用户名: 密码: 验证码:
几种半导体材料电子结构及光催化性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机和环境污染是当前社会面临的亟待解决的两大问题。因此,开发和利用新型无污染可再生能源是人类面临的重要课题。其中光催化因其潜在的优势,越来越受到科研人员的重视。传统的半导体材料TiO2和SrTiO3具有低成本、化学稳定高、无毒等特征,且在光照下能分解水产生氢气和氧气,以及具有很强的光氧化降解有机污染物的能力,因此成为光催化领域中典型的光催化材料而备受瞩目。但是,TiO2和SrTiO3都是宽带隙半导体,其禁带宽度均约为3.2eV,只能吸收利用太阳光中的紫外光部分(波长大约为387nm),而紫外光大约只占地球表面太阳光总能量的5%因而影响了其对太阳光的吸收效率,制约了它们作为光催化材料在实际生产中的应用。可见光占太阳光总能量很大一部分(大约43%),因此,如何拓展TiO2和SrTiO3光吸收响应范围以更充分的利用可见光是当前光催化研究的热点之一。通常,通过掺杂调节材料的能带结构是拓展光吸收的重要手段之一。实验上,研究人员通过物理或者化学的方法来制备金属或非金属掺杂以及共掺杂的TiO2和SrTiO3材料,研究了掺杂对TiO2和SrTiO3材料的光催化性质的影响,并解释了光催化调控的机制。需要强调的是,仅有可见光吸收并不能保证高的光催化效率。半导体光催化过程大体分为如下几步:(a)半导体光催化材料吸收光子产生光生电子和空穴;(b)光生电子和空穴在内建电场作用或者通过扩散作用分离且迁移到材料表面;(c)表面的光生空穴和电子分别和吸附物发生氧化还原反应。而对于过程(b)来说,电子和空穴在转移的过程中会发生再复合,复合率的大小也是决定材料光催化活性的主要因素之一。前期研究表明单掺杂引入的杂质态,虽然可以扩展可见光吸收,但是由于其可能充当电子空穴复合中心,加速电子和空穴的再复合,从而导致掺杂材料的光催化活性较未必有实质性提高。而为了钝化杂质态及平衡体系电荷,共掺是一种有效的手段,因为两种掺入元素的协同作用,不仅可以提高两种材料的掺杂浓度及稳定性,而且可以抑制光生载流子的复合,从而提高光催化活性。除了掺杂改性方法之外,金属纳米颗粒在光催化剂表面的修饰,同样可以改变催化材料的能带结构进而影响光催化性质,而且金属和半导体接触形成的肖特基势垒可以抑制光生载流子复合,因此表面金属沉积和修饰在催化和光催化的研究中受到广泛的关注。另外,半导体光催化材料的形貌和维数对光催化的性质同样具有重要的影响。对于三维情况,除了掺杂之外,寻找新型的具有理想可见光响应的光催化材料(如,SrNbO3等)是研究的新热点;对于二维情况(表面),由于通常光催化氧化还原发生在材料的表面,实验上寻找和制备活性较高的晶面是光催化研究的重要方向之一,而理论上对于活性面以及金属修饰的活性面的研究也是必要的。对于一维情况,如,TiO:纳米管,因其独特的几何构型和电子性质而在光催化和太阳能敏化电池中得到广泛关注。其宽的禁带同样制约着Ti02纳米管的可见光吸收响应,因此有必要寻找合适的方法来提高其可见光吸收。
     为了更深入解释以上半导体光催化材料相关的微观机制,本论文从理论方面研究了非掺杂、金属或非金属单掺及共掺、表面的金属修饰的半导体光催化材料的几何结构和电子结构,分析了几何结构和电子结构以及光催化性质之间的关系。本论文全文分为七章:第一章概述了几种主要的半导体光催化剂在光催化领域的研究背景和现状。第二章简要介绍了密度泛函理论以及本论文中用到的计算软件。第三章研究了新型的金属性钙钛矿材料(SrNbO、SrVO3和CaVO3)的电子性质、光跃迁矩阵元与可见光吸收的关系,分析解释了该类材料的光催化机理。第四章详细研究了Ag单掺、Nb单掺、Ag/Nb共掺对SrTiO3的几何结构、电子结构及光催化性质的影响和作用规律。第五章详细地研究了Ag对TiO2活性面(001)几何结构、稳定性、电子结构以及光催化性质的影响规律。第六章研究了N掺杂、Au掺杂及N/Au共同作用的TiO2纳米管的光催化性质,研究了TiO2纳米管的光催化性质,分析了N与Au之间的电荷转移,讨论了N和Au对TiO2纳米管光催化性能调控的协同作用机理。第七章总结了本论文主要内容,提出了该领域理论研究存在的尚未解决的问题,并对以后工作的开展做了展望。本论文主要内容和结论如下:
     (1)利用密度泛函理论(DFT)和部分自洽的格林函数方法(GW)计算研究了SrNbO3、SrVO3和CaVO3的电子结构和光学跃迁性质。为了评估可见光吸收,本章计算了带边态之间的直接跃迁矩阵元。结果表明在三个反演对称的结构中,可见光范围的电子直接跃迁只是在SrNbO3中发生,归因于Sr的d态和Nb的eg混合导致带边态波函数的宇称不同。另外,SrNbO3光生载流子的有效质量表现出各向同性,且在三种材料中最小,表明其光生载流子复合率低且可以更容易的转移到表面反应点。因此,SrNbO3应具有比较好的光催化性能。当前工作可以对金属性钙钛矿的系列光催化研究起到一定的指导作用。
     (2) SrTiO3(STO)也是一种典型且很有效的光催化材料。和TiO2相类似,STO是宽带隙的半导体,所以通过金属和非金属的掺杂拓展光吸收范围到可见光以提高太阳光的利用率引起了人们的关注。借助密度泛函理论,我们研究了Ag或Nb单掺及其共掺的协同效应对STO的光催化性质影响。研究的结果表明在Ag掺杂的STO中Ag的4d电子态主要位于体系的价带顶,并且Ag的4d和O的2p的杂化使得体系的能带变窄,从而导致光吸收的提高。为了保持体系的电中性特征,我们同时研究了Ag/Nb共掺的STO,结果表明Nb可以提高Ag的掺杂浓度而且带隙没有明显变化,这与实验结果相吻合。
     (3)采用密度泛函理论,系统研究了Ag和锐钛矿TiO2(001)表面的相互作用,解释Ag/TiO2复合体系中Ag对于TiO2(001)表面电子结构和光催化性质的影响。结构上,考虑了几种可能的表面和次表面Ag的植入方式:吸附、替位和间隙,另外考虑Ag两种不同浓度的情况。各种Ag作用的(001)表面的稳定性表明:吸附和间隙位置的稳定性与氧环境无关,而替位在富氧环境下更加稳定;当Ag浓度高时,尤其是替位情况,无论富氧还是非富氧环境其植入变得困难。Ag吸附引入隙态位于导带底(CBM)以下,且费米能级同样处于导带底附近,此隙态可以作为光生电子捕获中心阻碍电子空穴对的复合。电子跃迁从缺陷能级到费米能级可以解释实验上观测到可见光吸收峰。替位Ag会引入一些定域隙态,同时费米能级钉扎在价带顶,杂质态可以捕获空穴以抑制光生载流子的复合。对于表面间隙Ag,费米能级位于导带底,和吸附情况相似,部分占据的电子态可以作为电子的捕获中心,可以促进光催化活性。
     (4)利用密度泛函理论研究了N掺杂、Au吸附、N/Au共同作用的Ti02纳米管的几何结构和电子结构性质。对于本章中所有可能的杂质植入构型,和理想的TiO2纳米管相比,半径和键长没有明显的改变。计算结果表明N预先引入到Ti02纳米管中有利于Au的吸附,并且Au预吸附在纳米管同样提高杂质N的浓度。这种结构稳定性的协同作用可以归于Au和N之间的电荷转移。在Au/N共同作用的结构中,带隙中的空的N的2p态被来自Au的5s态的电子填充。因此,相关的价带、导带和隙态的电子跃迁导致吸收边红移。另外,相对于N单掺纳米管,填充的N的2p态可以有效的降低光生载流子复合。因此,Au/N共同作用的纳米管应该是一种有潜力的可见光光催化材料。
     本论文通过研究掺杂以及新型的三维(块体)、修饰二维(表面)和共同植入的一维(纳米管)材料的几何结构、稳定性和电子结构等性质,寻找半导体光催化材料的几何结构、电子结构和光催化之间的联系,阐述了杂质缺陷对材料的光吸收的影响及共掺体系中的协同效应在光催化性能中起到的作用,解释了非掺杂与金属和非金属掺杂修饰的材料光催化性能提高的机理,研究结果对于设计和合成高效的光催化材料有一定的指导作用。
