用户名: 密码: 验证码:
运动平台中惯性稳定控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对于地基光电跟踪系统,运动载体上的光电系统会受到载体扰动的影响,因此必须建立稳定分系统,保证仪器视轴在惯性空间稳定。运动载体上的光电跟踪系统采用惯性稳定平台隔离基座扰动,实现视轴稳定以保证对机动目标的稳定成像和精确跟踪。本文通过对惯性稳定平台隔离载体扰动原理的分析,重点研究提高扰动抑制能力的控制方法。
     对惯性稳定平台进行建模,分析惯性稳定平台隔离载体扰动原理,为后续控制方法的研究和实施奠定理论基础。针对惯性稳定平台模型的建立,分别采用自适应建模和机理建模。针对载体扰动传递特性,分别在时域和频域进行分析,建立载体扰动隔离方程和稳定平台对扰动的抑制传递函数。
     提出采用双口内模控制进行稳定控制。利用内模原理估计扰动(包括内部扰动和外部扰动)并通过内模控制器进行扰动前馈。将反馈闭环与内模控制回路并行,构成等效反馈+前馈控制效果。为了验证双口内模控制的稳定性能,先后搭建了两个惯性稳定实验平台进行实验分析。介绍了基于RTW的实验原理,并详细介绍了其实现过程。为了减小速率陀螺噪声的影响,分析对比了卡尔曼滤波器、H∞滤波器和低通滤波器的滤波效果。仿真和实验结果都表明,无论是针对内部摩擦在换向时带来的尖峰误差还是载体扰动,双口内模控制在中低频的抑制效果都优于PI反馈控制,在0.1Hz处扰动抑制比提高了26dB。
     由于采用内模原理估计扰动时,模型的准确度直接决定了扰动估计精度,因此基于双口内模控制的思想设计出复合内模控制。在内模控制回路内添加一负反馈闭环,将内环闭环特性作为内模控制的等效被控对象,通过负反馈内环提高内模控制等效被控对象的模型精度,同时内环、外环对扰动进行二次抑制,大大提高扰动抑制能力。实验结果显示,在整个抑制带宽内,复合内模控制对扰动的抑制能力都优于反馈控制,PI控制在3Hz处的扰动抑制比为39dB,复合内模控制在3Hz处的扰动抑制比达72dB,扰动抑制能力提高了33dB。
     在复合内模控制基础上,对其外环内模控制器进行在线自适应,得到复合自适应逆控制。详细分析了采用不同信号作为调节自适应滤波器权系数的误差函数对系统性能的影响。当采用系统输出作为误差函数时,保证滤波器收敛的条件是模型与被控对象相关,且模型准确度越高收敛速度越快,但是模型精度并不影响滤波器收敛稳态值。复合自适应逆控制完全继承了复合内模控制的优点,通过内、外环对扰动进行二次抑制,且采用反馈闭环作为内环,能够提高外环等效被控对象模型精度,从而提高滤波器收敛速度。由于采用系统输出作为调节自适应滤波器权系数的误差函数,因此即使被控对象特性和扰动特性发生变化,当滤波器收敛到最优解时,系统输出达到某种准则下的最小值。
Compared with ground based Electro-Optical tracking system, the design ofElectro-Optical tracking system based on moving bed is more and more difficult due toplatform moving as well as vibration. So a LOS stabilization subsystem must bedesigned to make sure the LOS stable in inertial space. In order to make sure the LOSstable to improve the tracking precision, Gyro stabilization platform is used to insulatethe effect of platform moving and vibration. The stabilizing principle of inertialstabilization platform is analyzed and this dissertation emphasizes on control methodsdesign to enhance disturbance rejection ability.
     Firstly, the inertial stabilized platform and the principle of inertial stabilizedplatform isolation carrier disturbances are analyzed. These works establish thetheoretical foundation for subsequent reach and implementation of control method. Inorder to modeling the inertial platform, adaptive modeling method and mechanismmodeling method are introduced respectively. The former do not need to know a priorknowledge of the object, it belongs to the black-box modeling and the later belongs toaccurate modeling. The carrier disturbance isolation equation and the transfer functionof inertial stabilized platform rejection carrier disturbance are established by analyzingthe transfer characteristics of disturbances in time domain and in frequency domain.
