用户名: 密码: 验证码:
新型光子晶体光纤压力传感器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤是上个世纪末诞生的一类新型光纤,由于其全新的导光机制和可灵活设计的结构特性,与传统光纤相比具有许多优异的特性,例如无截止波长单模传导、高双折射、高非线性、可设计的色散曲线、大模场面积等,在光纤发展史上具有里程碑的意义。另一方面,光纤压力传感器在很多领域有着重要的应用,例如石油、天然气的勘测与开采、涡轮机内压力测试、大型土木工程健康监测等。本文针对光纤压力传感这一应用,充分结合光子晶体光纤的结构优点和光学特性,利用柚子型微结构光纤、保偏光子晶体光纤制作出布拉格光纤光栅型、萨格纳克干涉型、法布里—珀罗干涉型压力传感器,并且在实验和理论上对它们的压力和温度传感特性进行了全面地研究。下面是本文主要研究内容和成果的简要概述:
     1.利用193-nm准分子紫外激光器和相位掩模板,在大孔和小孔柚子型微结构光纤上成功写入布拉格光纤光栅,并首次系统地研究了它们的压力传感特性,实验得到大孔和小孔柚子型微结构光纤的压力灵敏度分别为-12.8pm/MPa和--6.3pm/MPa,而普通单模光纤布拉格光纤光栅的压力灵敏度仅为-4.2pm/MPa,证明大孔和小孔柚子型微结构光纤的压力灵敏度比普通单模光纤布拉格光纤光栅分别提高了3倍和1.5倍。利用有限单元分析方法,对实验结果进行了有效的解释,发现轴向压力这一因素对光纤光栅压力灵敏度起主导作用,从理论上解释了柚子型微结构光纤压力增敏的机制。
     2.将大孔柚子型微结构光纤布拉格光纤光栅与普通单模光纤布拉格光栅进行复用,成功实现温度和压力双参量同时测量。由于两种光纤的纤芯材料组成类似,并且温度灵敏度对光纤结构的依赖性很低,因而这两种布拉格光纤光栅具有类似的温度灵敏度;但是,由于大孔柚子型微结构光纤包层中大空气孔的存在,它的压力灵敏度约为普通单模光纤的三倍。因此,利用双波长编码方式,可以实现温度和压力双参量同时测量。
     3.利用一种典型的保偏光子晶体光纤(PM-1550-01, NKT公司,可通过商业渠道获得)制作出光纤萨格纳克干涉仪,并将它用于压力传感,实验测得它在1310nm波段和1550nm波段的压力灵敏度分别为4.2nm/MPa和3.24nm/MPa。由于这种保偏光子晶体光纤的弯曲损耗非常小,干涉环中的光纤圈直径仅为1.8cm,能满足狭小空间中体积小的要求;这种PM-PCF由纯石英材料组成,因而对温度不灵敏,避免了温度补偿单元,使其结构紧凑。
     4.在PM-1550-01光纤上镀一层聚酰亚胺(PI)的膜,并制成萨格纳克干涉仪。聚酰亚胺膜在食盐溶液中发生溶胀效应,当食盐浓度变化时,PI会收缩从而对光纤产生径向的压力,而PM-PCF萨格纳克干涉仪具有非常高的压力灵敏度,盐度变化引起的微小压力也能使萨格纳克干涉谱发生漂移,从而实现盐度的传感。虽然保偏光子晶体光纤本身对温度不敏感,但其表面的聚酰亚胺膜在温度变化时收缩或膨胀从而影响盐度传感。为了实现温度补偿,我们在干涉环中加入一个布拉格光纤光栅,它只对温度敏感,从而实现了盐度和温度的同时测量。
     5.利用有限单元分析方法,针对偏振式压力传感设计出一种新型边孔保偏光子晶体光纤,这种光纤同时具有边孔光纤和保偏光子晶体光纤的优点。它的模式双折射高达2.34×10-3,比商用的PM-1550-01保偏光子晶体光纤和传统保偏光纤高一个数量级;它的双折射压力灵敏度高达-2.3×10-5MPa-1,为目前文献报道中最高;它由纯石英材料组成,其双折射对温度灵敏度非常低,计算得其温度灵敏度为-1.2×10-8K-1,几乎可以忽略。而且,这种光纤结构简单,易于实现,纤芯仅由两排较大的空气孔和-排较小的空气孔包围。
     6.仅仅利用一台光纤商用的熔接机,通过对光纤端面进行预处理,我们制造出本征型光子晶体光纤法布里—珀罗干涉仪,并研究它的高温高压传感特性,测得其压力灵敏度和温度灵敏度分别为-5.6pm/MPa和13pm/℃。理论和实验结果都证明,当采用波长追踪的解调方法时,传感器的灵敏度不依赖于腔长,因此不需要严格控制光子晶体光纤的长度就能保证它们具体相同的灵敏度,这非常有利于这种传感器的批量生产。
Photonic crystal fibers (PCFs) are novel type of optical fibers that attract tremendous research interests in recent years. The structural flexibility as well as the new light guiding mechanism of PCFs distinguishes them from conventional fibers in many aspects, and various PCFs have been developed targeting for different applications particularly in fiber optic sensing. On the other hand, fiber-optic pressure sensors have many important applications such as oil and gas industry, tube engine pressure measurement, civil engineering health monitoring, etc., due to their distinct advantages over the electrical counterparts, such as EMI, compact size, corrosion resistance, remote sensing capability, and multiplexing capability. In this thesis, we exploit the potential of PCFs for pressure sensing and achieved a variety of novel PCF-based pressure sensors. The main achievements of our study are summarized as follow:
     1. We experimentally studied the pressure response of FBGs in grapefruit microstructured fibers (GMFs) and theoretically analyzed the sensing principle with a full-vector finite element method (FEM). We first observed the pressure sensitivity of FBG in GMF is three times improved than that for standard single-mode fiber (SMF) in the expriment. Three factors that contribute to pressure sensitivity are considered in our simulation, and we identify the axial pressure is the dominating term among the three. Our theory shows that the large air holes in the cladding of GMF reasons for the sensitivity enhancement. Our calculation results also shows that the pressure sensitivity of large-hole GMF is three times higher than that of SMF, which agree well with the experimental results.