At present, two prominent issues which modern sociaties face are the energy crisis and environmental pollutions that are in need to be solved urgently. Therefore, upon to these issues, the quest to develop and utilize the energy resources of noval and renewable features without harmful effect has been considered as an important task. Due to its potential advantage, photocatalysis has attracted more and more attention in recent years. The traditional semiconductor materials, i.e., TiO2and SrTiO3, have become typical candidate materials due to their low cost, chemical stability, innocuity, and thus have been widely used as photocatalysis. However, because of their wide band gap of~3.2eV, TiO2and SrTiO3can only absorb ultraviolet (UV) light with wave length<387nm. The UV light corresponds to about a fraction of5%across of solar energy, leading to very limited efficiency of optical absorption, and thus the wide band gap restricts their practical applications as photocatalysts. Thus, to further improve their photocatalytic activity efficiency by extending the light response to the visible portion, which accounts for43%of solar energy, is the a hot topic for studies on photocatalysis. Generally, doping with foreign elements is a major approach to narrow band gaps so as to enhance the visible light absorption efficiency. Experimentally, the researchers synthesize metal-and/or nonmetal-doped TiO2and SrTiO3with physical or chemical processes, and then investigate the effects of doping on the photocatalytic activity. It should be noted that, only visible light absorption does not guarantee satisfactory photocatalytic activity. The semiconductor photocatalysis process includes three major steps:(a) photogeneration of electron hole pairs after absorption of photons in photocatalysts,(b) separation of photogenerated carrier pairs, and consequent migration to the photocatalyst surface under the action of in-build field or diffusion,(c) redox reaction through electrons or holes transfer from surface to adsorbates. In regard to process (b), the recombination of photogenerated electrons and holes is inevitable, which limits the photocatalytic activity. The defect states induced by mono-doping can lead to the absorption of visible light. However, they may also act as recombination centers depressing the transfer of carriers to material surface and accelerating the photogenerated electron and hole to recombine, which may even result in a much lower photocatalytic activity than that of the corresponding defect-free material. Compared with mono-doping, codoping with different elements can not only enhance the defect concentrations and the stability, but also depress the recombination of photogenerated carriers, and thus improve the photocatalytic activity. In addition, transition metal deposition on oxides photocatalyst surface, regarded as one of the most effective strategies to enhance the photocatalytic efficiency, has also received a lot of attention due to the modification of the electronic structures and decreasing of the carriers recombination. Furthermore, the morphology and dimension of materials can also have important effects on photocatalytic behaviors. In three-dimensional case, besides doping, it is also an important issue in the fields of photocatalysis to search for new types of dopant-free materials (e.g., SrNbO3) with desired band structure for visible light photocatalytic activity. In two-dimensional case (surface), the photo-induced redox reactions occur at the surface of a