用户名: 密码: 验证码:
具有多运动模式的可变形软体机器人研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有无限自由度和连续变形能力,可在大范围内任意改变自身形状和尺寸的软体动物在自然界中具有极强的适应能力。发展具备类似能力的仿生软体机器人,一直是各国研究人员的目标。作为对仿生机器人研究的延续,仿生软体机器人通过主动变形和被动变形的结合使其具有出色的运动灵活性和对复杂环境的相容性,在军事、科研、医疗等领域具有广泛的应用前景。
     针对当前仿生软体机器人存在运动模式单一,运动效率和环境适应能力不能有效兼顾的问题,本论文以能实现三种运动模式的仿生软体机器人为研究对象,围绕着仿生软体机器人三种运动模式的实现机制,开展了仿生软体机器人多运动模式实现原理研究,仿生软体机器人整体结构设计研究,仿生软体机器人运动特性研究以及内嵌SMA丝的平板弯曲驱动器动态特性研究等工作。论文的主要研究内容和成果如下:
     (1)通过分析自然界中各种软体动物的运动特点,在已有研究工作的基础上,结合形状记忆合金的特性,设计了一种将滚动运动、蠕动运动和Ω型运动方式集合在一起的可变形仿生软体机器人。在平坦路面上,通过自身的柔性变形推动仿生软体机器人向前滚动运动,以提高其运动速度和运动效率;在通过狭小空间时,身体展开采用蠕动运动以提高通过性;而遇到沟壑或者障碍时,身体变形采用Ω型前进提高其越障能力。通过对仿生软体机器人的三种运动模式进行详细的研究,获得了软体机器人实现三种运动模式的运动机理,然后在此基础上完成了软体机器人的总体方案设计。软体机器人采用模块化的设计思想,由运动单元和分离单元组成。每个运动单元包括了偏转单元和蠕动单元,设计了软体机器人的偏转单元和蠕动运动单元以及头尾连接结构。
     (2)利用多刚体运动学仿真软件ADAMS对仿生软体机器人两种典型的运动模式,滚动运动和蠕动运动,进行运动学的仿真分析。基于伪刚体模型建立了仿生软体机器人在ADAMS中的滚动仿真模型,通过调整弹簧力的施加时序,使得机器人的滚动达到最优,获得了仿生软体机器人在X轴方向(滚动方向)和Y轴方向(垂直于滚动运动方向)的运动位移和速度曲线图,给出了仿生软体机器人滚动运动的控制策略。建立了软体机器人在ADAMS中的蠕动运动仿真模型,采用微型锯齿结构来模拟仿生刚毛结构和粗糙的地面,获得了软体机器人在X轴方向(蠕动运动方向)上的运动位移和速度曲线图,并分析了运动特性。利用实验室现有的材料和设备,加工一个仿生软体机器人的原理样机,采用AB胶来粘结软体机器人的各个运动单元,简化了软体机器人的结构,设计了可同时控制24路SMA偏转驱动器的仿生软体机器人运动控制系统。验证了采用粘结的方式连接仿生软体机器人头尾可以从环形运动状态转换到直线运动状态,以及通过实验的方法对软体机器人的滚动运动特性进行了研究(机器人可以在6s的内可以滚动160mm)
     (3)基于三维空间力系平衡关系,分别建立了SMA线性致动器的力学平衡方程和弹性基板的力平衡方程和力矩平衡方程,综合SMA线性致动器的平衡方程和弹性基板的平衡方程即可获得平板弯曲驱动器的动力学平衡方程,并引入SMA本构方程和SMA热力学平衡方程,在已知平板驱动器各个参数的情况下,使得平板弯曲驱动器的偏转过程可以被有效的预测出来。
     (4)对SMA准静态热/力耦合特性、动态热/力耦合特性及本构模型进行了详细的实验研究,并重点研究了SMA丝在不同应力条件下相变温度随应变的变化而改变的特性以及不同应变速率情况下的应力一应变特性。基于SMA具有输出力大、变形大、较高功重比、低电压驱动和寿命长的特性,设计了性能稳定且可靠的内嵌SMA丝的平板弯曲驱动器,并通过仿真和实验对其偏转特性进行详细的研究。通过仿真和实验结果的对比,验证了平板驱动器力学模型的正确性,同时发现平板弯曲驱动器的偏转角度和输出弯矩有着近似的线性关系,并且采用脉冲电流对SMA丝加热的方式可以有效的提高驱动器的输出效率。
With infinite degrees of freedom and continuous deformation capacity, the mollusks can arbitrarily change their shapes and sizes so that they have a strong ability to adapt to the natural environment. Developed the bionic robot with similar biological ability is the target for the researchers from all over the world. As a continuation of the bio-robot research, the bionic soft robots have an excellent flexibility and compatibility to the complex environment, through the combination of active deformation and passive deformation. This type of robots has broad application prospects in the military, scientific research, medical and other fields.