     2. We proposed and experimentally demonstrated a novel fiber optic sensor configuration employing FBGs in GMF and standard SMF for simultaneous measurement of temperature and hydrostatic pressure. The temperature responses of these two gratings are almost the same whereas the pressure sensitivity of Bragg grating in GMF is much larger (about three times obtained by experiments) than that for SMF, which allows discrimination of these two parameters. In addition, the temperature dependence of pressure response of the sensor was theoretically investigated, and we found that it has little influence on simultaneous measurement of the two parameters.
     3. We experimentally demonstrate a polarization-maintaining photonic crystal fiber (PM-PCF) based Sagnac interferometer for downhole high pressure sensing application. The PM-PCF serves as a direct pressure sensing probe. The pressure sensitivities of the proposed sensor are4.21nm/MPa and3.24nm/MPa at the wavelength of~1320nm and~1550nm ranges, respectively. High pressure measurement up to20MPa has been done in our experiment. It shows both good linearity in response to applied pressure and good repeatability within the whole measurement range. The proposed pressure sensor is with low temperature cross sensitivity. High temperature sustainability test up to293℃has been performed. These above-mentioned characteristics make it a potential ideal candidate for pressure sensing in harsh environments, such as downhole application.
     4. We proposed and experimentally demonstrated a highly sensitive salinity sensor using a polyimide-coated Hi-Bi photonic crystal fiber Sagnac interferometer based on the coating swelling induced radial pressure. This is the first time to exploit fiber coating induced pressure effect for salinity sensing. The achieved salinity sensitivity is0.742nm/(mol/L), which is45times more sensitive than that of a polyimide-coated fiber Bragg grating. A bare fiber Bragg grating is incorporated into the fiber loop for temperature compensation.
     5. We proposed a side-hole PM-PCF with ultrahigh polarimetric sensitivity to hydrostatic pressure. Modal birefringence B as large as2.34×10-3and polarimetric pressure sensitivity dBldp as high as-2.30×10-5MPa-1were achieved at1.55μm for the proposed fiber. The pressure sensitivity is more than nine times higher than the typical PM-1550-01fiber by NKT Photonics. Thanks to its pure-silica material, the temperature sensitivity of the proposed fiber is calculated to be as low as-1.2×10-8K-1. These outstanding merits make it an excellent candidate for future applications of hydrostatic pressure measurement.
     6. A novel fiber-optic Fabry-Perot interferometer was constructed by splicing a short length of PCF to a standard SMF. The PCF functions as a Fabry-Perot cavity and serves as a direct sensing probe without any additional grating components. Its capability for measuring high pressure and high temperature was demonstrated. Its pressure and temperature responses in the range of0~40MPa and25~700℃were experimentally studied, which are in good agreement with theoretical analysis.
引文
[1]J. W. Strutt, On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure [J], Philosophical Magazine,1887,24:145-159.
    [2]E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics [J], Physical Review Letters,1987,58:2059-2062.
    [3]S. John, Strong localization of photons in certain disordered dielectric superlattices [J], Physical Review Letters,1987,58:2486-2489.
    [4]K. M. Ho, C. T. Chan, C. M. Soukoulis, Existence of a photonic gap in periodic dielectric structures [J], Physical Review Letters,1990,65:3152-3155.
    [5]K. M. Leung, Y. F. Liu, Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media [J], Physical Review Letters,1990, 65:2646-2649.
    [6]K. Sakoda, Optical Properties of Photonic Crystals, Springer,2001.
    [7]Z. Wang, S. Fu, et al., Analysis of the guided modes in triangular photonic crystal fibers using a full-vectorial numerical method, presented at, APOC 2003: Asia-Pacific Optical and Wireless Communications:Optical Fibers and Passive Components, Nov 4-6 2003, Wuhan, China,2004.
    [8]王志,光子晶体光纤及其功能器件的研究[D],南开大学博士论文,2005。
    [9]P. S. J. Russell, Photonic crystal fibers [J], Science,2003,299:358-362.
    [10]J. C. Knight, Photonic crystal fibers [J], Nature,2003,424:847-851.
    [11]P. St. J. Russell, Photonic-Crystal Fibers[J], Journal of Lightwave Technology, 2006,24:4729-4749.
    [12]B. J. Eggleton, C. Herbage, P. S. Westbrook, R. S. Windeler and A. Hale, Microstructured optical fiber devices [J], Optics Express,2001,9(13):698-713.
    [13]J. C. Knight, T. A. Birks, P. S. Russell, et al., All-silica single-mode optical fiber with photonic crystal cladding [J], Optics Letters,1996,21:1547-1549.
    [14]T. A. Birks, J. C. Knight, P. St.J. Russell, Endlessly single-mode photonic crystal fiber [J], Optics Letters,1997,22:961-963.
    [15]A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, et al., Highly birefringent photonic crystal fibers [J], Optics Letters,2000,25:1325-1327.
    [16]T. P. Hansen, J. Broeng, S. E. B. Libori, et al., Highly birefringent index-guiding photonic crystal fibers [J], IEEE Photonics Technology Letters,2001,13:588-590.
    [17]A. Ferrando, J. J. Miret, Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers [J], Applied Physics Letter,2001, 78:3184-3186.
    [18]K. Saitoh, M. Koshiba, Single-polarization single-mode photonic crystal fibers [J], IEEE Photonics Technology Letters,2003,15:1384-1386.
    [19]N. G. R. Broderick, T. M. Monro, P. J. Bennett, et al., Nonlinearity in holey optical fibers:measurement and future opportunities [J], Optics Letters,1999,24: 1395-1397.
    [20]J. C. Knight, T. A. Birks, R F Cregan, et al., Large mode area photonic crystal fibre [J], Electronics Letters,1998,34:1347-1348.
    [21]N. A. Mortensen, M. D. Nielsen, et al., Improved large-mode-area endlessly single-mode photonic crystal fibers [J], Optics Letters,2003,28:393-395.