     The two-port Internal Model Control is proposed for stability control. Disturbances(including internal disturbance and external disturbance) are estimated based on InternalModel principle and feedforward them by internal model controller. The feedforwardloop is in parallel with the feedback loop and this has the equivalent effect of feedback+feedforward. In order to verify the ability of two-port Internal Model Control method,two inertial stabilization platform experiments system are set up. The experimentprinciple based on RTW is introduced and described its implementation process in detail.In order to reduce the effect of gyro noise, the Kalman filter, H∞filter and low pass filter are analyzed and compared. Simulation and experiment results both show that thetwo-port Internal Model Control effectively for carrier disturbance and the errorproduced by friction. Simulation and experiment results also show that the two-portInternal Model Control has better disturbance rejection at low and mid frequency thanPI method. It improves more than26dB disturbance rejection ratio at0.1Hz.
     Because of using the internal model principle to estimate the disturbance, theaccuracy of the model determines the disturbance estimation precision. So thecomposite internal model control is designed to overcome the shortcoming. A feedbackloop is added to the inner of the IMC loop and uses the feedback loop transfer functionas the equivalent control object. The inner loop decreases the model error and improvesdisturbance rejection ability. Experimental results show that, the composite internalmodel control achieves better disturbance rejection than feedback control in allsuppression bandwidth. The PI method achieve just39dB disturbance rejection ratio at3Hz but the composite internal achieve72dB, stable capacity increased by33dB.
     The composite adaptive inverse control is designed based on composite internalmodel control by adaptive tuning its external loop controller. The performance ofcontrol system by adopt different signal as error function to adjust adaptive filtercoefficients is analyzed in detail. When using the system output as error function, themodel must be associated with the control object to ensure the adaptive filterconvergence. The more accuracy of the model the faster convergence achieves. But theaccuracy of model does not affect the steady-state values of adaptive filter. Due to theadoption of the system output as the error function of adaptive filter, the control systemcan achieve good disturbance rejection when the adaptive filter converges to its optimalsolution even the characteristics of the controlled object and the disturbancecharacteristics changes.
引文
[1]马佳光.捕获跟踪与瞄准系统的基本技术问题[J].光电工程,1989,16(3)
    [2] B. L. Ulich. Overview of acquisition, tracking and pointing system technologies [J]. Acquisition,Tracking and Pointing Ⅱ. Proc. SPIE vol.887.1988
    [3]王连明.机载光电平台的稳定与跟踪伺服控制技术研究[D].长春:中国科学院长春光学精密机械与物理研究所,2002
    [4]施峥嵘.车载设备视轴稳定与跟踪技术研究[D].南京:东南大学,2006
    [5]李焱.舰载光电设备跟踪掠海目标的控制[J].光学精密工程,2010,18(4):935-942
    [6]丁科.卫星激光通信精密跟踪技术研究[D].成都:中国科学院光电技术研究所,2011
    [7] Kevin M, Scott G, Jeffery W. Pointing and Stabilization System for use in a High AltitudeHovering Helicopter[C]. SPIE Conference on Acquisition,Tracking, and Pointing XIII,1999,3692:23-32.
    [8] Timothy P R, Megan M B, William E.C, Robert K. R. Stabilized Electro-optical AirborneInstrumentation Platform (SEAIP)[C].Proceedings of SPIE,2004,5268:202-209.
    [9]张秉华,张守辉.光电成像跟踪系统[M].成都:电子科技大学出版社,2003.
    [10]胡浩军.运动平台捕获、跟踪与瞄准系统视轴稳定技术研究[D].长沙:国防科学技术大学,2005
    [11]吴金中.电视导引系统的视轴稳定跟踪技术[J].战术导弹技术,2002,(1):34-38.
    [12] Xie Delin, Yuan Jiahu, Yang Hu. Stabilization of Line-of sight for Airborne O-E Tracking andImaging system [C]. SPIE Conference on Acquisition, Tracking and Pointing XII,1998,3365:191-201.
    [13] Jesse J.Ortega.Gunfire Performance of Stabilized Electro-Optical Sights[C].SPIE Conferenceon Acquisition,Tracking and Pointing XII,1999,3692:74-83.