     The bionic soft robot has the problem that the movement pattern is very single, the movement efficiency and the environmental adaptability can not effectively take into account. In order to solve this problem, this thesis takes the soft robot which has three locomotion modes as the research object. Surrounding the implementation mechanisms for accomplishing the multi-locomotion modes, this dissertation carried out the reasearch of multi-locomotion modes bionic implementation principle, the study of how to implementate the bionic soft robot overall structure, the reasearch of the dynamic characteristics of the plannar bending actuator embedded SMA wire and the study of the motion characteristics of the bionic soft robot, etc. The main research contents and contributions of this paper are listed as follows:
     (1) By analysis of the movement characteristics of the nature mollusks, a bionic soft robot which has rolling motion, peristaltic movements and omega-type motion is designed based on the existing research work and combination of the characteristics of the shape memory alloy. On a flat road, the bionic soft robot uses the rolling movement to improve the movement speed and movement efficiency through the flexible deformation; the body is expanded to use the peristaltic movement to improve the ablitiy of through the narrow space; when the soft robot encountered the obstacles, the body deformation using the Omega-type forward way to improve the ability of through the obstacles. By the detailed study of the three kinds of movement modes, the motion mechanism which achieves three loconmotion modes is obtained and then completed the design of the overall structures of the soft robots according to the front analysis. The soft robot is designed based on the modular concept and it consists of movement unit and separation unit. Each movement unit is comprised by a deflection unit and a peristaltic unit, the design of the deflection unit、the peristaltic movement unit and the head and tail connection structure is detailed designed.
     (2) The kinematics simulation of the two typical movement patterns of the soft robot, the rolling locomotion and peristaltic movement, are analysed using powerful many-body dynamics emulation software ADAMS. Based on the pseudo-rigid model, the simulation model of the rolling motion of the soft robot in ADAMS is bulilt, by adjusting the control sequence of the spring force to achieve the optimal the rolling speed and obtained the displacement and velocity curve of the rolling movement of the soft robot in X axis and Y axis direction, the control strategy of the rolling motion is given. The simulation model of the peristaltic movement of the soft robot in ADAMS is established by using the micro-sawtooth structure to simulate the bionic seta structure and rough ground, obtained the displacement and velocity curve of the peristaltic movement of the soft robot in X axis direction and analyze the movement characteristics. The movement state transitions and the rolling motion of the softrobot are studied through the experiment method on the basis of the robot structure design and kinematics simulation. The prototype of the soft robot is made by using the existing experimental materials and equipment, the motion unit of the soft robot is bonded by AB glue to simplify the structure of the soft robot, the control system of the bionic soft robot is designed which can simultaneously control the motion of24SMA bent actuator. Verified the feasibility that the bonding method to connect the head and tail of the soft robot can convert from the annular state to the linear motion, and the characteristics of the rolling motion are studied by the experiment method (the soft robot can scroll160mm in6s).
     (3) Based on the three-dimensional space force system, the mechanical equilibrium of the SMA linear actuator and the dynamic equilibrium equation of the elastic substrate is established, and the SMA constitutive equations and the thermodynamic equilibrium equation is introduced to give the detailed dynamic model of the plannar bending actuator embedded SMA wires, so the deflection process of the plannar bending acuator can be effectively predicted.