    [22]W. N. MacPherson, M. J. Gander, et al., Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre [J], Optics Communications,2001, 193:97-104.
    [23]B. J. Mangan, J. C. Knight, et al., Experimental study of dual-core photonic crystal fibre [J], Electronics Letters,2000,36:1358-1359.
    [24]J. C. Knight, J. Broeng, T. A. Birks, et al., Photonic band gap guidance in optical fibers [J], Science,1998,282:1476-1478.
    [25]R. F. Cregan, B. J. Mangan, J. C. Knight, et al., Single-mode photonic band gap guidance of light in air [J], Science,1999,285:1537-1539.
    [26]T. Larsen, A. Bjarklev, D.Hermann, et al., Optical devices based on liquid crystal photonic bandgap fibres [J], Optics Express,2003,11:2589-2596.
    [27]Y. Miao, B. Liu, K. Zhang, et al., Temperature tunability of photonic crystal fiber filled with Fe3O4 nanoparticle fluid [J], Appl ied Physics Letters,2011,98:021103.
    [28]F. Luan, A. K. George, T. D. Hedley, et al., All-solid photonic bandgap fiber [J], Optics Letters,2004,29:2369-2371.
    [29]G. B. Ren, P. Shum, L. R. Zhang, et al., Low-loss all-solid photonic bandgap fiber [J], Optics Letters,2007,32:1023-1025.
    [30]Z. Wang, Y. Liu, G. Y. Kai, et al., Directional couplers operated by resonant coupling in all-solid photonic bandgap fibers [J], Optics Express,2007, 15:8925-8930.
    [31]Z. Wang, Y. Liu, G. Y. Kai, et al., Directional couplers operated by resonant coupling in all-solid photonic bandgap fibers [J], Optics Express,2007, 15:8925-8930.
    [32]J. I.Lagsgaard, Directional coupling in twin-core photonic bandgap fibers [J], Optics Letters,2005,30:3281-3283.
    [33]A. C. S. Jr., F. Luan, C. M. B. Cordeiro, et al., Hybrid photonic crystal fiber [J], Optics Express,2006,14:926-931.
    [34]N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, et al., Modal cutoff and the V parameter in photonic crystal fibers [J], Optics Letters,2003,28:1879-1881.
    [35]M. Nielsen, N. Mortensen, Photonic crystal fiber design based on the V-parameter [J], Optics Express,2003,11:2762-2768.
    [36]K. Tajima, J. Zhou, K. Nakajima, et al., Ultralow loss and long length photonic crystal fiber [J], Journal of Lightwave Technology,2004,22:7-10.
    [37]T. Sorensen, J. Broeng, A. Broeng, et al., Macro-bending loss properties of photonic crystal fibre [J], Electronics Letters,2001,37:287-289.
    [38]J. C. Baggett, T. M. Monro, K. Furusawa, et al., Understanding bending losses in holey optical fibers [J], Optics Communications,2003,227:317-335.
    [39]M. D. Nielsen, N. A. Mortensen, J. R. Folkenberg, et al., Reduced microdeformation attenuation in large-mode-area photonic crystal fibers for visible applications [J], Optics Letters,2003,28:1645-1647.
    [40]D. Ferrarini, L. Vincetti, M. Zoboli, et al., Leakage properties of photonic crystal fibers [J], Optics Express,2002,10:1314-1319.
    [41]V. Finazzi, T. M. Monro, D. J. Richardson, et al., The role of confinement loss in highly nonlinear silica holey fibers [J], IEEE Photonics Technology Letters, 2003,15:1246-1248.
    [42]L. P. Shen, W. P. Huang, S. S. Jian, et al., Design of photonic crystal fibers for dispersion-related applications [J], Journal of Lightwave Technology,2003, 21:1644-1651.
    [43]L. P. Shen, W. P. Huang, G. X. Chen, et al., Design and optimization of photonic crystal fibers for broad-band dispersion compensation [J], IEEE Photonics Technology Letters,2003,15:540-542.
    [44]J. C. Knight, J. Arriaga, T. A. Birks, et al., Anomalous dispersion in photonic crystal fiber [J], IEEE Photonics Technology Letters,2000,12:807-809.
    [45]A. Ferrando, E. Silvestre, P. Andres, et al., Designing the properties of dispersion-flattened photonic crystal fibers [J], Optics Express,2001,9:687-697.
    [46]K. P. Hansen, Dispersion flattened hybrid-core nonlinear photonic crystal fiber [J], Optics Express,2003,11:1503-1509.
    [47]G. Renversez, B. Kuhlmey, R. McPhedran, Dispersion management with microstructured optical fibers:ultraflattened chromatic dispersion with low losses[J], Optics Letters,2003,28:989-991.
    [48]A. Ferrando, E. Silvestre,J. J. Miret, et al., Nearly zero ultraf lattened dispersion in photonic crystal fibers [J], Optics Letters,2000,25:790-792.
    [49]W. Reeves, J. Knight, P. Russell, et al., Demonstration of ultra-flattened dispersion in photonic crystal fibers [J], Optics Express,2002,10:609-613.
    [50]G. P. Agrawal, Nonlinear Fiber Optics. Third Edition, SanDiego:Academic Press, 2001.
    [51]N. A. Mortensen, Effective area of photonic crystal fibers [J], Optics Express, 2002,10:341-348.
    [52]L. F. Zou, X. Y. Bao, L. Chen, Brillouin scattering spectrum partially germ in photonic crystal fiber with a partially germanium-doped core [J], Optics Letters, 2003,28:2022-2024.
    [53]N. Nishizawa, Y. Ito, T. Goto, et al.,0.78-0.90-mu m wavelength-tunable femtosecond soliton pulse generation using photonic crystal fiber [J], IEEE Photonics Technology Letters,2002,14:986-988.
    [54]J. E. Sharping, M. Fiorentino, P. Kumar, et al., Optical parametric oscillator based on four-wave mixing in microstructure fiber [J], Optics Letters,2002, 27:1675-1677.
