用户名: 密码: 验证码:
SCalf液压驱动四足机器人的机构设计与运动分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前轮式和履带机器人在技术上已经非常成熟并得到广泛应用,但它们只能在相对平坦的地面环境移动,而超过一半的陆地表面为崎岖不平的山地、丛林和冰雪地面。自然界中的很多动物,尤其是四足哺乳动物,不仅可以在这些复杂地形环境下快速行走,而且具有较大的负重能力。因此,人类一直在努力研制各式各样的四足仿生机器人。近年来,具有高动态性、大负载能力的液压驱动四足仿生机器人更是受到越来越多人的重视。
     虽然已经出现种类繁多的四足仿生机器人,但在仿生机构设计、动力驱动系统、动力学建模、运动控制方法等各方面还没有形成成熟的理论体系,仍处于探索阶段。本论文在液压驱动四足机器人的仿生机构设计、足端轨迹规划、运动学分析、动力学仿真、机载液压动力系统的设计与实现、实验样机集成与实验验证等几方面做了深入研究,主要内容如下:
     (1)通过对典型四足哺乳动物的骨骼结构和运动规律的分析研究,设计了具有前后对称运动和全向运动能力、适于快速步行的12主动自由度的液压驱动四足机器人仿生机构。建立了其ADAMS和MATLAB的联合仿真模型,通过仿真获得了各关节运动范围、运动速度和关节驱动力等重要参数,完成了对机器人仿生机构的优化和完善,并以此为依据设计出了高动态、高度集成的一体化液压伺服驱动单元。
     (2)提出了基于躯干固定坐标系的复合足端轨迹规划方法,大大减小了摆动足落地冲击,实现了四足机器人平稳运动。采用基于D-H运动学模型的方法对SCalf四足机器人进行运动学数值分析,给出了单腿两个俯仰关节的关节角度、关节角速度、关节角加速度、油缸位移、油缸速度和油缸加速度变化曲线。采用基于迭代计算的计算机辅助分析方法再次对SCalf四足机器人进行了运动学数值分析,取得的结果与基于模型的结果完全一致,且具有较高的计算实时性。
     (3)基于离线规划和样条驱动的方法、在线规划和联合仿真的方法分别对SCalf四足机器人进行了运动学和动力学仿真,获取了机器人足地面碰撞力、各关节液压伺服油缸驱动力、躯干质心的速度和加速度波动等重要参数。
     (4)基于正压闭式液压回路设计方法,将变容积微型正压油箱、高转速微型柱塞变量泵和12个非对称液压伺服油缸组成正压闭式回路,设计完成了SCalf四足机器人的高功率密度、抗震的机载液压动力系统,解决了四足机器人野外行走的动力问题。
     (5)优化并集成了具有12个主动自由度和4被动自由度的液压驱动四足机器人实验样机,进行了负重、复杂地形、抗侧向冲击、最大速度、上下坡、续航等诸多实验,实验结果证明所设计的液压驱动四足机器人具有很好的动态性和大负载能力,技术指标达到了国际先进水平。
     本论文研发的液压驱动四足机器人已于2013年1月16日通过了国家高技术发展管理中心组织的现场测评,验收结论是“出色地完成了研究任务”。
By far wheeled robots and tracked robots are technically mature and extensively adopted, however, they are constrained to move on even terrains. Over half of the land surfaces are rugged mountains, jungles, and lands covered by snow and ice. In nature, many kinds of animals, especially the four-legged mammals, not only can walk on these complex terrains rapidly, but also have large load capacity. As a result, humans have been trying to manufacture a wide variety of quadruped bionic robots. In recent years, hydraulic-driven quadruped bionic robot, possessed of high dynamic ability and large load capacity, is brought to the attention of more and more people.