catalyst. Experimentally, design and preparation of activity surface is an important issue. Theoretically, the structural properties and photocatalytic properties of clean (modified) active surface become a hot research topic. In one-dimensional case, i.e., TiO2nanotubes, because of its unique geometrical structure and electronic properties, have been widely used in the fields of photocatalysis and sensitized dye solar cell. However, the wide band gap also limits its response to the visible light. Therefore, it is necessary to modify the electronic structure of TiO2nanotubes to enhance its photocatalytic activity.
     In this dissertation, to understand the related mechanism of photocatalytic materials mentioned above, we have investigated the geometric and electronic structure of defect-free, metal and/or nonmetal doped, and surface decorated semiconductor photocatalytic materials, and also analyzed the relations between geometric structure and electronic structure and photocatalytic properties. The dissertation contains seven chapters. In the first chapter, we briefly present the background and research progress of several semiconductor photocatalysts in the fields of photocatalysis. In the second chapter, we introduce the density functional theory and several codes employed in the theoretical simulations. In the third chapter, we discuss the relation between electronic structure, optical transition matrix element and optical absorption of new type photocatalytic materials (SrNbO3, SrVO3and CaVO3), and present some noval ideas in the mechanism of photocatalysis. In the fourth chapter, the relationship between geometric, electronic properties and photocatalytic properties of Ag doped, Nb doped, and Ag/Nb codoped SrTiO3are studied in detail. In the fifth chapter, we investigate the structure, stability, and electronic properties of Ag incorporated TiO2(001) surface with high activity, and explain in detail the effect of Ag on photocatalytic activity of the (001) surface. In the sixth chapter, we study the photocatalytic properties of TiO2nanotube and the charge transfer between Au atom and N atom, and analyze the N/Au synergistic photocatalytic mechanism. In the seventh chapter, we summarize the contents in the dissertation, and present some open issues to be discussed in this field and future work. The main results and conclusions of this dissertation are summarized as follows:
     (1) Electronic structure and optical transition of three d1metallic oxides SrNbO3, SrVO3, and CaVO3were theoretically investigated employing conventional density functional theory (DFT) and partially self-consistent GW calculations. To evaluate the possibility of visible light absorption, the matrix elements for direct transitions between band edge states were studied. Our results indicated that among the three inversion symmetry structures, electron direct transition in visible light region can only occur in SrNbO3, which is ascribed to different parity of band edge wavefunctions due to the mixing of Sr d states with Nb eg states. In addition, the effective mass of photogenerated carriers in SrNbO3with isotropic characteristic is the smallest, which implies that the photogenerated carriers can transfer to the surface reaction sites more easily with less recombination. Therefore, SrNbO3should be of better photocatalytic performance. The present work should be beneficial to exploring the series of metallic perovskite photocatalysts.