    [55]F. G. Omenetto, A. J. Taylor, M. D. Moores, et al., Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber [J], Optics Letters, 2001,26:1158-1160.
    [56]J. K. Ranka, R. S. Windeler, A. J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm [J], Optics Letters,2000,25:25-27.
    [57]J. M. Dudley, S. Coen, Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers [J], IEEE Journal of Selected Topics in Quantum Electronics,2002,8:651-659.
    [58]I. Cristiani, R. Tediosi, L. Tartara, et al., Dispersive wave generation by solitons in microstructured optical fibers [J], Optics Express,2004,12:124-135.
    [59]R. Guobin, W. Zhi, L. Shuqin, et al., Mode classification and degeneracy in photonic crystal fibers [J], Optics Express,2003,11:1310-1321.
    [60]M. Steel, T. White, C. M. Sterke, et al., Symmetry and degeneracy in microstructured optical fibers [J], Optics Letters,2001,26:488-490.
    [61]M. Koshiba, K. Saitoh, Numerical verification of degeneracy in hexagonal photonic crystal fibers [J], IEEE Photonics Technology Letters,2001,13:1313-1315.
    [62]A. Ortigosa-Blanch, J. Knight, W. Wadsworth, et al., Highly birefringent photonic crystal fibers [J], Optics Letters,2000,25:1325-1327.
    [63]K. Suzuki, H. Kubota, S. Kawanishi, et al., Optical properties of a low-loss polarization-maintaining photonic crystal fiber [J], Optics Express,2001, 9:676-680.
    [64]M. Steel, R. Osgood, Elliptical-hole photonic crystal fibers [J], Optics Letters, 2001,26:229-231.
    [65]T. P. Hansen, J. Broeng, S. E. B. Libori, et al., Highly birefringent index-guiding photonic crystal fibers [J], IEEE Photonics Technology Letters,2001,13:588-590.
    [66]K. Saitoh, M. Koshiba, Single-polarization single-mode photonic crystal fibers [J], IEEE Photonics Technology Letters,2003,15:1384-1386.
    [67]H. Kubota, S. Kawanishi, S. Koyanagi, et al., Absolutely single polarization photonic crystal fiber [J], IEEE Photonics Technology Letters,2004,16:182-184.
    [68]P. R. Chaudhuri, V. Paulose, C. Zhao, et al., Near-elliptic core polarization-maintaining photonic crystal fiber:modeling birefringence characteristics and realization [J], IEEE Photonics Technology Letters,2004, 16:1301-1303.
    [69]J. Folkenberg, M. Nielsen, N. Mortensen, et al., Polarization maintaining large mode area photonic crystal fiber [J], Optics Express,2004,12:956-960.
    [70]T. Ritari, H. Ludvigsen, M. Wegmuller, et al., Experimental study of polarization properties of highly birefringentphotonic crystal fibers [J], Optics Express,2004, 12:5931-5939.
    [71]J. R. Folkenberg, M. D. Nielsen, C. Jakobsen, Broadband single-polarization photonic crystal fiber [J], Optics Letters,2005,30:1446-1448.
    [72]S. Johnson, J. Joannopoulos, Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis [J], Optics Express,2001,8:173-190.
    [73]T. P. White, B. T. Kuhlmey, R. C. McPhedran, et al., Multipole method for microstructured optical fibers. I. Formulation [J], Journal of the Optical Society of America B-Optical Physics,2002,19:2322-2330.
    [74]B. T. Kuhlmey, T. P. White, G. Renversez, et al., Multipole method for microstructured optical fibers. II. Implementation and results [J], Journal of the Optical Society of America B-Optical Physics,2002,19:2331-2340.
    [75]E. Knudsen, A. Bjarklev, Modelling photonic crystal fibres with Hermite-Gaussian functions [J], Optics Communications,2003,222:155-160.
    [76]Z. Wang, G. B. Ren, S. Q. Lou, et al., Supercell lattice method for photonic crystal fibers [J], Optics Express,2003,11:980-991.
    [77]Z. M. Zhu, T. Brown, Full-vectorial finite-difference analysis of microstructured optical fibers [J], Optics Express,2002,10:853-864.
    [78]C. P. Yu, H. C. Chang, Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers [J], Optics Express,2004,12:6165-6177.
    [79]Y. Z. He, F. G. Shi, Finite-difference imaginary-distance beam propagation method for modeling of the fundamental mode of photonic crystal fibers [J], Optics Communications,2003,225:151-156.
    [80]K. Saitoh, M. Koshiba, Full-vectorial imaginary-distance beam propagation method based on a finite element scheme:Application to photonic crystal fibers [J], IEEE Journal of Quantum Electronics,2002,38:927-933.
    [81]F. Fogli, L. Saccomandi, P. Bassi, et al., Ful] vectorial BPM modeling of Index-Guiding Photonic Crystal Fibers and Couplers [J], Optics F.xpress,2002, 10:54-59.
    [82]M. Koshiba, Full-vector analysis of photonic crystal fibers using the finite element method [J], IEICE Transactions on Electronics,2002, E85C:88l-888.
    [83]T. Fujisawa, M. Koshiba, Finite element characterization of chromatic dispersion in nonlinear holey fibers [J], Optics Express,2003,11:1481-1489.
    [84]A. Cucinotta, S. Selleri, L Vincetti, et al., Holey fiber analysis through the finite-element method [J], IEEE Photonics Technology Letters,2002,14:1530-1532.
    [85]J. A. Bucaro, H. D. Dardy, Fiber-optic hydrophone [J], The Journal of the Acoustical Society of America,1977,62:1302-1304.
    [86]V. Vali, R. W. Shorthill, Fiber ring interferometer [J], Applied Optics,1976, 15:1099-1100.
    [87]J. A. Bucaro, H. D. Dardy, E. F. Carome, Optical fiber acoustic sensor [J], Applied Optics,1977,16:1761-1762.
    [88]C. D. Butter, G. B. Hocker, Fiber optics strain gauge [J], Applied Optics,1978, 17:2867-2869.