    [14]姬伟.陀螺稳定光电跟踪平台伺服控制系统研究[D].长沙:国防科学技术大学,2006
    [15] Rick Walter, Harrison Danny, Jed Donaldson, etc. Stabilized Inertial Measurement System(SIMS)[C]. Proceedings of SPIE,2002,4724:57-68.
    [16] Donald Ruffatto, Donald Brown, Richard Pohle, etc. Stabilized High-Accuracy OpticalTracking System (SHOTS)[C]. Proceedings of SPIE,2001,4365:10-18.
    [17]蒋冰.船用稳定跟踪平台的控制技术研究[D].哈尔滨:哈尔滨工程大学,2009
    [18]雷金利.大负载光电稳定平台研究[D].长春:长春理工大学,2009
    [19]王凤英.船载电视跟踪仪自稳定问题研究[D].大连:大连海事大学,2005
    [20]郭立东.舰载激光武器稳定平台控制技术研究[D].哈尔滨:哈尔滨工程大学,2011
    [21] J.M. Hilkert, David L.Amil. Structural effects and techniques in precision pointing andtracking systems-a tutorial overview [J]. Acquisition, Tracking, Pointing, and Laser SystemsTechnologies, Proc. SPIE, vol7696,76961C-1~76961C-12,2012.
    [22]黄猛,张葆,丁亚林.国外机载光电平台的发展[J].专题
    [23] M. F. Luniewicz, J. Murphy, E. O Neil, D. T. Woolbury. Testing Inertial Pseudo-Star ReferenceUnit [J]. Aacquisition, Tracking and Pointing Ⅷ,Proc. SPIE vol.2221,1994
    [24] Michael F. Luniewicz, Jerold P. Gilmore, et al. Comparison of wideband inertial line-of-sightstabilization reference mechanizations [J]. Aacquisition, Tracking and Pointing Ⅵ, Proc. SPIE vol.1697,1992
    [25] J. P. Gilmore, M. F. Luniewicz, D. G. Sargent. Enhanced Precision Pointing Jitter SuppressionSystem [J]. Laser and Beam Control Technologies, Proc. SPIE, vol.4632:38-49,2002
    [26] Steven Wasson, Dr. Felix Morgan, et al. Eembedded FPGA Platform for Fast Steering Mirrorand Optical Inertial Reference Unit Applications [J]. Aacquisition, Tracking and Pointing, XXV,Proc. SPIE vol.8052,2011
    [27] Shinhak Lee, Gerry G. Ortiz, et al. Inertial Sensor Assisted Acquisitio, Tracking and Pointingfor High Data Rate Free Space Optical Communications. Aerospace Conference, Proc. IEEE,2003
    [28] Angel A. Portillo, Gerardo G. Ortiz, et al. Fine Pointing Control for Optical Communications[J]. Aerospace Conference, Proc. IEEE,2001
    [29]李志俊.惯性平台稳定技术多闭环控制技术[D].成都:中国科学院光电技术研究所,2010
    [30]毛耀.运动平台光电系统的视轴稳定技术研究[D].成都:中国科学院光电技术研究所,2012
    [31] J.M. Hilkert, Brian Pautler. A reduced-order disturbance observer applied to inertiallystabilized Line-of-Sight control [J]. Aacquisition, Tracking and Pointing, XXV, Proc. SPIE vol.8052:80520H-1~80520H-12,2011
    [32]李嘉全,丁策,孔德杰等.基于速度信号的扰动观测器及在光电稳定平台的应用[J].光学精密工程,2011,19(5):998-1004
    [33] Marcelo C. Aigrain. Accelerometer-Based Platform Stabilization [J]. SPIE Vol.1482Acquisition, Tracking, and Pointing V (1991)/367
    [34] Tao Tang, Yongmei Huang, Chengyu Fu, et al. Acceleration feedback of a CCD-based trackingloop for fast steering mirror[J]. Optical Engineering48(1):013001-1~013001-6,2009.
    [35]胡浩军,马佳光.线加速度计辅助高精度稳定跟踪[J].强激光与粒子束,2006,18(5):769-772
    [36] Rong Zhu, Yanhua Zhang, Qilian Bao. A Novel Intelligent Strategy for ImprovingMeasurement Precision of FOG [J]. IEEE Transation on Instrumentation and Measurement,2000,49(6):1183-1188.