     (2) Besides TiO2, SrTiO3(STO) is also one typical and effective photocatalytic material. STO is a wide band gap semiconductor similar to TiO2. Extending the light absorption to visible light region has also attracted lots of attention in enhancement of photocatalytic efficiency. Employing density functional theory, we studied the Ag-doped, Nb-doped and Ag/Nb-doped SrTiO3. The results indicated that the Ag4d states in the Ag-doped SrTiO3mainly locate at the top of valance band, and the hybridization with O2p narrows the band gap, which can improve the visible light photoactivity. In order to keep electrical neutrality, the Ag/Nb co-doped SrTiO3has been investigated. The results suggested that the introduction of Nb favors the incorporation of Ag and the band gap does not change sensibly, which is in agreement with the experimental observation.
     (3) The incorporation of Ag on (001) surface of anatase TiO2was systematically investigated by means of density functional theory to understand the Ag effects on the electronic structure and photocatalytic properties in Ag/TiO2composites. Several possible adsorptional, substitutional and interstitial sites with two different Ag concentrations at surface and subsurface layers were examined. Our results on the stability of various Ag-incorporated (001) surfaces indicated that the adsorptional site is favorable regardless of the oxygen conditions, while the substitutional site becomes more stable under the oxygen-rich condition. However, it is difficult to incorporate Ag onto the surface with high concentration, especially for substitutional sites in the limited range of oxygen chemical potential. The adsorption of Ag introduces gap states near or below the conduction band minimum and the Fermi level locates next to or merges in the conduction band, which can act as photo-generated electron trap centers and inhibit the recombination of electron-hole pairs. The electron transitions from the impurity levels to the levels above the Fermi level may be responsible for the small visible light absorption peak observed in experiment. Substitutional Ag introduces some localized gap states, while the Fermi level is pinned near the top of valence band, and the impurity states can trap the hole to suppress the recombination of photo-generated carriers. For the interstitial Ag in surface, the Fermi level locates at the bottom of conduction band, and the partially occupied states may also act as electron trap centers improving the photocatalytic efficiency.
     (4) The structural and electronic properties of N-doped, Au-adsorbed, and Au/N co-implanted TiO2nanotubes (NTs) were investigated by performing first-principle density functional theory calculations. For all the implanted configurations, the radius and bond distance do not change significantly compared to the pristine NTs. Our results indicated that the introduction of N into NTs is in favor of Au incorporation. It was found that Au pre-adsorption on the NTs can also enhance the N concentration in NTs. The synergistic stability can be probably attributed to the charge transfer between Au and N atoms. In co-implanted configurations, the empty N2p gap states are occupied by one electron from Au5s states. Thus, the associated electron transition among the valence band, the conduction band and the gap states results in the red-shift of light absorption. In addition, the occupation of N2p states can effectively decrease the photo-generated carrier combination. Therefore, the Au/N implanted NTs should be regarded as a promising photocatalytic material within visible light region.
     In this dissertation, we have investigated geometrical structure, stability and electronic properties of doped (or novel) three-dimensional (bulk), modified two-dimensional (surface) and co-implanted one-dimensional (nanotubes) materials. The relationship between the geometrical structure, electronic structure and photocatalytic properties was explored in detail. The critical influence of defects and impurities on the optical absorption and the role of synergistic interaction in photocatalytic activity were demonstrated. We also presented some possible strategies to enhance photocatalytic performance in defect-free, metal and/or nonmetal incorporated materials. Our results should provide some theoretical guidance for design and synthesis of efficient photocatalytic materials.
引文
[1]A. Fujishima and K. Honda, Nature 238,37 (1972).
    [2]J. Wang, S. Yin, M. Komatsu, Q. Zhang, F. Saito, and T. Sato, Journal of Photochemistry and Photobiology A:Chemistry 165,149 (2004).
    [3]T. Ohno, T. Tsubota, Y. Nakamura, and K. Sayama, Applied Catalysis A:General 288,74 (2005).
    [4]H. Irie, Y. Maruyama, and K. Hashimoto, The Journal of Physical Chemistry C 111, 1847 (2007).
    [5]D. Wang, T. Kako, and J. Ye, J. Am. Chem. Soc.130,2724 (2008).
    [6]D. Wang, T. Kako, and J. Ye, J. Phys. Chem. C 113,3785 (2009).
    [7]D. Wang, J. Ye, T. Kako, and T. Kimura, J. Phys. Chem. B 110,15824 (2006).
    [8]A. de Campos, M. S. da Luz, C. A. M. dos Santos, A. T. Rice, A. M. Deml, B. D. White, J. J. Neumeier, and J. L. Cohn, Physical Review B 82,125117 (2010).
    [9]X. Xu, C. Randorn, P. Efstathiou, and J. T. S. Irvine, Nat Mater 11,595 (2012).
    [10]Y. C. Lan, X. L. Chen, and M. He, Journal of Alloys and Compounds 354,95 (2003).