    [89]J. A. Bucaro, E. F. Carome, Single fiber interferometric acoustic sensor[J], Applied Optics,1978,17:330-331.
    [90]R. Ulrich, M. Johnson, Fiber-ring interferometer:polarization analysis[J], Optics Letters,1979,4:152-154.
    [91]G. B. Hocker, Fiber optic acoustic sensors with composite structure:an analysis [J], Applied Optics,1979,18:3679-3683.
    [92]J. A. Bucaro, T. R. Hickman, Measurement of sensitivity of optical fibers for acoustic detection [J], Applied Optics,1979,18:938-940.
    [93]G. B. Hocker, Fiber-optic sensing of pressure and temperature [J], Appl ied Optics, 1979,18:1445-1448.
    [94]K. C. Kao, G. A. Hockham, Dielectric-fibre surface waveguides for optical frequencies [J], IEE Proceedings,1966,113:1151-1158.
    [95]F. P. Kapron, D. B. Keck, R. D. Maurer, Radiation losses in glass optical waveguides [J], Applied Physics Letters,1970,17:423-425.
    [96]A. D. Kersey, M. A. Davis, H. J. Patrick, et al., Fiber grating sensors [J], Journal of Lightwave Technology,1997,15:1442-1463.
    [97]B. Culshaw, A. D. Kersey, Fibre-optic sensing:a historical perspective [J], Journal of Lightwave Technology,2008,26:1064-1078.
    [98]T. M. Monro, W. Belardi, K. Furusawa, et al., Sensing with microstructured optical fibres [J], Measurement Science and Technology,2001,12:854-858.
    [99]M. G. Xu, L. Reekie, Y. T. Chow, et al., Optial in-fiber grating high pressure sensor [J], Electronics Letters,1993,29:398-399.
    [100]C. Kerbage, B. J. Eggleton, Tunable microfluidic optical fiber gratings [J], Applied Physics Letters,2003,82:1338-1340.[101]张春书,开桂云,王志,等,柚子型微结构光纤Bragg光栅温度和应变传感特性研究[J],物理学报,2005,54:2758-2763.
    [102]C. Wu, B.0. Guan, Z. Wang, et al., Characterization of pressure response of Bragg gratings in grapefruit microstructured fibers [J],IEEE/OSA Journal of Lightwave Technology,2010,28:1392-1397.
    [103]C. Wu, Y. Zhang, B.O. Guan, Simultaneous measurement of temperature and hydrostatic pressure using Bragg gratings in standard and grapefruit microstructured fibers [J], IEEE Sensors Journal,2011,11:489-492.
    [104]K.0. Hill, Y. Fujii, D. C. Johnson, et al., Photo-sensitivity in optical fiber waveguides:Application to reflection filters fabrication [J], Applied Physics Letters,1978,32:647-649.
    [105]W. W. Morey, W. H. Glenn, Formation of Bragg gratings in optical fibers by a transverse holographic method[J], Optics Letters,1989,14:823-825.
    [106]K.0. Hill, B. Malo, F. Bilodeau, et al., Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask [J], Applied Physics Letters,1993,62:1035-1037.
    [107]K.O. Hill, G. Melt, Fiber Bragg grating technology fundamentals and overview [J], Journal of Lightwave Technology,1997,15:1263-1276.
    [108]P. J. Lemaire, R. M. Atkins, V. Mizrahi, ET AL., High pressure H2 Loading as technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers [J], Electronics Letters,1993,29:1191-1193.
    [109]J. Albert, B. Malo, F. Bilodeau, et al., Photosensitivity in Ge-doped silica optical waveguides and fibers with 193-nm light from an ArF excimer laser [J], Optics Letters,1994,19:387-389.
    [110]J. Albert, M. Fokine, W. Margulis, Grating formation in pure silica-core fibers [J], Optics Letters,2002,27:809-811.
    [111]B.O. Guan, D. Chen, Y. Zhang, et al., Bragg gratings in pure-silica polarization maintaining photonic crystal fiber [J], IEEE Photonics Technology Letters,2008, 20:1980-1982.
    [112]0. Frazao, J. P. Carvalho, L. A. Ferreira, et al., Discrimination of strain and temperature using Bragg gratings in microstructured and standard optical fibres [J], Measure Science Technology,2005,16:2109-2113.
    [113]C. Jewart et al., Sensitivity enhancement of fiber Bragg gratings to radial stress by using microstructural fibers [J], Optics Letters,2006,31:2260-2262.
    [114]T. Geernaert, G. Luyckx, E. Voet, et al., Transversal Load Sensing With Fiber Bragg Gratings in Microstructured Optical Fibers [J], IEEE Photonics Technology Letters,2009,21:807-809.
    [115]M. J. Weber, Handbook of optical materials, ISBN 0-8493-3512-4, USA, CRC Press, 2003.
    [116]A. D. Yablon, Optical and mechanical effects of frozen-in stresses and strains in optical fibers [J], IEEE Journal of Selected Topics in Quantum Electronics,2004, 12:300-311.
    [117]W. Primak, D. Post, Photoelastic constants of vitreous silica and its elastic coefficient of refractive index [J], Journal of Applied Physics,1959,30: 779-788.
    [118]A. M. Vengsarkar, W. C. Michie, L. Jankovic, et al., Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature [J], Journal of Lightwave Technology,1994,12:170-177.
    [119]M. G. Xu, J. L. Archambault, L. Reekie, et al., Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors [J], Electronics Letters,1994,30:1085-1087.
    [120]S. W. James, M. L. Dockney, R. P. Tatam, Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors[J], Electronics Letters,1996,32:1133-1134.
    [121]P. M. Cavaleiro, F. M. Ara'ujo, L. A. Ferreira, et al., Simultaneous Measurement of Strain and Temperature Using Bragg Gratings Written in Germanosilicate and Boron-Codoped Germanosil icate Fibers [J], IEEE Photonics Technology Letters,1999, 11:1635-1637.