     (4) The quasi-static thermal/mechanical characteristics and the dynamic thermal/mechanical characteristics are detailed study by the experimental, and the research emphasis focused on the characteristics of the change of the phase transition temperature of the SMA wires in different stress conditions and gives the stress-strain characteristics on different train rate. Due to the SMA have characteristics of the large output power and deformation, higher power-weight ratio, low-voltage drive and long life, the plannar bending actuator embedded SMA wires which has stable and reliable performance is designed, and the driving characteristics is detailed study through simulation and experimental to verify the correctness of the mechanical equations. And frome the experimental result, we found that the output angle and output moment of the actuator has a linear relationship, and useing the big pulse current heating method can effectively improve the efficiency of the actuator.
引文
[1].王海彬,黄永生,姚丹霖,国外地面军用机器人系统综述.汽车运用,2006(11):第18-20页.
    [2].徐玉如等,智能水下机器人技术展望.智能系统学报,2006.1(1):第9-16页.
    [3].徐国华,谭民,移动机器人的发展现状及趋势.机器人技术与应用,2001.3:第7-14页.
    [4].杨秀清,骆敏舟,梅涛,核环境下的机器人研究现状与发展趋势.机器人技术与应用,2008(1):第31-39页.
    [5].曹玉君,软体机器人研究现状综述.机械工程学报,2012.(3):第25-33页.
    [6]. Trivedi, D., et al., Soft robotics:Biological inspiration, state of the art, and future research. Applied Bionics and Biomechanics,2008.5(3):p.99-117.
    [7].迟冬祥,颜国正,仿生机器人的研究状况及其未来发展.2001.23(5):第476-480页.
    [8].周宗锡,作业空间中刚体机器人的输出反馈控制.机械科学与技术,2002.21(5):第719-722页.
    [9].周宗锡,佟明安,刚体姿态控制及其在机器人控制中的应用研究,2002,西北工业大学.
    [10].赵铁石等,一种基于空间连杆机构的蛇形机器人.机器人,2006.28(6):第629-635页.
    [11]. Jones, B.A. and I.D. Walker, Kinematics for multisection continuum robots. IEEE Transactions on Robotics,2006.22(1):p.43-55.
    [12]. Robinson, G. and J. Davies. Continuum robots-a state of the art. IEEE International Conference on Robotics and Automation.1999, p.2849-2854.
    [13]. Walker, I.D., et al. Continuum robot arms inspired by cephalopods. International Society for Optics and Photonics in Defense and Security.2005
    [14].陈丽,王越超,李斌,蛇形机器人研究现况与进展.机器人,2002.24(6):第559-563
    [15].孙立宁,胡海燕,李满天,连续型机器人研究综述.机器人,2010.32(5):第688-694页.
    [16].赵强,岳永恒,仿生连续体机器人的研究现状和展望.机械设计,2009.8:第1-5页.
    [17]. Hirose, S. and E.F. Fukushima, Snakes and strings:new robotic components for rescue operations. The International Journal of Robotics Research,2004.23(4-5):p.341-349.
    [18]. Wright, C., et al. Design of a modular snake robot. IEEE International Conference on Intelligent Robots and Systems.2007, p:2609-2614.
    [19]. Ijspeert, A.J., et al., From swimming to walking with a salamander robot driven by a spinal cord model. Science,2007.315(5817):p.1416-1420.
    [20]. Martins, E.P., T.J. Ord and S.W. Davenport, Combining motions into complex displays:playbacks with a robotic lizard. Behavioral Ecology and Sociobiology,2005.58(4):p.351-360.
    [21]. Floyd, S., et al. A novel water running robot inspired by basilisk lizards. IEEE/RSJ International Conference on Intelligent Robots and Systems.2006.
    [22]. Barrett, D., Design of the MIT RoboTuna.2006, MIT RoboTuna Home Page http://web. mit. edu/towtank/www/tuna/brad/design. html, [Accessed April 1999].
    [23]. Liu, J., H. Hu and D. Gu. A hybrid control architecture for autonomous robotic fish. International Conference on Intelligent Robots and Systems.2006.
    [24]. Hirata, K. Development of experimental fish robot. The Sixth International Symposium on Marine Engineering.2000.
    [25]. Wang, Z., et al., A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin. Sensors and Actuators A:Physical,2008.144(2):p.354-360.