    [11]S. Y. Yan, Y. Xie, T. Liu, and H. T. Yu, J Phys Condens Matter 22,125501 (2010).
    [12]R. J. O. Mossanek, M. Abbate, P. T. Fonseca, A. Fujimori, H. Eisaki, S. Uchida, and Y. Tokura, Physical Review B 80,195107 (2009).
    [13]M. J. Rey, P. Dehaudt, J. C. Joubert, B. Lambert-Andron, M. Cyrot, and F. Cyrot-Lackmann, Journal of Solid State Chemistry 86,101 (1990).
    [14]A. Liebsch, Physical Review Letters 90,096401 (2003).
    [15]E. Pavarini, S. Biermann, A. Poteryaev, A. I. Lichtenstein, A. Georges, and O. K. Andersen, Physical Review Letters 92,176403 (2004).
    [16]H. Lee, K. Foyevtsova, J. Ferber, M. Aichhorn, H. O. Jeschke, and R. Valenti, Physical Review B 85,165103 (2012).
    [17]I. H. Inoue, C. Bergemann, I. Hase, and S. R. Julian, Physical Review Letters 88, 236403 (2002).
    [18]I. A. Nekrasov, G. Keller, D. E. Kondakov, A. V. Kozhevnikov, T. Pruschke, K. Held, D. Vollhardt, and V. I. Anisimov, Physical Review B 72,155106 (2005).
    [19]U. Diebold, Surface Science Reports 48,53 (2003).
    [20]M. Lazzeri, A. Vittadini, and A. Selloni, Phys. Rev. B 63,155409 (2001).
    [21]H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, and G. Q. Lu, Nature 453,638 (2008).
    [22]B. H. Wu, C. Y. Guo, N. F. Zheng, Z. X. Xie, and G. D. Stucky, Journal of the American Chemical Society 130,17563 (2008).
    [23]X. Han, Q. Kuang, M. Jin, Z. Xie, and L. Zheng, J. Am. Chem. Soc.131,3152 (2009).
    [24]H. G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng, and G. Q. Lu, J. Am. Chem. Soc.131,4078 (2009).
    [25]Y. Dai, C. M. Cobley, J. Zeng, Y. Sun, and Y. Xia, Nano Letters 9,2455 (2009).
    [26]F. Amano, O.-O. Prieto-Mahaney, Y. Terada, T. Yasumoto, T. Shibayama, and B. Ohtani, Chemistry of Materials 21,2601 (2009).
    [27]M. Liu, L. Piao, L. Zhao, S. Ju, Z. Yan, T. He, C. Zhou, and W. Wang, Chemical Communications 46,1664 (2010).
    [28]J. Pan, G. Liu, G. Q. Lu, and H.-M. Cheng, Angewandte Chemie 123,2181 (2011).
    [29]G. Liu, H. G. Yang, X. Wang, L. Cheng, J. Pan, G. Q. Lu, and H.-M. Cheng, J. Am. Chem. Soc.131,12868 (2009).
    [30]H. Cheng and A. Selloni, Langmuir 26,11518 (2010).
    [31]R. Wanbayor and V. Ruangpornvisuti, Journal of Molecular Structure:THEOCHEM 952,103 (2010).
    [32]C. Y. Chang, H. T. Chen, and M. C. Lin, Journal of Physical Chemistry C 113,6140 (2009).
    [33]D. Szieberth, A. Maria Ferrari, and X. Dong, Phys Chem Chem Phys 12,11033 (2010).
    [34]Y. B. He, O. Dulub, H. Z. Cheng, A. Selloni, and U. Diebold, Physical Review Letters 102 (2009).
    [35]Y. B. He, A. Tilocca, O. Dulub, A. Selloni, and U. Diebold, Nat. Mater.8,585 (2009).
    [36]J. G. Chang, J. Wang, and M. C. Lin, J Phys Chem A 111,6746 (2007).
    [37]E. Finazzi, C. Di Valentin, A. Selloni, and G. Pacchioni, The Journal of Physical Chemistry C 111,9275 (2007).
    [38]X.-Q. Gong, A. Selloni, O. Dulub, P. Jacobson, and U. Diebold, Journal of the American Chemical Society 130,370 (2007).
    [39]E. Mete, D. Uner, O. Gulseren, and 5. Ellialtioglu, Physical Review B 79,125418 (2009).
    [40]E. Mete, O. Gulseren, and S. Ellialtioglu, Physical Review B 80,035422 (2009).
    [41]P. Wang, B. Huang, X. Zhang, et al., Chemistry-A European Journal 15,1821 (2009).
    [42]P. Wang, B. Huang, Q. Zhang, et al., Chemistry-A European Journal 16,10042 (2010).
    [43]M. Logar, B. t. Jancar, S. o. Sturm, and D. Suvorov, Langmuir 26,12215 (2010).