    [122]X. W. Shu, Y. Liu, D. H. Zhao, et al., Dependence of temperature and strain coefficients on fiber grating type and its application to simultaneous temperature and strain measurement [J], Optics Letters,2002,27:701-703.
    [123]Y. G. Han, Y. J. Lee, G. H. Kim, et al., Transmission Characteristics of Fiber Bragg Gratings Written in Holey Fibers Corresponding to Air-Hole Size and Their Application [J], IEEE Photonics Technology Letters,2006,18:1783-1785.
    [124]E. Chmielewska, W. Chmielewska, W. J. Bock, Measurement of pressure and temperature sensitivities of a Bragg grating imprinted in a highly birefringent side-hole fiber [J], Applied Optics,2003,42:6284-6291.
    [125]W. Jin, W. C. Michie, G. Thursby, et al., Simultaneous measurement of strain and temperature:Error analysis [J], Optical Engineering,1997,36:598-609.
    [126]B. J. Eggleton, P. S. Westbrook, R. S. Windeler, et al., Grating resonances in air-silica microstructured optical fibers [J], Optics Letters,1999,24: 1460-1462.
    [127]F. Farahi, D. J. Webb, J. D. C. Jones, et al., Simultaneous measurement of temperature and strain:cross-sensitivity considerations [J], Journal of Lightwave Technology,1990,8:138-141.
    [128]M. Fukuhara, A. Sanpei, K. Shibuki, Low temperature-elastic moduli, Debye temperature and internal dilational and shear frictions of fused quartz [J], Journal of Materials Science,1997,32:1207-1211.
    [129]A. J. Barlow, D. N. Payne, The stress-optic effect in optical fibers [J], Journal of Lightwave Technology,1983, QE-19:834-839.
    [130]C. M. Lin, Y. C. Liu, W. F. Liu, et al., High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating [J], IEEE Sensors Journal,2006,6:691-696.
    [131]J. Noda, K. Okamoto, Y. Sasaki, Polarization maintaining fibers and their applications [J], Journal of Lightwave Technology,1986, LT-4:1071-1089.
    [132]W. J. Bock, A W. Domanski, T R. Wollinski, Influence of high hydrostatic pressure on beat length in highly birefringent single-mode bow tie fibers [J], Applied Optics, 1990,29:3484-3488.
    [133]W. J. Bock, A W. Domanski, High hydrostatic pressure effects in highly birefringent optical fibers [J], Journal of Lightwave Technology,1989,7: 1279-1283.
    [134]W. J. Bock, T. R. Wollinski, Hydrostatic pressure effects on mode propagation in highly birefringent two-mode bow-tie fibers [J], Optics Letters,1990,15: 1434-1436.
    [135]W. J. Bock, W. Urbanczyk, J. Wojcik, Characterization of elliptical-core side-hole fibers for interferometric pressure sensing [J], Interferometric Fiber Sensing,1994,2341:152-159.
    [136]W. J. Bock, W. Urbanczyk, J. Wojcik, et al., White-light interferometric fiber-optic pressure sensor [J], IEEE Transactions on Instrumentation and Measurement,1995,44:694-697.
    [137]R. Kaul, Pressure sensitivity of rocking filters fabricated in an elliptical-core optical fiber [J], Optics Letters,1995,20:1000-1002.
    [138]V. Vali, R. W. Shorthill, Fiber ring interferometer [J], Applied Optics,1976, 15:1099-1103.
    [139]S. Knudsen, K. Blotekjaer, An ultrasonic fiber-optic hydrophone incorporating a push-pull transducer in a Sagnac interferometer[J], Journal of Lightwave Technology,1994,12:1696-1700.
    [140]Y. Liu, B. Liu, X. Feng, et al., High-birefringence fiber loop mirrors and their applications as sensors [J], Applied Optics,2005,44:2382-2390.
    [141]D. B. Mortimore, Fibre loop reflectors [J], Journal of Lightwave Technology,1988, 6:1217-1224.
    [142]B. Culshaw, The optical fibre Sagnac interferometer:an overview of its principles and applications [J], Measurement Science and Technology,2006,17:1-16.
    [143]A. N. Starodumov, L. A. Zenteno, D. Monzon, et al., Fibre Sagnac interferometer-temperature sensor [J], Applied Physics Letters,1997,70:19-21.
    [144]E. De La Rose, L. A. Zenteno, A. N. Starodumov, et al., All-fiber absolute temperature sensor using an unbalanced high-birefringence Sagnac loop[J], Optics Letters,1997,22:481-483.
    [145]A. Michie, J. Canning, K. Lyytikainen, et al., Temperature independent highly birefringent photonic crystal fibre [J], Optics Express,2004,12:5160-5165.
    [146]C. L. Zhao, X. F. Yang, C. Lu, et al., Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror [J], IEEE Photonics Technology Letters,2004,16:2535-2537.
    [147]D. H. Kim, J. U. Kang, Sagnac loop interferometer based on polarization maintaining photonic crystal fibre with reduced temperature sensitivity [J], Optics Express,2004,12:4490-4495.
    [148]X. Dong, H. Y. Tam, P. Shum, Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fibre based Sagnac interferometer[J], Applied Physics Letters,2007,90:151113-151115.
    [149]NKT Photonics PM-1550-01 PM-PCF: http://www. nktphotonics.com/files/files/PM-1550-01. pdf
    [150]M. Szpulak, T. Martynkien, W. Urbanczyk, et al., Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers[J], Appl ied Optics,2004,43:4739-4744.
    [151]M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, Fusion splicing holey fibers and single-mode fibers:A simple method to reduce loss and increase strength [J], IEEE Photonics Technology Letters,2009,21: 164-166.
    [152]H. Y. Fu, H. Y. Tam, L. Y. Shao, et al., Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer [J], Applied Optics,2008,47:2835-2839.
    [153]H. Y. Fu, C. Wu, M. L. V. Tse, et al., High pressure sensor based on photonic crystal fiber for downhole application [J], Applied Optics,2010,49:2639-2643.
    [154]H. K. Gahir, and D. Khanna, Design and development of a temperature-compensated fiber optic polarimetric pressure sensor based on photonic crystal fiber at 1550 nm [J], Applied Optics,2007,46:1184-1189.