    [26]. Nishikawa, K.C., W.M. Kier and K.K. Smith, Morphology and mechanics of tongue movement in the African pig-nosed frog Hemisus marmoratum:a muscular hydrostatic model. Journal of Experimental Biology,1999.202(7):p.771-780.
    [27]. Van Leeuwen, J.L., J.H. De Groot and W.M. Kier, Evolutionary mechanics of protrusible tentacles and tongues. Netherlands Journal of Zoology,2000.50(2):p.113-139.
    [28]. Kier, W.M. and K.K. Smith, Tongues, tentacles and trunks:the biomechanics of movement in muscular-hydrostats. Zoological Journal of the Linnean Society,2008.83(4):p.307-324.
    [29]. Fiorito, G. and P. Scotto, Observational learning in Octopus vulgaris. Science,1992.256(5056):p. 545-547.
    [30]. Sasaki, D., Development of pneumatic soft robot hand for human friendly robot. J. Robotics Mechatron,2003.15:p.164-171.
    [31]. Trivedi, D., et al., Soft robotics:Biological inspiration, state of the art, and future research. Applied Bionics and Biomechanics,2008.5(3):p.99-117.
    [32].克拉克等,机器人设计与控制.2004:科学出版社.
    [33]. Takahashi, C.D., et al., Robot-based hand motor therapy after stroke. Brain,2008.131(2):p.425-437.
    [34].仇怀利等,导电硅橡胶的复合传感特性研究.仪表技术与传感器,2009.1:第1-3页.
    [35].胡闻珊,黄英,王敏,机器人敏感皮肤的研究进展.合肥工业大学学报(自然科学版),2006.
    [36].李明东等,一种形状记忆合金丝驱动的微小型六足机器人.上海交通大学学报,2000.34(10):第1426-1429页.
    [37].魏中国,彭红樱,杨大智,形状记忆合金传感驱动器件及其在机器人中的应用.机器人,1994.16(4):第244-249页.
    [38].沈利群,周涟庚,形状记忆合金的应用现状.上海金属,1996.18(6):第33-35页.
    [39]. Gels, E.P., Electroactive polymer (EAP) actuators as artificial muscles:reality, potential, and challenges.2004.
    [40]. Scrosati, B., Applications of electroactive polymers.1993:Springer.
    [41]. Chapman, G., Versatility of hydraulic systems. Journal of Experimental Zoology,1975.194(1):p. 249-269.
    [42].杭观荣,肌肉性静水骨骼原理的仿乌贼鳍推进器.哈尔滨工业大学学报,2009.41(011):59-64.
    [43]. Trimmer, B. and J. Issberner, Kinematics of soft-bodied, legged locomotion in Manduca sexta larvae. The Biological Bulletin,2007.212(2):p.130-142.
    [44]. Kate, M., et al., SoftBot:A soft-material flexible robot based on caterpillar biomechanics. Tufts University, Medford, MA,2008.2155.
    [45]. Marks, P., Robot octopus will go where no sub has gone before. New Scientist,2009.201(2700)
    [46]. Laschi, C., et al., Design of a biomimetic robotic octopus arm. Bioinspiration & Biomimetics,2009. 4(1):p.015006.
    [47]. Cianchetti, M., et al., Design concept and validation of a robotic arm inspired by the octopus. Materials Science and Engineering:C,2011.31(6):p.1230-1239.
    [48]. Cianchetti, M., et al., A new design methodology of electrostrictive actuators for bio-inspired robotics. Sensors and Actuators B:Chemical,2009.142(1):p.288-297.
    [49]. Sugiyama, Y. and S. Hirai, Crawling and jumping by a deformable robot. Vol.25.2006.603.
    [50]. Schmitz, D., et al. CHIMERA:A real-time programming environment for manipulator control. IEEE International Conference on Robotics and Automation,1989.
    [51]. Maeda, S., et al., Self-oscillating gel actuator for chemical robotics. Advanced Robotics,2008.22(12): p.1329-1342.
    [52]. Menciassi, A., et al. A SMA actuated artificial earthworm. IEEE International Conference on. Robotics and Automation,2004
    [53]. Bekker, M.G., Introduction to terrain-vehicle systems.1969:University of Michigan Press Ann Arbor, MI.
    [54].张佳帆等,蠕动式机器蛇的研究与开发.机械工程学报,2005.41(5);第205-209页.