    [44]D. Wodka, E. b. Bielariska, R. P. Socha, M. Elzbieciak-Wodka, J. Gurgul, P. Nowak, P. Warszyrnski, and I. Kumakiri, ACS Applied Materials & Interfaces 2, 1945 (2010).
    [45]I. Paramasivam, H. Jha, N. Liu, and P. Schmuki, Small 8,3073 (2012).
    [46]M. Grandcolas, A. Louvet, N. Keller, and V. Keller, Angewandte Chemie 121,167 (2009).
    [47]J. M. Macak, M. Zlamal, J. Krysa, and P. Schmuki, Small 3,300 (2007).
    [48]T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Langmuir 14,3160 (1998).
    [49]T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Advanced Materials 11,1307 (1999).
    [50]T. Maiyalagan, B. Viswanathan, and U. V. Varadaraju, Bulletin of Materials Science 29,705 (2006).
    [51]D. Szieberth, A. M. Ferrari, Y. Noel, and M. Ferrabone, Nanoscale 2,81 (2010).
    [52]A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, and P. Schmuki, Nano Letters 6,1080 (2006).
    [53]R. P. Antony, T. Mathews, K. Panda, B. Sundaravel, S. Dash, and A. K. Tyagi, The Journal of Physical Chemistry C 116,16740 (2012).
    [54]F. Xiao, The Journal of Physical Chemistry C 116,16487 (2012).
    [55]R. Beranek, J. M. Macak, M. Gartner, K. Meyer, and P. Schmuki, Electrochimica Acta 54,2640 (2009).
    [56]T. He, M. Zhao, X. Zhang, et al., The Journal of Physical Chemistry C 113,13610 (2009).
    [57]F. M. Hossain, A. V. Evteev, I. V. Belova, J. Nowotny, and G. E. Murch, Computational Materials Science 48,854 (2010).
    [1]M. Born and R. Oppenheimer, Annalen der Physik 84,457 (1927).
    [2]D. R. Hartree, (Cambridge Univ Press,1928), p.89.
    [3]V. Fock, Zeitschrift fur Physik A Hadrons and Nuclei 61,126 (1930).
    [4]P. Hohenberg and W. Kohn, Physical Review 136, B864 (1964).
    [5]W. Kohn and L. J. Sham, Physical Review 140, A1133 (1965).
    [6]L. H. Thomas, (Cambridge Univ Press,1927), p.542.
    [7]E. Fermi, Rend. Accad. Naz. Lincei 6,602 (1927).
    [8]P. A. M. Dirac, Mathematical Proceedings of the Cambridge Philosophical Society 26,376 (1930).
    [9]J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Physical Review B 46,6671 (1992).
    [10]J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Review Letters 77,3865 (1996).
    [11]V. I. Anisimov, J. Zaanen, and O. K. Andersen, Physical Review B 44,943 (1991).
    [12]V. I. Anisimov, M. A. Korotin, I. A. Nekrasov, A. S. Mylnikova, A. V. Lukoyanov, J. L. Wang, and Z. Zeng, Journal of Physics:Condensed Matter 18,1695 (2006).
    [13]V. V. Mazurenko, A. N. Varaksin, V. G. Mazurenko, V. S. Kortov, and V. I. Anisimov, Physica B:Condensed Matter 344,385 (2004).
    [14]M. A. Korotin, V. I. Anisimov, D. I. Khomskii, and G. A. Sawatzky, Physical Review Letters 80,4305 (1998).
    [15]V. I. Anisimov, I. S. Elfimov, N. Hamada, and K. Terakura, Physical Review B 54, 4387 (1996).
    [16]A. D. Becke, The Journal of Chemical Physics 98,1372 (1993).
    [17]A. D. Becke, The Journal of Chemical Physics 98,5648 (1993).
    [18]K. Burke and E. K. U. Gross, in Density functionals:Theory and applications (Springer, Berlin,1998).
    [19]A. K. Rajagopal and J. Callaway, Physical Review B 7,1912 (1973).
    [20]L. Hedin, Physical Review 139, A796 (1965).
    [21]S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Reviews of Modern Physics 73,515 (2001).
    [1]T. L. Thompson and J. T. Yates, Chemical Reviews 106,4428 (2006).
    [2]U. Diebold, Surface Science Reports 48,53 (2003).
    [3]A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev.95,735 (1995).
    [4]M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev.95,69 (1995).
    [5]A. Fujishima and K. Honda, Nature 238,37 (1972).
    [6]H. Tang, F. Levy, H. Berger, and P. E. Schmid, Phys. Rev. B 52,7771 (1995).
    [7]R. Long, Y. Dai, and B. Huang, J. Phys. Chem. C 113,650 (2008).
    [8]K. Yang, Y. Dai, and B. Huang, J. Phys. Chem. C 111,12086 (2007).