    [37] R. Joseph. Watkins. The Adaptive Control of Optical Beam Jitter [D]. Monterey, CA.: NavalPostgraduate School,2004
    [38] B. E. Bateman. Experiments on laser beam jitter control with applications to a shipboard freeelectron laser [D]. Monterey, CA.: Naval Postgraduate School,2007
    [39] M. J. Beerer. Adaptive filter techniques for optical beam jitter control and target tracking [D].Monterey, CA.: Naval Postgraduate School,2008
    [40] Steve Gibson, Tsu-Chin Tsao, Dan Herrick, et al. Adaptive jitter control for tracking line ofsight stabilization [J]. Adcanced Wavefront Control: Methods, Devices, and Applications Ⅷ, Proc.SPIE Vol.7816:78160C-1,2010
    [41] Tai Quach, M. Farooq. A Fuzzy Logic-based Target Tracking Algorithm [C]. SPIE,1998,3390:476-487.
    [42] V.A.Skormin, M.A.Tasullo, Adaptive jitter rejection technique applicable to airborne lasercommunication systems,[C] SPIE,1994,2123,357-368
    [43] Skormin, V.A., Tascillo, M.A., and Busch, T.E. Adaptive jitter rejection technique applicableto airborne laser communication systems [J] Optical Engineering,1995,34,1267-1278
    [44] Glaese, R.M., Anderson, E.H., and Janzen, P.C. Active Suppression of Acoustically InducedJitter for the Airborne Laser.[C]SPIE,2000,4034,157-162
    [45]姬伟,李奇.陀螺稳定平台伺服系统非线性特性补偿控制[J].电气传动,2005,35(7):31~34
    [46] BoLi, D Hullender, M DeRenzo. Nonlinear Induced Disturbance Rejection in InertialStabilization Systems [J]. IEEE Transation on Control System TechLnology,1998,6(3):421-427
    [47] Slobodan N.Vukosavie. Suppression of Torsional Oscillations in A High-Performance SpeedServo Drive [J]. IEEE Transation on Industry Eleetronies,1998,45(1):108-117
    [48] J. A. R. Krishna Moorty, Rajeev Marathe, Hari Babu. Fuzzy controller for line-of-sightstabilization systems [J]. Optical Engineering43(6):1394-1400,2004
    [49]姬伟,李奇.陀螺稳定平台视轴稳定系统自适应模糊进PID控制[J].航空学报,2007,28(1):191-195
    [50] Mancini D,Brescia M,Schipani P.Ground-based telescope pointing and tracking optimizationusing a neural controller [J].Neural Networks,2003,16(3/4):365-374.
    [51] J. A. Krishna Moorty, Rajeev Marathe. H∞Control Law for Line-of-Sight Stabilization forMobile Land Vehicles [J]. Optical Engineering,2002,41(11):2935-3944.
    [52] T. J. Schneeberger. The high altitude balloon experiment-status report [J]. Aacquisition,Tracking and Pointing Ⅷ. Proc. SPIE vol.779,1994
    [53] L. M. Schulthess, S. Baugh. The high altitude balloon experiment (HABE) control systemarchitecture [J]. Aacquisition, Tracking and Pointing Ⅷ, Proc. SPIE vol.2221,1994
    [54] T. J. Schneeberger, M. K. Barker. The high altitude balloon experiment: a test bed foracquisition, tracking and pointing technologies [J]. Aacquisition, Tracking and Pointing Ⅶ,Proc.SPIE vol.1950,1993
    [55] W. M. Browning, D. S. Olsen, et al. High altitude balloon experiment [J]. AirborneLaserAdvanced Technology, Proc. SPIE, Vol.3381
    [56] Nestor O. Perez Arancibia, Neil Chen, Steve Gibson. et al. Adaptive Control of Jitter in LaserBeam Pointing and Tracking [J].2010
    [57] Chi-Ying Lin, Yen-Cheng Chen, Tsu-Chin Tsao, et al. Laser Beam Tracking by Repetitive andVariable-Order Adaptive Control [J]. American Control Conference, pp2371-2376,2008
    [58] Nestor O. Perez Arancibia, Steve Gibson, Tsu-Chin Tsao. Frequency-WeightedMinimum-Variance Adaptive Control of Laser Beam Jitter [J]. IEEE Transactions on Mechatronics,2010
    [59] Nestor O. Perez Arancibia. Adaptive Control of Opto-Electro-Mechanical Systems forBroadband Disturbance Rejection [D]. Los Angeles: University of Calfornia, Los Agneles,2007
    [60]唐涛,黄永梅,张桐,付承毓.负载加速度反馈的伺服系统谐振抑制[J].光电工程,2007,34(7)
    [61]唐涛,黄永梅,付承毓,王强.跟踪系统中多闭环模式的分析和实现[J].光电工程,2008,35(7)
    [62]毛耀,马佳光,包启亮.光纤陀螺时滞环节的实时补偿技术[J].光电工程,2009,36(2)
    [63]王连明,葛文奇等.采样频率、系统延迟对跟踪系统稳定性能的影响[J].光学精密工程,2000,8(4).