    [155]W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, A photonic crystal fiber sensor for pressure measurements [J], IEEE Trans. Instrum. Meas.,2006,55:1119-1123.
    [156]J. Cong, X. M. Zhang, K. S. Chen, et al., Fiber optic Bragg grating sensor based on hydrogels for measuring salinity [J], Sensors and Actuators B:Chemical,2002, 87:487-490.
    [157]L. Q. Men, P. Lu, Q. Y. Chen, A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement [J], Journal of Applied Physics, 2002,103:053107.
    [158]C. Wu, B.0. Guan, C. Lu, H. Y. Tam, Sanility sensor based on polyimide-coated photonic crystal fiber [J], Optics Express,2011,19:20003-20008.
    [159]D. J. Gentleman, K. S. Booksh, Determining salinity using a multimode fiber optic surface Plasmon resonance dip-probe [J], Talanta,2006,68:504-515.
    [160]R. Falate,0. Frazao, G. Rego, et al., Refractometric sensor based on a phase-shifted long-period fiber grating [J], Applied Optics,2006,45:5066-5072.
    [161]G. R. C. Possetti, R. C. Kamikawachi, C. L. Prevedello, et al., Salinity measurement in water environment with a long period grating based interferometer [.]], Measurement Science and Technology,2009,20:034003.
    [162]D. A. Pereira,0. Frazao, J. L. Santos, Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature [J], Optical Engineering, 2004,43:299-304.
    [163]L. V. Nguyen, M. Vasiliev, K. Alameh, Three-Wave Fiber Fabry-Perot Interferometer for Simultaneous Measurement of Temperature and Water Salinity of Seawater [J], IEEE photonics technology letters,2011,23:450-452.
    [164]H. M. Xie, Ph. Dabkiewicz, R. Ulrich, et al., Side-hole fiber for fiber-optic pressure sensing [J], Optics Letters,1986,11:333-335.
    [165]M. N. Charasse, M. Turpin, J. P. Le Pesant, Dynamic pressure sensing with a side-hole birefringent optical fiber [J], Optics Letters,1991,16:1043-1045.
    [166]W. J. Bock, W. Urbanczyk, J. Wojcik, et al. White-light interferometric fiber-optic pressure sensor [J], IEEE Transactions on Instrumentation and Measurement,1995,44:694-697.
    [167]J. Wojcik, P. Mergo, W. Urbanczyk, et al., Possibilities of application of the side-hole circular core fiber in monitoring of high pressures [J], IEEE Transactions on Instrumentation and Measurement,1998,47:805-808.
    [168]J. R. Clowes, S. Syngellakis, M. N. Zervas, Pressure sensitivity of side-hole optical fiber sensors [J], IEEE Photonics Technology Letters,1998,10:857-859.
    [169]J. A. Croucher, L. Gomez-Rojas, S. Kanellopoulos, et al., Approach to highly sensitive pressure measurements using side-hole fibre [J], Electronics Letters, 1998,34:208-209.
    [170]W. Urbanczyk, M. S. Nawrocka, W. J. Bock, Digital demodulation system for low-coherence interferometric sensors based on highly birefringent fibers [J], Applied Optics,2001,40:6618-6625.
    [171]E. Chmielewska, W. Urbanczyk, and W. J. Bock, Measurement of Pressure and Temperature Sensitivities of a Bragg Grating Imprinted in a Highly Birefringent Side-Hole Fiber[J], Applied Optics,2003,42:6284-6291.
    [172]C. M. Jewart, Q. wang, J. Canning, et al., Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing [J], Optics Letters,2010,35:1443-1445.
    [173]T. Chen, R. Z. Chen, C. Jewart, et al., Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing [J], Optics Letters, 2011,36:3542-3544.
    [174]G. Statkiewicz, T. Martynkien, W. Urbanczyk, Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain [J], Optics Communications,2004,241:339-348.
    [175]T. Nasilowski, T. Martynkien, G. Statkiewicz, et al., Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber wi th core asymmetry [J], Applied Physics B:Lasers and Optics,2005,81:325-331.
    [176]W. J. Bock, C. Jiahua, T. Eftimov, et al., A photonic crystal fiber sensor for pressure measurements [J], IEEE Transactions on Instrumentation and Measurement, 2006,55:1119-1123.
    [177]T. Martynkien, M. Szpulak, G. Statkiewicz, et al., Measurements of sensitivity to hydrostatic pressure and temperature in highly birefringent photonic crystal fibers [J], Optical and Quantum Electronics,2006,39:481-489.
    [178]G. Statkiewicz-Barabach, A. Anuszkiewicz, W. Urbanczyk, et al., Sensing characteristics of rocking filter fabricated in microstructured birefringent fiber using fusion arc splicer [J], Optics Express,2008,16:17249-17257.
    [179]T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, et al., Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure [J], Optics Express,2010,18:15113-15121.
    [180]M. Szpulak, T. Martynkien, W. Urbanczyk, W, Highly Birefringent Photonic Crystal Fibre with Enhanced Sensitivity to Hydrostatic Pressure, Transparent Optical Networks,2006 International Conference on,174-177.
    [181]C. Wu, J. Li, X. Feng, B.0. Guan, and H. Y. Tam, Side-hole photonic crystal fiber with ultrahigh polarimetric pressure sensitivity [J], IEEE/OSA Journal of Lightwave Technology,2011,29:943-948.
    [182]T. Geernaert, T. Nasilowski, K. Chah, et al., Fiber Bragg gratings in Ge-doped highly birefringent microstructured optical fibers [J], IEEE Photon. Technol. Lett.,2008,20:554-556.
    [183]A. J. Barlow, D. N. Payne, The stress-optic effect in optical fibers[J], Journal of Quantum Electronics,1983, QE-19:834-839.
    [184]S. Rashleigh, Origins and control of polarization effects in single-mode fibers [J], Journal of Lightwave Technology,1983,1:312-331.