    [55]. Arakawa, K. and E. Krotkov. Fractal surface reconstruction for modeling natural terrain. IEEE Computer Society Conference on Computer Vision and Pattern Recognition.1993..
    [56]. Koh, J.S. and K.J. Cho. Omegabot:biomimetic inchworm robot using SMA coil actuator and smart composite microstructures (SCM).2009:IEEE.
    [57]. Koh, J.S. and K.J. Cho. Omegabot:Crawling robot inspired by Ascotis Selenaria.2010:IEEE.
    [58]. Armour, R.H. and J.F.V. Vincent, Rolling in nature and robotics:A review. Journal of Bionic Engineering,2006.3(4):p.195-208.
    [59]. Matsumoto, Y., H. Nakanishi and S. Hirai. Rolling Locomotion of a Deformable Soft Robot with Built-in Power Source.2008:World Scientific Pub Co Inc.
    [60]. Garcia-Paris, M. and S.M. Deban, A novel antipredator mechanism in salamanders:rolling escape in Hydromantes platycephalus. Journal of herpetology,1995.29(1):p.149-151.
    [61]. van Griethuijsen, L.I. and B.A. Trimmer, Kinematics of horizontal and vertical caterpillar crawling. Journal of Experimental Biology,2009.212(10):p.1455-1462.
    [62]. Belanger, J.H. and B.A. Trimmer, Combined kinematic and electromyographic analyses of proleg f unction during crawling by the caterpillar Manduca sexta. Journal of Comparative Physiology A, 2000.186(11):p.1031-1039.
    [63]. Belanger, J.H., K.J. Bender and B.A. Trimmer, Context dependency of a limb withdrawal reflex in the caterpillar Manduca sexta. Journal of Comparative Physiology A,2000.186(11):p.1041-1048.
    [64]. Woods, W.A., S.J. Fusillo and B.A. Trimmer, Dynamic properties of a locomotory muscle of the tobacco hornworm Manduca sexta during strain cycling and simulated natural crawling. Journal of Experimental Biology,2008.211(6):p.873-882.
    [65]. Mazzolai, B., et al. Biorobotic investigation on the muscle structure of an octopus tentacle.29th Annual International Conference of Engineering in Medicine and Biology Society t.2007.
    [66]. Yekutieli, Y., et al., Analyzing octopus movements using three-dimensional reconstruction. Journal of neurophysiology,2007.98(3):p.1775-1790.
    [67]. Yekutieli, Y., et al., Dynamic model of the octopus arm. Ⅰ. Biomechanics of the octopus reaching movement. Journal of neurophysiology,2005.94(2):p.1443-1458.
    [68]. Yekutieli, Y., et al., Dynamic model of the octopus arm. Ⅱ. Control of reaching movements. Journal of neurophysiology,2005.94(2):p.1459-1468.
    [69]. Liang, Y., R.M. McMeeking and A.G. Evans, A finite element simulation scheme for biological muscular hydrostats. Journal of theoretical biology,2006.242(1):p.142.
    [70]. Guangping, H. and L. Zhen, Self-reconfiguration of underactuated redundant manipulators with optimizing the flexibility ellipsoid. 机械工程学院,2005.18(1).
    [71]. Gels, E.P., Electroactive polymer (EAP) actuators as artificial muscles:reality, potential, and challenges.2004.
    [72]. Paiva, A. and M.A. Savi, An overview of constitutive models for shape memory alloys. Mathematical Problems in Engineering,2006.
    [73]. Saadat, S., et al., An overview of vibration and seismic applications of NiTi shape memory alloy. Smart Materials and Structures,2002.11(2):p.218-229.
    [74]. Kim, S., C. Laschi and B. Trimmer, Soft robotics:a bioinspired evolution in robotics. Trends in Biotechnology,2013.31(5):p.287-294.
    [75]. Iida, F. and C. Laschi, Soft Robotics:Challenges and Perspectives. Procedia Computer Science,2011. 7:p.99-102.
    [76]. Kate, M., et al., SoftBot:A soft-material flexible robot based on caterpillar biomechanics. Tufts University, Medford, MA,2008.