     Although numerous quadruped bionic robots have been produced, bionic structure design, power drive system, dynamic modeling, locomotion control methods and other various aspects, have not formed any mature theory systems, and still remain explored. In this paper, the bionic structure design of the hydraulic driven quadruped bionic robot, the planning of foot trajectory, kinematics analysis, dynamics simulation, the design and realization of onboard hydraulic power system, and the integration and experiment validation of the experimental prototype have been performed. The main content is as follows:
     (1) Based on the analysis and research about the bone structure and motion pattern of typical four-legged mammals, a hydraulic driving mechanism with12active DOFs, which equipped with front and rear symmetrical motion and omni-direction motion ability and rapid walking ability has been designed. Based on the simulation results of the co-simulation model established in ADAMS/MATLAB, each joint's moving range, moving velocity and joint driving force and other important parameters were obtained. The optimization and perfection of the bionic structure of the quadruped robot were accomplished, on the basis of which highly dynamic and highly integrated hydraulic power unit whas been designed.
     (2) A composite foot trajectory planning method was proposed in this paper, which greatly decreased the impact forces between swing feet and ground at the touchdown moment and enabled the robot move more steadily. A numerical analysis was carried out for SCalf based on D-H kinematics model. The variation curves of joints angles, joints angular velocities, joints angular accelerations, cylinder displacements, cylinder velocities, cylinder accelerations were given from the analysis results. Subsequently, another numerical analysis was carried out for SCalf based on a computer aided kinematics analysis method which has good real-time quality. The results were identical to those of numerical analysis based on D-H kinematics model.
     (3) Many important parameters such as impact forces between robot feet and ground, driving forces of each hydraulic servo cylinder, the velocity and acceleration undulations of torso were gained from the kinematics and dynamics simulations under ADAMS by both off-line planning with spline driving and co-simulating with MATLAB.
     (4) High power/mass ratio, highly compact and quake-proof onboard hydraulic power system were designed and implemented with a positive pressure closed hydraulic circuit made up of miniature variable oil tank and high speed plunger pump and twelve asymmetric hydraulic servo cylinders, which solved the power problem for SCalf robot to walk on the field.
     (5) A hydraulically actuated quadruped robot with twelve active DOFs and four passive DOFs is integrated. The experiments of load capacity, uneven terrains adaptability, resistance to lateral impact, maximum speed, uphill, downhill, endurance were done to test the comprehensive performance of it. The experimental results proved its high dynamic ability, large load capacity and international advanced technical indicators.
     The hydraulically actuated quadruped robot developed in the thesis had passed the on-site test and evaluation organized by the National I ligh-Tech Development Management Center on January16,2013. The conclusion is that the research task has been done excellently.
引文
[1]Y. B. Li, B. Li, J. H. Ruan and X. W. Rong. Research of mammal bionic quadruped robots:A review [C].2011 IEEE 5th International Conference on Robotics, Automation and Mechatronics,2011:166-171.
    [2]H. K. Kim, D. Won, O. Kwon, T. J. Kim, S. S. Kim and S. Park. Foot trajectory generation of hydraulic quadruped robots on uneven terrain [C]. In Proc.17th International Federation of Automation Control,2008:3021-3026, Seoul, Korea.
    [3]T. J. Kim, B. So, O. Kwon and S. Park. The energy minimization algorithm using foot rotation for hydraulic actuated quadruped walking robot with redundancy [C]. In Proc.41st International Symposium on Robotics and 6th German Conference on Robotics,2010: 786-791, Munich, Germany.
    [4]C. Semini. HyQ-design and development of a hydraulically actuated quadruped robot [D]. Ph. D. dissertation, Italian Institute of Technology and University of Genoa,2010.
    [5]李贻斌,李彬,荣学文,孟健.液压驱动四足仿生机器人的结构设计和步态规划[J].山东大学学报(工学版),2011,41(5):32-36.
    [6]Boston Dynamics'AlphaDog Quadruped Robot Prototype on Video [OL]. http://spectrum.ieee.org/automaton/robotics/military-robots/boston-dynamics-alphadog-proto type-on-video,2013-3-5.