    [9]K. Yang, Y. Dai, and B. Huang, ChemPhysChem 10,2327 (2009).
    [10]K. Yang, Y. Dai, B. Huang, and M.-H. Whangbo, Chem. Mater.20,6528 (2008).
    [11]J. B. Varley, A. Janotti, and C. G. Van de Walle, Adv. Mater.23,2343 (2011).
    [12]J. Graciani, A. Nambu, J. Evans, J. A. Rodriguez, and J. Fdez Sanz, J. Am. Chem. Soc.130,12056 (2008).
    [13]J. Wang, N. Tafen de, J. P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li, and N. Wu, J. Am. Chem. Soc.131,12290 (2009).
    [14]K. Yang, Y. Dai, B. Huang, and M.-H. Whangbo, J. Phys. Chem. C 113,2624 (2009).
    [15]J. Wang, B. Huang, Z. Wang, et al., J. Mater. Chem.21,4562 (2011).
    [16]W. Wei, Y. Dai, K. Yang, M. Guo, and B. Huang, J. Phys. Chem. C 112,15915 (2008).
    [17]J. Lu, Y. Dai, M. Guo, W. Wei, Y. Ma, S. Han, and B. Huang, ChemPhysChem 13, 147 (2012).
    [18]Y. Liu, W.-J. Son, J. Lu, B. Huang, Y. Dai, and M.-H. Whangbo, Chem. Eur. J.17, 9342 (2011).
    [19]S. T. Kochuveedu, D.-P. Kim, and D. H. Kim, J. Phys. Chem. C 116,2500 (2011).
    [20]W. Wei, Y. Dai, M. Guo, Y. Zhu, and B. Huang, J. Phys. Chem. C 114,10917 (2010).
    [21]Y. Wang and G. S. Hwang, Surf. Sci.542,72 (2003).
    [22]Y. Zhu, W. Wei, Y. Dai, and B. Huang, Appl. Surf. Sci.258,4806 (2012).
    [23]H. Zhang, C. Liang, J. Liu, Z. Tian, G. Wang, and W. Cai, Langmuir 28,3938 (2012).
    [24]P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, and M.-H. Whangbo, Angew. Chem. Int. Ed.47,7931 (2008).
    [25]P. Wang, B. Huang, X. Zhang, et al., Chem. Eur. J.15,1821 (2009).
    [26]P. Wang, B. Huang, Q. Zhang, et al., Chem. Eur. J.16,10042 (2010).
    [27]Z. Wang, B. Huang, Y. Dai, X. Qin, X. Zhang, P. Wang, H. Liu, and J. Yu, J. Phys. Chem. C 113,4612 (2009).
    [28]B. Levy, W. Liu, and S. E. Gilbert, J. Phys. Chem. B 101,1810 (1997).
    [29]J. Mu, B. Chen, M. Zhang, Z. Guo, P. Zhang, Z. Zhang, Y. Sun, C. Shao, and Y. Liu, ACS Appl. Mat. Interfaces 4,424 (2011).
    [30]N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A. I. Minett, and J. Chen, ACS Appl. Mat. Interfaces 4,3718 (2012).
    [31]Z. Zou, J. Ye, K. Sayama, and H. Arakawa, Nature 414,625 (2001).
    [32]Z. Yi, J. Ye, N. Kikugawa, et al., Nat. Mater.9,559 (2010).
    [33]X. Xu, C. Random, P. Efstathiou, and J. T. S. Irvine, Nat. Mater.11,595 (2012).
    [34]X. Nie, S.-H. Wei, and S. B. Zhang, Phys. Rev. Lett.88,066405 (2002).
    [35]A. Walsh, J. L. F. Da Silva, S.-H. Wei, et al., Phys. Rev. Lett.100,167402 (2008).
    [36]N. Umezawa, O. Shuxin, and J. Ye, Phys. Rev. B 83,035202 (2011).
    [37]X. Ma, Y. Dai, M. Guo, and B. Huang, ChemPhysChem 13,2304 (2012).
    [38]S. Hui and A. Petric, Solid State Ionics 143,275 (2001).
    [39]Y. C. Lan, X. L. Chen, and M. He, J. Alloys Compd.354,95 (2003).
    [40]G. Kresse and J. Furthmuller, Computational Materials Science 6,15 (1996).
    [41]G. Kresse and J. Furthmuller, Physical Review B 54,11169 (1996).
    [42]G. Kresse and D. Joubert, Physical Review B 59,1758 (1999).
    [43]F. Fuchs, J. Furthmuller, F. Bechstedt, M. Shishkin, and G. Kresse, Phys. Rev. B 76, 115109(2007).
    [44]S. A. Turzhevsky, D. L. Novikoy, V. A. Gubanov, and A. J. Freeman, Phys. Rev. B 50, 3200 (1994).