    [77]. Simonite, T., Chemical'caterpillar'points to electronics-free robots. New Scientist,2009.
    [78].Menciassi, A., et al. A SMA actuated artificial earthworm. IEEE International Conference on Robotics and Automation,2004:p.3282-3287.
    [79]. Quillin, K.J., Ontogenetic scaling of hydrostatic skeletons:geometric, static stress and dynamic stress scaling of the earthworm Lumbricus terrestris. The Journal of Experimental Biology,1998.201(12):p. 1871-1883.
    [80].Quillin, K.J., Kinematic scaling of locomotion by hydrostatic animals:ontogeny of peristaltic crawling by the earthworm Lumbricus terrestris. Journal of Experimental Biology,1999.202(6):p.661-674.
    [81].Trueman, E.R. and E.R. Trueman, The locomotion of soft-bodied animals.1975.
    [82].Mangan, E.V., et al. Development of a peristaltic endoscope. IEEE International Conference on Robotics and Automation.2002. p.347-352
    [83]. Jung, K., et al., Artificial annelid robot driven by soft actuators. Bioinspiration & Biomimetics,2007. 2(2):p.42-49.
    [84].Menciassi, A., et al. A SMA actuated artificial earthworm. IEEE International Conference on Robotics and Automation.2004, p.3282-3287.
    [85].Yuk, H., et al., Shape memory alloy-based small crawling robots inspired by C. elegans. Bioinspiration & Biomimetics,2011.6(4):p.046002.
    [86].Seok, S., et al. Peristaltic locomotion with antagonistic actuators in soft robotics. IEEE International Conference on Robotics and Automation.2010, p.1228-1233.
    [87].Lin, H., et al., Scaling of caterpillar body properties and its biomechanical implications for the use of a hydrostatic skeleton. The Journal of experimental biology,2011.214(7):p.1194-1204.
    [88].Mezoff, S., et al., The biomechanical and neural control of hydrostatic limb movements in Manduca sexta. Journal of experimental biology,2004.207(17):p.3043-3053.
    [89].Simon, M.A., et al., Visceral-locomotory pistoning in crawling caterpillars. Current biology,2010. 20(16):p.1458-1463.
    [90].Lin, H.T., G.G. Leisk and B. Trimmer, GoQBot:a caterpillar-inspired soft-bodied rolling robot. Bioinspiration & Biomimetics,2011.6.
    [91].Lin, H.T. and B.A. Trimmer, The substrate as a skeleton:ground reaction forces from a soft-bodied legged animal. The Journal of Experimental Biology,2010.213(7):p.1133-1142.
    [92].Lin, H. and B. Trimmer, Caterpillars use the substrate as their external skeleton:A behavior confirmation. Communicative & integrative biology,2010.3(5):p.471-474.
    [93].Simon, M.A., et al., Motor patterns associated with crawling in a soft-bodied arthropod. The Journal of Experimental Biology,2010.213(13):p.2303-2309.
    [94].Trimmer, B. and J. Issberner, Kinematics of soft-bodied, legged locomotion in Manduca sexta larvae. The Biological Bulletin,2007.212(2):p.130-142.
    [95].Saunders, F., B.A. Trimmer and J. Rife, Modeling locomotion of a soft-bodied arthropod using inverse dynamics. Bioinspiration & Biomimetics,2011.6(1).
    [96].Belanger, J.H., K.J. Bender and B.A. Trimmer, Context dependency of a limb withdrawal reflex in the caterpillar Manduca sexta. Journal of Comparative Physiology A,2000.186(11):p.1041-1048.
    [97].Belanger, J.H. and B.A. Trimmer, Combined kinematic and electromyographic analyses of proleg function during crawling by the caterpillar Manduca sexta. Journal of Comparative Physiology,2000. 186(11):p.1031-1039.
    [98].Levine, R.B. and J.W. Truman, Dendritic reorganization of abdominal motoneurons during metamorphosis of the moth, Manduca sexta. The Journal of neuroscience,1985.5(9):p.2424-2431.
    [99].Metallo, C., R.D. White and B.A. Trimmer, Flexible parylene-based microelectrode arrays for high resolution EMG recordings in freely moving small animals. Journal of Neuroscience Methods,2011. 195(2):p.176-184.