    [7]http://www.bostondynamics.com/robot_cheetah.html.
    [8]C. Semini, N. G. Tsagarakis, E. Guglielmino and D. G. Caldwell. Design and experimental evaluation of the hydraulically actuated prototype leg of the HyQ robot. The 2010 IEEE/RSJ International confercence on Intelligent Robot and Systems,2010:3640-3645, Taipei, Taiwan.
    [9]D. J. Todd, Walking machines:An introduction to legged robots [M]. London:Chapman& Hall.1985.
    [10]H. Kimura, I. Shimoyama and H. Miura. Dynamical Analysis of the Quadruped [C]. Proc, of the International Conference on Advanced Mechatronics,1989:683-688, Tokyo.
    [II]Shigeo Hirose, Kan Yoneda, Riki Furuya, Tatsuo Takagi. Dynamic and Static Fusion Control of Quadruped Walking Vehicle [J]. Proc. IEEE/RSJ Int. Workshop on Intelligent Robots and Systems,1989:199-204.
    [12]Karsten Berns, Winfried Hg. M. Deck, J. Albiez, R. Dillmann. Mechanical construction and computer architecture of the four-legged walking machine BISAM [J]. IEEE-ASME TRANS MECHATRON,4(1):32-38,1999.
    [13]Hiroshi Kimura, Yasuhiro Fukuoka and Ken Konaga. Adaptive Dynamic Walking of a Quadruped Robot Using a Neural System Model [J]. ADVANCED ROBOTICS,15(8): 859-876,2001.
    [14]Yasuhiro Fukuoka, Hiroshi Kimura and Avis H. Cohen. Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain based on Biological Concepts [J]. Int. Journal of Robotics Research,2003,22(3-4):187-202.
    [15]Christophe Maufroy, Hiroshi Kimura and Kunikatsu Takase. Integration of posture and rhythmic motion controls in quadrupedal dynamic walking using phase modulations based on leg loading/unloading [J]. AUTONOMOUS ROBOTS,2010.28(3):331-353.
    [16]loannis Poulakakis, James Andrew Smith and Martin Buehler. Modeling and Experiments of Untethered Quadrupedal Running with a Bounding Gait:The Scout H Robot [J]. International Journal of Robotic Research,2005,24(4):239-256.
    [17]Christian Ridderstrom. Legged locomotion:Balance, control and tools-from equation to action [D]. Ph. D. dissertation. The Royal Inst. of Technology, Stockholm, Sweden, May 2003.
    [18]S. Makita, D. Nishimura, J. Fruusho. Development of horse-type quadruped robot.2nd report. Experiments of trot gait by quadruped robot PONY [J]. Transactions of the Japan Society of Mechanical Engineers. C.2003.69(677):148-155.
    [19]J. G. Nichol, S. P. Singh. K. J. Waldron, L. R. Palmer Ⅲ. and D. E. Orin. System design of a quadrupedal galloping machine [J]. International Journal of Robotics Research,2004, 23(10-11):1013-1027.
    [20]Zhang Xiuli, Zheng Haojun, Chen Lianfeng. Gait transition for a quadrupedal robot by replacing the gait matrix of a central pattern generator model [J]. Advanced Robotics,2006, 20(7):849-866.
    [21]D. Q. He, Y. C. Liu, P. S Ma. Research on influence of joint reactions on stability of quadruped machine walking in trot gait [C]. Proceedings of the Intelligent Control and Automation.2008:4870-4875. Chongqing.
    [22]S. Yi, C. Xuedong, Y. Tianhong, J. Wenchuan. Modules Design of a Reconfigurable Multi-Legged Walking Robot [C]. In Proc. IEEE International Conference on Robotics and Biomimetics,2006:1444-1449, Kunming, China.
    [23]张锦荣,赵茜.四足机器人结构设计与运动学分析[J].现代制造工程,2009,8:146-149.