    [185]W. Jin, W. C. Michie, G. Thursby, et al., Simultaneous measurement of strain and temperature:Error analysis [J], Optical Engineering,1997,36:598-609.
    [186]C. Fabry, A. Perot, Theorie et applications d'une nouvelle methode de Spectroscopie Interferentielle [J], Annales de Chimie et de Physique,1899,16: 115-146.
    [187]T. Yoshino, K. Kurosawa, and T. Ose, Fiber-optic Fabry-Perot interferometer and its sensor applications [J], IEEE Journal of Quantum Electronics,1982,18: 1612-1621.
    [188]A. D. Kersey, D. A. Jackson, M. Corke, A simple fibre Fabry-Perot sensor [J], Optics Communications,1983,45:71-74.
    [189]P. A. Leilabady, M. Corke, All-fiber-optic remote sensing of temperature employing interferometric techniques [J], Optics Letters,1987,12:772-774.
    [190]F. Farahi, T. P. Newson, P. A. Leilabady, et al., A multiplexed remote fiber optic Fabry-Perot sensing system [J], International Journal of Optoelectronics,1988, 3:79.
    [191]C. E. Lee, H. F. Taylor, Interferometric optical fibre sensors using internal mirrors [J], Electronics Letters,1988,24:193-194.
    [192]M. N. Inci, S. R. Kidd, J. S. Barton, et al., Fabrication of single-mode fibre optic Fabry-Perot interferometers using fusion spliced titanium dioxide optical coatings [J], Measurement Science and Technology,1992,3:678.
    [193]T. Valis, D. Hogg, R. M. Measures, Fiber optic Fabry-Perot strain gauge [J], IEEE Photonics Technology Letters,1990,2:227-228.
    [194]R. A. Wolthuis, G. L. Mitchell, E. Saaski, et al., Development of medical pressure and temperature sensors employing optical spectrum modulation [J], IEEE Transactions on Biomedical Engineering,1991,38:974-981.
    [195]G. L. Mitchell, Intensity-based and Fabry-Perot interferometer sensors [J], in Fiber Optic Sensors:An Introduction for Engineers and Scientists, Second Edition, 1991,139.
    [196]F. Mitschke, Fiber optic sensor for humidity [J], Optics Letters,1989,14: 967-969.
    [197]P. C. Beard, T. N. Mills, Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer [J], Electronics Letters,1997,33: 801-803.
    [198]K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, et al., Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors [J], Optics Letters,1991,16: 273-275.
    [199]J. Sirkis, T. A. Berkoff, R. T. Jones, et al., In-line fiber etalon (ILFE) fiber-optic strain sensors [J], Journal of Lightwave Technology,1995,13: 1256-1263.
    [200]X. Wang, J. Xu, Y. Zhu, et al., All-fused-silica miniature optical fiber tip pressure sensor [J], Optics Letters,2006,31:885-887.
    [201]J. Xu, X. Wang, K. L. Cooper, et al., Miniature temperature-insensitive Fabry-Perot fiber-optic pressure sensor [J], IEEE Photonics Technology Letters, 2006,18:1134-1136.
    [202]H. Y. Choi, K. S. Park, S. J. Park, et al., Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer [J], Optics Letters, 2008,33:2455-2457.
    [203]Y. Zhu, K. L. Cooper, G. R. Pickrell, et al., High-Temperature Fiber-Tip Pressure Sensor [J], Journal of Lightwave Technology,2006,24:861.
    [204]X. Chen, F. Shen, Z. Wang, et al., Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor [J], Applied Optics,2006,45:7760-7766.
    [205]S. Watson, M. J. Gander, W. N. MacPherson, et al., Laser-machined fibers as Fabry-Perot pressure sensors [J], Applied Optics,2006,45:5590-5596.
    [206]Z. L. Ran, Y. J. Rao, H. Y. Deng, et al., Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining [J], Optics Letters,2007,32: 3071-3073.
    [207]Y. J. Rao, T. Zhu, X. C. Yang, et al., Surface waves in defocusing thermal media [J], Optics Letters,2007,32:2260-2262.
    [208]Q. Shi, F. Lv, Z. Wang, et al., Environmentally stable Fabry-Perot-type strain sensor based on hollow-core photonic bandgap fiber [J], IEEE Photonics Technology Letters,2008,20:237-239.
    [209]Y. J. Rao, M. Deng, T. Zhu, et al., In-Line Fabry-Perot Etalons Based on Hollow-CorePhotonic Bandgap Fibers for High-Temperature Applications [J], Journal of Lightwave Technology,2009,27:4360-4365.
    [210]J. Villatoro, V. Finazzi, G. Coviello, et al., Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer [J], Optics Letters,2009,34:2441-2443.
    [211]Y. J. Rao, Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors [J], Optical Fiber Technology,2006,12:227-237.
    [212]S.G. Bishop, U. Strom, E. J. Friebele, et al., The effects of impurities upon photoluminescence and optically induced paramagnetic states in chalcogenide glasses [J], Journal of Non-Crystalline Solids,1979,30:359-372.
    [213]Q. Wang, L. Zhang, C. S. Sun, Q. X. Yu, Multiplexed Fiber-Optic Pressure and Temperature Sensor System for Down-Hole Measurement [J], IEEE Sensors Journal,2008, 8:1879-1883.
    [214]W. H. Wang, Q. X. Yu, F. Li, X. Zhou, X. Jiang, Temperature-Insensitive Pressure Sensor Based on All-Fused-Silica Extrinsic Fabry-Perot Optical Fiber Interferometer [J], IEEE Sensors Journal,2012,12:2425-2429.
    [215]工琦.光纤FFPI/FBG传感测井系统关键技术研究[D].大连理工大学博士论文.2009.
    [216]于清旭,王晓娜,王琦,张望.光纤油井压力测量系统研究.光纤传感器的发展与产业化国际论坛,哈尔滨,2006.
    [217]C. Wu, H. Y. Fu, K. K. Qureshi, B.0. Guan, and H. Y. Tam, High pressure and high temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber [J], Optics Letters,2011,36:412-414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700