochasticnonlinear Markovian jump systems with time-varying delay via adaptive control method[J].Appl. Math. Model.,2011,35:1983-1993
    [86] Y. Q. Zhang, C. X. Liu. Observer-based finite-time H∞control of discrete-time Markovianjump systems[J]. Appl. Math. Model.,2013,37:3748-3760
    [87] L. Q. Zhang, B. Huang, James. Lam. H∞model reduction of Markovian jump linearsystems[J]. Syst. Control Lett.,2003,50:103-118
    [88] Z. W. Lin, Y. Lin, W. H. Zhang. A unified design for state and output feedback H∞con-trol of nonlinear stochastic Markovian jump systems with state and disturbance-dependentnoise[J]. Automatica,2009,45:2955-2962
    [89] L. X. Zhang, E. K. Boukas, James. Lam. Analysis and synthesis of Markov jump linearsystems with time-varying delays and partially known transition probabilities[J]. IEEETrans. Automat. Control,2008,53:2458-2464
    [90] L. X. Zhang, E. K. Boukas. Mode-dependent H∞filtering for discrete-time Markovianjump linear systems with partly unknown transition probabilities[J]. Automatica,2009,45:1462-1467
    [91] L. X. Zhang, E. K. Boukas. Stability and stabilization of Markovian jump linear systemswith partly unknown transition probabilities[J]. Automatica,2009,45:463-468
    [92] X. D. Zhao, Q. S. Zeng. Delay-dependent H∞performance analysis for markovian jumpsystems with mode-dependent time varying delays and partially known transition rates[J].Int. J. Control, Automat. Syst.,2010,8:482-489
    [93] L. X. Zhang, James. Lam. Necessary and sufficient conditions for analysis and synthesisof Markov jump linear systems with incomplete transition descriptions[J]. IEEE Trans.Automat. Control,2010,55:1695-1701
    [94] J. X. Lin, S. M. Fei, J. Shen. Delay-dependent H∞filtering for discrete-time singularMarkovian jump systems with time-varying delay and partially unknown transition proba-bilities[J]. Signal Process.,2011,91:277-289
    [95] G. L. Wang, Q. L. Zhang, Victor. Sreeram. Partially mode-dependent H∞filtering fordiscrete-time Markovian jump systems with partly unknown transition probabilities[J]. Sig-nal Process.,2010,90:548-556
    [96] G. L. Wang. Partially mode-dependent design of H∞filter for stochastic Markovian jumpsystems with mode-dependent time delays[J]. J. Math. Anal. Appl.,2011,383:573-584
    [97] Q. Ma, S. Y. Xu, Y. Zou. Stability and synchronization for Markovian jump neural networkswith partly unknown transition probabilities[J]. Neurocomputing,2011,74:3404-3411
    [98] L. Sheng, M. Gao. Stabilization for Markovian jump nonlinear systems with partly un-known transition probabilities via fuzzy control[J]. Fuzzy Sets. Syst.,2010,161:2780-2792
    [99] M. Z. Luo, S. M. Zhong. Passivity analysis and passification of uncertain Markovian jumpsystems with partially known transition rates and mode-dependent interval time-varyingdelays[J]. Comput. Math. Appl.,2012,63:1266-1278
    [100] M. Q. Shen, D. Ye. Improved fuzzy control design for nonlinear Markovian-jump systemswith incomplete transition descriptions[J]. Fuzzy Sets. Syst.,2013,217:80-95
    [101] Y. Tang, J. A. Fang, M. Xia, et al. Delay-distribution-dependent stability of stochasticdiscrete-time neural networks with randomly mixed timevarying delays[J]. Neurocomput-ing,2009,72:3830-3838
    [102] Y. R. Liu, Z. D. Wang, X. H. Liu. Robust stability of discrete-time stochastic neural net-works with time-varying delays[J]. Neurocomputing,2008,71:823-833
    [103] Q. K. Song, J. L. Liang, Z. D. Wang. Passivity analysis of discrete-time stochastic neuralnetworks with time-varying delays[J]. Neurocomputing,2009,72:1782-1788
    [104] Y. J. Zhang, D. Yue, E. G. Tian. Robust delay-distribution-dependent stability of discrete-time stochastic neural networks with time-varying delay[J]. Neurocomputing,2009,72:1265-1273
    [105] M. Y. Zhong, James. Lam, S. X. Ding, et al. Robust fault detection of Markovian jumpsystems[J]. Circuits Syst. Signal Process.,2004,23:387-407
    [106] P. Park, J. C. K. Jeong. Reciprocally convex approach to stability of systems with time-varying delays[J]. Automatica,2011,47:235-238
    [107] S. Y. Xu, James. Lam, X. R. Mao. Delay-dependent H∞control and filtering for uncertainMarkovian jump systems with time-varying delays[J]. IEEE Trans. Circuits Syst. I.,2007,54:2070-2077
    [108] X. M. Yao, L. G. Wu, W. X. Zheng, et al. Psassivity analysis and passification of Markovianjump systems[J]. Circuits Syst. Signal Process.,2010,29:709-725
    [109] C. W. Liao, C. Y. Lu. Design of delay-dependent state estimator for discretetime recurrentneural networks with interval discrtet and infinite-distributed time-varying delays[J]. Cog.Neurodyn.,2011,5:133-143
    [110] X. R. Mao. Stochastic Differential Equations and their Applications[M]. Chichester: Hor-wood Publisher,2011,108-112
    [111] C. Lu, H. H. Tsai, T. J. Su, et al. A delay-dependent approach to passivity analysis foruncertain neural networks with time-varying delay[J]. Neural Process. Lett.,2008,27:237-246
    [112] X. W. Liu. Passivity analysis of uncertain fuzzy delayed systems[J]. Chaos. Solitons. Fract.,2007,34:833-838
    [113] B. Chen, H. Y. Li, P. Shi, et al. Delay-dependent stability analysis and controller synthesisfor Markovian jump systems with state and input delays[J]. Inform. Sci.,2009,179:2851-2860

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700