    [24]孙磊.四足机器人仿生控制方法及行为进化研究[D].中国科学技术大学博士学位论文,2008.
    [25]李斌.四足机器人步态控制与步态变换的算法及其实现[D].中国科学院自动化研究所博士学位论文,2010.
    [26]M. H. Raibert. Legged Robot That Balance [M]. The MIT Press, Cambridge,1986.
    [27]M. H. Raibert, H. Benjamin Brown, et al. Dynamically stable legged locomotion. Final Report:September 1985-August 1988, The leg Laboratory, MIT.
    [28]M. Raibert, K. Blankespoor, G. Nelson et al, BigDog, the rough-terrain quadruped robot [C], Proceedings of the 17th World Congress, International Federation of Automatic Control, July 6,2008, Seoul, Korea.
    [29]http://beta.spectrum.ieee.org/automaton/robotics/military-robots/bigdog-throws-cinder-blocks-with-huge-robotic-facearm
    [30]http://www.iit.it/en/advr-labs/dynamic-legged-systems/hydraulically-actuated-quadruped-hyq .html
    [31]http://news.ifeng.com/mil/bigpicture/detail_2013_01/17/21301146_0.shtml#p=l
    [32]余连庆.仿马四足机器人机构分析与步态研究[D].博士学位论文,华中科技大学,2007.
    [33]李彬.视觉地形分类和四足机器人步态规划方法研究与应用[D].博士学位论文,山东大学,2012.
    [34]郑浩峻,张秀丽.足式机器人生物控制方法与应用[M].北京:清华大学出版社,2011.
    [35]P. S. Freeman, D. E. Orin, Efficient dynamic simulation of a quadruped using a decoupled tree-structure approach [J]. International Journal of Robotic Research,1991,10(6):619-627.
    [36]H. Kimura, I. Shimoyama, H. Miura. Dynamics in the dynamic walk of a quadruped robot [J]. Advanced Robotics,1990,4(3):283-301.
    [37]M. H. Raibert. Running on four legs as though they were one [J]. IEEE Journal of Robotics and Automation,1986, RA-2(2):70-82.
    [38]P. Nanua, K. J. Waldron. Instabillity and chaos in quadruped gallop [J]. Transactions of the ASME,116:1096-1100.1994.
    [39]Alexander R. McN. Three uses for Spring in Legged Locomotion [J]. The International Journal of Robotics Research,9(2):53-61,1990.
    [40]David E. Orin. Evolution of Dynamic Maneuvers in a 3D Galloping Quadruped Robot [C]. International Conference on Robotics and Automation,1084-1089,2006.
    [41]陈佳品.四足机器人动态步行控制和学习辅助[D].博士学位论文,上海交通大学2001
    [42]张锦荣.基于虚拟样机技术的四足机器人仿真研究[D].硕士学位论文,西北工业大学2007.
    [43]R. B. McGhee. On the stability properties of quadruped creeping gaits [J]. Mathematical Biosciences,1968,3:331-351.
    [44]S. M. Song, K. J. Waldron. Machine that walk:The Adaptive Suspension Vehicle [M]. The MIT Press,1988.
    [45]C. D. Zhang, S. M. Song. Turning gait of a quadrupedal walking machine [C], IEEE International Conference on Robotics and Automation,1991:2106-2112.
    [46]Joaquin Estremera, Pablo Gonzalez de Santos. Generating Continuous Free Crab Gaits for Quadruped Robots on Irregular Terrain [J], IEEE Transactions on Robotics,2005, 6(21):1067-1076.
    [47]Honglak Lee, Yirong Shen, Chih-Han Yu, et al. Quadruped robot obstacle negotiation via reinforcement learning [C]. Proceedings 2006 IEEE International Conference on Robotics and Automation,2006:3003-3010.
    [48]Shaoping Bai, K. H. Low, A New Free Gait Generation for Quadrupeds Based on Primary/Secondary Gait [C]..International Conference on Robotics & Automation. 1999:1371-1376. Detroit. Michigan.