    [64] George Ellis. Control System Design Guide (Third Editiion)[M].北京:电子工业出版社,2006. Pp43-50.
    [65]李文军,陈涛.光电跟踪系统噪声分析及其抑制[J].光学精密工程,2007,15(2):254-260.
    [66] Torsten Soderstrom. Petre Stoica. On Some System Identification Techniques forAdaptiveFiltering [J]. IEEE Transactions on Circuits and Systems,35(4):457-461,1988.
    [67] Jun-Mei Yang, Hideaki Sakai. A new adaptive filter algorithm for system identification usingindependent component analysis [J],2006.
    [68] Jeronimo Arenas-Garcia, Manel Martinez-Ramon. Plant identification via adaptivecombination of transversal filters [J]. Signal Processing86(2006)2430–2438.
    [69] B. Widrow, E. Walach. Adaptive Inverse Control [M]. Upper Saddle River, NJ: Prentice Hall,1996, pp73-89.
    [70] B. Widrow, S. D. Stearns. Adaptive Signal Processing. Englewood Cliffs, NJ: Prentice Hall,1985.
    [71]段守付,樊思齐,卢演.航空发动机自适应建模技术研究[J].航空动力学报,1999,14(4):440-443.
    [72]朱洪涛,严国萍.基于自适应滤波的信号处理系统建模及其系统实现[J].仪器仪表学报,2003,24(4):242-249.
    [73] P. Van Overschee, B. De Moor. Subspace Identification for Liner Systems [M]. Norwell, MA:Kluwer Academic Publishers,1996.
    [74] L. Ljung. System Identification [M]. Upper Saddle River, NJ: Prentice Hall,1999.
    [75] M. Martinez-Ramon, J. Arenas-Garcia. An Adaptive Combination of Adaptive Filters for PlantIdentification [J]. IEEE,2002,1195-1198.
    [76] Peter Van Overschee, Bart De Moor. Closed Loop Subspace System Identification [J].Proceedings of the36thConference on Decision&Control, IEEE,1997.
    [77] M. Morari. Robust Process Control [J]. Prentic-Hall, Inc.1989.
    [78] Coleman Brosilow, Babu Joseph.Techniques of Model-Based Control [M]. Upper SaddleRiver, NJ: Prentice Hall PTR Publishers,2002.
    [79]赵曜.内模控制系统鲁棒跟踪控制器的参数化及优化[J].控制与决策,2009,24(5):734–737.
    [80]赵曜.论两种改进内模控制系统的等价性[J].控制与决策,2007,22(10):1170–1173.
    [81]周涌,陈庆伟,胡维礼.内模控制研究的新发展[J].控制理论与应用,2004,21(3):475–48.
    [82] Alex Zheng, Mayuresh V. Kothare, Manfred Morari. Anti-Windup Design for Internal ModelControl [J]. Technical Memorandum No. CIT-CDA93-007,1993.
    [83] N.Abe, K.Yamanaka. Smith Predictor Control and Internal Model Control-A Tutorial [J].SICE Annual Conference in Fukui, August,2003,1383-1387.
    [84] G. Nikolakopoulos, A. Tzes. Reconfigurable internal model control based on adaptive latticefiltering [J]. Mathematics and Computers in Simulation60(2002)303–314.