    [100].Walker, I.D., et al. Continuum robot arms inspired by cephalopods. International Society for Optics and Photonics in Defense and Security,2005.5804:p.303-314
    [101].Kier, W.M. and K.K. Smith, Tongues, tentacles and trunks:the biomechanics of movement in muscular-hydrostats. Zoological Journal of the Linnean Society,1985.83(4):p.307-324.
    [102].Kier, W.M. and M.P. Stella, The arrangement and function of octopus arm musculature and connective tissue. Journal of Morphology,2007.268(10):p.831-843.
    [103].Kier, W.M. and A.M. Smith, The morphology and mechanics of octopus suckers. The Biological Bulletin,1990.178(2):p.126-136.
    [104].Gutfreund, Y., et al., Patterns of arm muscle activation involved in octopus reaching movements. The Journal of neuroscience,1998.18(15):p.5976-5987.
    [105].Sumbre, G., et al., Neurobiology:motor control of flexible octopus arms. Nature,2005.433(7026):p. 595-596.
    [106].Sumbre, G., et al., Control of octopus arm extension by a peripheral motor program. Science,2001. 293(5536):p.1845-1848.
    [107].Sumbre, G., et al., Octopuses use a human-like strategy to control precise point-to-point arm movements. Current biology,2006.16(8):p.767-772.
    [108].Hanlon, R.T. and J.B. Messenger, Cephalopod behaviour.1998:Cambridge University Press.
    [109].Wells, M.J., Octopus:physiology and behaviour of an advanced invertebrate.1978:Chapman and Hall London.
    [110].Young, J.Z., The diameters of the fibres of the peripheral nerves of octopus. Proceedings of the Royal Society of London. Series B, Biological Sciences,1965:p.47-79.
    [111].Ilievski, F., et al., Soft robotics for chemists. Angewandte Chemie,2011.123(8):p.1930-1935.
    [112].Shepherd, R.F., et al., Multigait soft robot. Proceedings of the National Academy of Sciences,2011. 108(51):p.20400-20403.
    [113].Margheri, L., C. Laschi and B. Mazzolai, Soft robotic arm inspired by the octopus:I. From biological functions to artificial requirements. Bioinspiration & Biomimetics,2012.7(2).
    [114].Mazzolai, B., et al., Soft-robotic arm inspired by the octopus:Ⅱ. From artificial requirements to innovative technological solutions. Bioinspiration & Biomimetics,2012.7(2).
    [115].Laschi, C., et al., Design of a biomimetic robotic octopus arm. Bioinspiration & Biomimetics,2009. 4(1).
    [116].Cianchetti, M., et al., Design concept and validation of a robotic arm inspired by the octopus. Materials Science and Engineering:C,2011.31(6):p.1230-1239.
    [117].Follador, M., et al., A general method for the design and fabrication of shape memory alloy active spring actuators. Smart Materials and Structures,2012.21(11):p.115029.
    [118].Cianchetti, M., et al., Design concept and validation of a robotic arm inspired by the octopus. Materials Science and Engineering:C,2011.31(6):p.1230-1239.
    [119].Walcott, A., Unifying model-based programming and randomized path planning through optimal search.2004, Massachusetts Institute of Technology.
    [120].Schroll, G.C., DYNAMIC MODEL OF A SPHERICAL ROBOT FROM FIRST PRINCIPLES.2010, Colorado State University.
    [121].付宜利,李显凌与梁兆光,基于形状记忆合金的自主导管导向机器人设计.机械工程学报,2008.44(9):第76-82页.
    [122].李燕,仿蚯蚓在土质环境下拱洞机器人的研究,2004,西北工业大学.
    [123]简小刚,王叶锋,杨鹏春,基于蚯蚓蠕动机理的仿生机器人研究进展.中国工程机械学报ISTIC,2012.10(3):第359-363也.
    [124].Sugiyama, Y., et al. Circular/spherical robots for crawling and jumping. IEEE International Conference on Robotics and Automation,2005, pp:3595-3600
    [125].Sugiyama, Y. and S. Hirai. Crawling and jumping of deformable soft robot. International Conference onntelligent Robots and Systems,2004, pp.603-620.