    [49]Shugen Ma, Takashi Tomiyama, Hideyuki Wada. Omnidirectional Static Walking of a Quadruped Robot [J]. IEEE Transactions on Robotics.2005,21(2):152-161.
    [50]S. Hirose, A. Nagabuko, and R. Toyama. Machine that can walk and climb on floors, walls, and ceilings [C]. International Conference on Advanced Robotics,1991, Pisa, Italy.
    [51]S. Hirose, K. Yoneda, and H. Tsukagoshi. Titan ⅶ:Quadruped walking and manipulating robot on a steep slope [C]. International Conference on Robotics and Automation,1997, Albuquerque, New Mexico, USA.
    [52]Z. G. Zhang, Y. Fukuoka and H. Kimura. Adaptive running of a quadruped robot on irregular terrain based on biological concepts [C]. International Conference on Robotics and Automation,2003:2043-2048.
    [53]J. Morimoto and C. Atkeson. Minimax differential dynamic programming:an application to robust biped walking [C]. Neural Information Processing Systems Conference,2002.
    [54]J. Bagnell, S. Kakade, A. Ng, and J. Schneider. Policy search by dynamic programming [C]. Neural Information Processing Systems Conference,2003, Vancouver, Canada.
    [55]N. Kohl and P. Stone. Machine learning for fast quadrupedal locomotion [C]. National Conference on Artificial Intelligence,2004, San Jose, California, USA.
    [56]H. Kim, T. Kang, V. G. Loc, and H. R. Choi. Gait planning of quadruped walking and climbing robot for locomotion in 3d environment [C]. International Conference on Robotics and Automation,2005.
    [57]Raibert M. H. Trotting, Pacing and Bounding by a Quadruped Robot [J]. Journal of Biomechanics,1990,23(Suppl.1):79-98.
    [58]R. Playter, M. Buehler, M. Raibert. Bigdog [C]. Proc. Of SPIE, vol.6230,2006.
    [59]Zhang Xiuli, Zheng Haojun. Study on dynamics of central pattern generator model for a quadruped robot [J]. High Technology Letters,2007,13(4):356-362.
    [60]陈佳品,程君实,冯萍,马培荪,潘俊民,席裕庚.四足机器人对角小跑步态的研究[J].上海交通大学学报,31(6):19-23.
    [61]槐创锋.四足步行机器人建模与控制方法[D].博士学位论文,北京交通大学,2009.
    [62]Luther R. Palmer, D. E. Orin. Attitude Control of a Quadruped Trot While Turning [C]. Intenational Conference on Intelligent Robots and Systems,2006:5743-5749.
    [63]Wangkyun Chung, Li-Chen Fu, Su-Hau Hsu. Handbook of Robotics-Motion Control [M]. Springer,2008.
    [64]D. E. Orin and S.Y. Oh. Control of Force Distribution in Robotic Mechanism Containing Closed Kinematic Chains [J], Trans, of the ASME, Journal of Dynamic Systems, Measurement, and Control,1981,102:134-141.
    [65]C. A. Klein and S. Kittivatcharapong. Optimal Force Distribution for the Legs of a Walking Machine with Friction Cone Constraints [J], IEEE Transaction On Robotics and Automation, 1990.6(1):73-85.
    [66]F. T. Cheng and D. E. Orin. Optimal Force Distribution in Multiple-Chain Robotic Systems [J]. IEEE Transaction on Systems, Man, and Cybernetics,1991,21(1):13-24.
    [67]C. Villard, P. Gorce and J.G. Fontaine. Study of a Distributed Control Architecture for a Quadruped Robot [J], Journal of Intelligent and Robotics Systems,1995,11(3):269-291.
    [68]F. T. Cheng and D. E. Orin. Efficient Formulation of the Force Distribution Equations for Simple Closed-Chain Robotic Mechanisms [J], IEEE Transactions on Systems, Man, and Cybernetics,1991,21(1):25-32.