    [85] Kou Yamada. Modi_ed Internal Model Control for unstable systems [C]. Proceedings of the7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel-June28-30,1999
    [86]蔡小玲,汪小凡,王执铨.内模控制与PI控制[J].南京理工大学学报,Vol.26Su,2002.
    [87]何承波,刘开培,魏洪杰,张崇军.基于内模控制策略的自整定PID控制器[J].武汉大学学报(工学版),2002,35(2):108-112.
    [88] David Anders Tingdahl. Implementation of an Adaptive Internal Model Controller for Systemswith Large Time Delay. Master Thesis, Continuation Courses Space Science and TechnologyDepartment of Department of Space Science, Kiruna,2007.
    [89] R.Vilanova, O. Arrieta, P. Ponsa. IMC based feedforward controller framework for disturbanceattenuation on uncertain systems [J]. ISA Transactions48(2009)439-448.
    [90] Ankit Porwal. Internal Model Control and IMC Based PID Controller [D]. Department ofElectronics&Communication Engineering National Institute of Technology,2010.
    [91] Ian G. Horn, Jeffery R. Arulandu, Christopher J. Gombas. Improved Filter Design in InternalModel Control [J]. Ind. Eng. Chem. Res.1996,35,3437-3441.
    [92] Jie Chen, Ceng Jiang, Lixin Xu. A Kind of Intelligent Internal Model Control [J]. ICICExpress Letters,2008,2(4):365-369.
    [93] Tong H. Lee, Abdullah Al-Mamun, C. H. Tan. Internal Model Control (IMC) Approach forDesigning Disk Drive Servo-Controller [J]. IEEE TRANSACTIONS ON INDUSTRIALELECTRONICS,1995,42(3):248-256.
    [94]张文博,范大鹏,朱华征.基于采样控制理论的光电跟踪伺服系统内模控制[J].光学精密工程,2008,16(2):221-228.
    [95]王辉华,刘文化,石章松.基于输入特性分析的光电跟踪内模控制设计[J].火力与指挥控制,2009,34(3):139-144.
    [96]朱希荣,伍小杰,周渊深.基于内模控制的同步电动机变频调速系统的研究[J].电气传动,2007,37(12):46-48.
    [97] Y.-S. LEE, S. J. ELLIOTT. ACTIVE POSITION CONTROL OF A FLEXIBLE SMARTBEAM USING INTERNAL MODEL CONTROL [J]. Journal of Sound and     [98] Jesse B. Hoagg, Dennis S. Bernstein. Deadbeat Internal Model Control for CommandFollowing and Disturbance Rejection in Discrete-Time Systems [J]. Proceedings of the2006American Control Conference Minneapolis, Minnesota, USA, June14-16,2006.
    [99] Tao liu, Furong Gao. Enhanced IMC-based Load Disturbance Rejection Design for IntegratingProcesses with Slow Dynamics [J]. Proceedings of the9th International Symposium on Dynamicsand Control of Process Systems (DYCOPS2010),67-72.
    [100] Andrea Cassia, Marcelo Embiru u. INTERNAL MODEL CONTROL FOR TRAJECTORYTRACKING OF AN OMNI-DIRECTIONAL ROBOT [J]. ABCM Symposium Series inMechatronics,2008, Vol.3-pp.363-372.
    [101]吴杰.变负载伺服系统自适应内模控制研究[D].南京:南京理工大学,2009.
    [102] Richare C. Dorf, Robert H. Bishop. Modern Control System [M].北京:高等教育出版社,2001.
    [103]卢京潮.自控控制原理[M].西安:西北工业大学出版社,2004.
    [104]杨涤,耿云海,杨旭等.飞行器系统仿真与CAD[M].哈尔滨:哈尔滨工业大学出版社,2006
    [105]刘杰.基于模型的设计及其嵌入式实现[M].北京:北京航空航天大学出版社,2010.
    [106]刘杰,翁公羽,周宇博.基于模型的设计——MCU篇[M].北京:北京航空航天大学出版社,2010.
    [107]丁玉美,阔永红,高新波.数字信号处理[M].西安:西安电子科技大学出版社,2002.
    [108]吴敏,桂卫华,何勇.现代鲁棒控制(第二版)[M].长沙:中南大学出版社,2006.
    [109]王广雄,何朕.控制系统设计[M].北京:清华大学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700