    [126].Shiotsu, A., et al. Crawling and Jumping Soft Robot KOHARO.2005
    [127].Shibata, M., F. Saijyo and S. Hirai. Crawling by body deformation of tensegrity structure robots. IEEE International Conference on Robotics and Automation,2009:p.4375-4380.
    [128].郝云堂,虚拟样机技术及其在ADAMS中的实践.机械设计与制造,2003.3(1):第16-18页。
    [129].于靖军等,基于伪刚体模型法的全柔性机构位置分析.机械工程学报,2002.38(2):第75-78页.
    [130].于会涛,孙洪,马培荪,基于伪刚体模型法的柔顺机构驱动特性研究.传动技术,2006.20(4): 第11页-13页.
    [131].Dado, M.H., Variable parametric pseudo-rigid-body model for large-deflection beams with end loads. International journal of non-linear mechanics,2001.36(7):p.1123-1133.
    [132].Edwards, B.T., B.D. Jensen and L.L. Howell, A pseudo-rigid-body model for initially-curved pinned-pinned segments used in compliant mechanisms. Journal of Mechanical Design,2001,123(3): p.464-468.
    [133].孙久荣,郭策,戴振东,几种刚毛的结构及其仿生学.ACTA BIOPHYSICA SINICA,2007.23(6):第428-434.
    [134].刘彬等,倾斜仿生刚毛的设计,制备及黏附性能研究.摩擦学学报,2009(5):第393-398页..
    [135]Khalid, P. and D.C. Lagoudasa, Dynamic Loading of Polycrystalline Shape Memory Alloy Rods. Mechanics of Materials,2003.35(7):P.689-716.
    [136].Shu, S.G., et al., Modeling of a flexible beam actuated by shape memory alloy wires. Smart Materials and Structures,1997.6(3):p.265.
    [137].Lagoudas, D.C. and A. Bhattacharyya, Modeling of thin layer extensional thermoelectric SMA actuators. International Journal of Solids and Structures,1998.35(3):p.331-362.
    [138].Lagoudas, D.C. and I. Tadjbakhsh, Variational Theory of Motion of Curved, Twisted and Extensible Elastic Rods. RENSSELAER POLYTECHNIC INST TROY NY,1994.32(4):p.569-577.
    [139].杨凯,辜承林与严新荣,新型内嵌式SMA电机的非线性模型.中国电机工程学报,2005.25(13):第109-112页.
    [140].杨凯,辜承林,内嵌式SMA电机的设计与建模.微电机(伺服技术),2000.33(5):第7-9页
    [141].杨凯,辜承林,直线型内嵌式SMA电机的设计与优化.中国电机工程学报,2004.24(7):第219-222页..
    [142].Tanaka, K., A phenomenological description on thermomechanical behavior of shape memory alloys. Journal of Pressure Vessel Technology(Transactions of the ASME),1990.112(2):p.158-163.
    [143].Mori, T. and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgica,1973.21(5):p.571-574.
    [144].Liang, C. and C.A. Rogers, Design of shape memory alloy actuators. Journal of intelligent material systems and structures,1997.8(4):p.303-313.
    [145].Lagoudas, D.C., Shape Memory Alloys:Modeling and Engineering Applications, ISBN 978-0-387-47685-8. Springer-Verlag US,2008.1.
    [146].Brinson, L.C., One-dimensional constitutive behavior of shape memory alloys:thermomechanical derivation with non-constant material functions and redefined martensite internal variable. Journal of intelligent material systems and structures,1993.4(2):p.229-242.
    [147].Brinson, L.C. and R. Lammering, Finite element analysis of the behavior of shape memory alloys and their applications. International Journal of Solids and Structures,1993.30(23):p.3261-3280.
    [148].Brinson, L.C. and M.S. Huang, Simplifications and comparisons of shape memory alloy constitutive models. Journal of Intelligent Material Systems and Structures(USA),1996.7(1):p.108-114.
    [149].徐祖耀,形状记忆材料.2000年第12卷.上海交通大学出版社.
    [150].杨杰,吴月华,形状记忆合金及其应用.1993:中国科学技术大学出版社.
    [151].Holman, J.P., Heat Transfer.1997, McGraw-Hill Book Company (UK) Ltd., Berkshire, England.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700