    [69]W. Kwon and B. H. Lee. Force Optimization of Multiple Cooperating Robots Rigidly Holding a Common Object Using Dual Method [C], Proceedings of the 35th SICE Annual Conference,1996:1215-1220. Tottori, Japan.
    [70]M. A. Nahon and J. Angeles. Optimization of Dynamic Forces in Mechanical Hands [J], Transactions of the ASM E, Journal of Mechanical Design,1991,113:167-173.
    [71]V. Kumar and K. J. Waldron. Force Distribution in Walking Vehicles [J]. Transactions of the ASME, Journal of Mechanical Design,1990,112:523-526.
    [72]Buehler M., Playter R., and Raibert M. Robots step outside. In International Symposim: Adaptive Motion of Animals and Machines,2005.
    [73]Xuewen Rong. Yibin Li. Jiuhong Ruan and Bin Li. Design and simulation for a hydraulic actuated quadruped robot. Journal of Mechanical Science and Technology,2012,26(4): 1171-1177.
    [74]南开大学实验动物解剖学编写组.实验动物解剖学[M].北京:高等教育出版社,1988.
    [75]周元军.动物解剖[M].北京:中国农业大学出版社,2007.
    [76]邓奇.具弹性躯干仿生四足机器人准被动力学研究[D],博士学位论文,上海交通大学,2012.
    [77]Zhang X. L., Zheng H. J., Guan X., Cheng Z. F., and Zhao L. Y. A biological inspired quadruped robot:structure and control. IEEE International Conference on Robotics and Biomimetics,5 July,2005:387-392, HongKong, China.
    [78]Meek Sanford. Kim Jongwon and Anderson Michael. Stability of a trotting quadruped robot with passive, underactuated legs. IEEE International Conference on Robotics and Automation, Pasadena, May 19,2008:347-351, United states.
    [79]Nichol, J. G. Design for energy loss and energy control in a galloping artificial quadruped. PhD thesis, Stanford University,2005.
    [80]Witte H., Hackert R., Lilje K. E., Schilling N., Voges D., Klauer G., Ilg W., Abliez J., Seyfarth A., Germann D., Hiller M., Dillmann R., and Fischer M. S. Transfer of biological principles into the construction of quadruped walking machines. Second workshop on Robot Motion and Control,2001.
    [81]贾铭新.液压传动与控制[M].北京:国防工业出版社,2010.
    [82]王春行.液压控制系统[M].北京:机械工业出版社,2007.
    [83]机械设计手册编委会.机械设计手册(新版)[M],北京:机械工业出版社,2007.
    [84]R. P. Paul. Robot manipulators:Mathematics, programming, and control [M]. MIT Press, Cambridge,1981.
    [85]E. J. Haug. Computer aided kinematics and dynamics of mechanical systems (Vol.1:Basic Methods) [M], Allyn and Bacon,1989.
    [86]X. W. Rong, Y. B. Li, J. H. Ruan and H. J. Song. Kinematics analysis and simulation of a quadruped robot [M]. Applied Mechanics and Materials,2010,26-28:517-522.
    [87]熊有伦.机器人技术基础[M],武汉:华中科技大学出版社,1996.
    [88]John J. Craig. Introduction to Robotics:Mechanics and Control (3rd Edition) [M]. Prentice Hall,2004.
    [89]J. N. Franklin. Matrix theory [M]. Dover Publications,2000.
    [90]Hoyt D. and Taylor R. Gait and the energetics of locomotion in horses [J]. Nature,1981,292: 239-240.
    [91]Farley C. and Taylor C. A mechanical trigger for the trot-gallop transition in horses [J]. Science,1991,253(5017):306-308.
    [92]Schmiedeler J. P. The mechanics of and robotic design for Quadrupedal galloping [D]. PhD. Dissertation, The Ohio State University,2001.
    [93]日本机器人学会[编].机器人技术手册[M].北京:科学出版社,2007.
    [94]N. C. Heglund and C. R. Taylor. Speed, stride frequency and energy cost per stride:how do they change with body size and gait? [J]. Journal of Experimental Biology,1988,138:301-318.
    [95]N. C. Heglund, C. R. Taylor and T. A. McMahon. Scaling stride frequency and gait to animal size:Mice to horses [J]. Science,1974,186(4169):1112-1113.
    [96]K. T. Stranga and K. Teudel. Explaining the scaling of transport costs:the role of stride frequency and stride length [J], Journal of Zoology,1990,221:343-358.
    [97]Y. Sakakibara, K. Kan, Y. Hosoda and M. Hattori et al. Foot trajectory for a quadruped walking machine [C], IEEE International Workshop on Intelligent Robots and Systems,1990: 315-322, Ibaraki, Japan.
    [98]K. Y. Kim and J. H. Park. Ellipse-based leg-trajectory generation for galloping quadruped robots [J], Journal of Mechanical Science and Technology,2008,22:2099-2106.
    [99]柳洪义,宋伟刚,彭兆行.控制步行机足运动的一种方法-修正给合摆线法法.机器人,1994,15(5):350-356.
    [100]何冬青.JTUWM-HI四足机器人trot步态运动特性研究[D],博士学位论文,上海交通大学,2006.
    [101]J. F. Gardner. Simulations of Machines Using MATLAB and Simulink [M]. Brooks/Cole Press,2001.
    [102]E. J. Haug著,刘兴祥等译.机械系统的计算机辅助远动学和动力学(第一卷:基本方法)[M],北京:高等教育出版社,1995.
    [103]M. Vukobratovic. Biped Locomotion:Dynamics, Stability. Control and Application [M]. Springer-Verlag, Berlin,1990.
    [104]X. W. Rong, R. Song, B. Li. Simulation for sagittal plane motions of a quadruped robot using MATLAB and simulink [J]. Journal of Information and Computational Science,2012,9(8): 2165-2173.
    [105]X. W. Rong, R. Song, B. Li. Joint Driving Forces Calculation for a Quadruped Robot in Sagittal Plane Motions [J]. Journal of Information and Computational Science,2012,9(12): 3413-3419.
    [106]MSC.Software. MSC.ADAMS/VIEW advanced training guide [M], Tsinghua University Press, Beijing,2004.
    [107]王正林,王胜开,陈国顺.MATLAB/Simulink与控制系统仿真[M].北京:电子工业出版社,2005.
    [108]范成建,熊光明,周明飞.虚拟样机软件MSC.ADAMS应用与提高[M].北京:机械工业出版社,2006.
    [109]MSC.Software. MD ADAMS 2010 Online Help,2010.
    [110]成大先主编.机械设计手册(第五版)[M],北京:化学工业出版社,2010.
    [111]Xuewen Rong, Yibin Li, Jian Meng and Bin Li. Design for Several Hydraulic Parameters of a Quadruped Robot [J]. Applied Mathematics & Information Sciences, Accepted.
    [112]李艳军.飞机液压传动与控制[M].北京:科学出版社,2009.
    [113]http://www.kart-rotax.com/PortalData/4/Resources/produkte/datasheet_MAX.pdf
    [114]洪卫.发动机模糊恒速控制[J].内燃机工程,2003,3:76-80.
    [115]张邦成,方勇,王跃光等.离合器性能试验台卡尔曼滤波模糊PID控制[J],武汉理工大学学报,2009,31(23):151-158.
    [116柳波,何清华,杨忠炯.基于转速感应的液压旋挖钻机功率匹配模糊控制[J],中国公路学报,2007,20(1):123-126.
    [117]李丙旺,张友照,陈文建.基于PID分段式温度控制系统[J],兵工自动化,2011,30(9):83-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700