    [45]M. J. Rey, P. Dehaudt, J. C. Joubert, B. Lambert-Andron, M. Cyrot, and F. Cyrot-Lackmann, J. Solid State Chem.86,101 (1990).
    [46]I. R. Shein, V. L. Kozhevnikov, and A. L. Ivanovskii, Solid State Sci.10,217 (2008).
    [47]S. Y. Yan, Y. Xie, T. Liu, and H. T. Yu, J Phys Condens Matter 22,125501 (2010).
    [48]A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun.178,685 (2008).
    [49]R. J. O. Mossanek, M. Abbate, P. T. Fonseca, A. Fujimori, H. Eisaki, S. Uchida, and Y. Tokura, Phys. Rev. B 80,195107 (2009).
    [50]W. Wei, Y. Dai, M. Guo, L Yu, and B. Huang, J. Phys. Chem. C 113,15046 (2009).
    [1]J. Lehn, J. Sauvage, and R. Ziessel, Nouv. J. Chim 4,623 (1980).
    [2]M. S. Wrighton, A. B. Ellis, P. T. Wolczanski, D. L. Morse, H. B. Abrahamson, and D. S. Ginley, Journal of the American Chemical Society 98,2774 (1976).
    [3]R. Maglizzo and A. Krasna, Photochem. Photobiol 38,15 (1983).
    [4]K. Domen, A. Kudo, T. Onishi, N. Kosugi, and H. Kuroda, The Journal of Physical Chemistry 90,292(1986).
    [5]A. Kumar, P. G. Santangelo, and N. S. Lewis, The Journal of Physical Chemistry 96, 834(1992).
    [6]C.-A. Chang, B. Ray, D. K. Paul, D. Demydov, and K. J. Klabunde, Journal of Molecular Catalysis A:Chemical 281,99 (2008).
    [7]W. Wei, D. Ying, J. Hao, and H. Baibiao, Journal of Physics D:Applied Physics 42, 055401 (2009).
    [8]W. Wei, Y. Dai, M. Guo, L. Yu, and B. Huang, The Journal of Physical Chemistry C 113,15046 (2009).
    [9]M. Guo and Y. Dai, Zeitschrift fur Kristallographie-Crystalline Materials 225,528 (2010).
    [10]H. Irie, Y. Maruyama, and K. Hashimoto, The Journal of Physical Chemistry C 111, 1847 (2007).
    [11]D. Wang, T. Kako, and J. Ye, J. Am. Chem. Soc.130,2724 (2008).
    [12]D. Wang, T. Kako, and J. Ye, J. Phys. Chem. C 113,3785 (2009).
    [13]V. Subramanian, R. K. Roeder, and E. E. Wolf, Industrial & Engineering Chemistry Research 45,2187 (2006).
    [14]W. Wei, Y. Dai, M. Guo, Y. Zhu, and B. Huang, The Journal of Physical Chemistry C 114,10917 (2010).
    [15]P. Blennow, A. Hagen, K. K. Hansen, L. R. Wallenberg, and M. Mogensen, Solid State Ionics 179,2047 (2008).
    [16]R. Konta, T. Ishii, H. Kato, and A. Kudo, The Journal of Physical Chemistry B 108, 8992 (2004).
    [17]K. Shibuya, R. Dittmann, S. Mi, and R. Waser, Advanced Materials 22,411.
    [18]I. Szafraniak, C. Harnagea, R. Scholz, S. Bhattacharyya, D. Hesse, and M. Alexe, Applied Physics Letters 83,2211 (2003).
    [19]G. Binnig, A. Baratoff, H. E. Hoenig, and J. G. Bednorz, Physical Review Letters 45, 1352 (1980).
    [20]M. Takizawa, K. Maekawa, H. Wadati, T. Yoshida, A. Fujimori, H. Kumigashira, and M. Oshima, Physical Review B 79,113103 (2009).
    [21]R. Astala and P. D. Bristowe, Journal of Physics:Condensed Matter 14, L149 (2002).
    [22]A. S. Hamid, Applied Physics A 97,829 (2009).
    [23]X. G. Guo, X. S. Chen, Y. L. Sun, L. Z. Sun, X. H. Zhou, and W. Lu, Physics Letters A 317,501 (2003).
    [24]R. I. Eglitis and E. A. Kotomin, Physica B:Condensed Matter 405,3164 (2010).
    [25]G. Kresse and D. Joubert, Physical Review B 59,1758 (1999).
    [26]G. Kresse and J. Furthmuller, Physical Review B 54,11169 (1996).
    [27]G. Kresse and J. Furthmuller, Computational Materials Science 6,15 (1996).
    [28]V. R. Saunders, R. Dovesi, C. Roetti, et al., CRYSTAL03 User's Manual,2003).
    [29]S. Piskunov, E. Heifets, R. I. Eglitis, and G. Borstel, Comput. Mater. Sci.29,165 (2004).
    [30]S. Dall'Olio, R. Dovesi, and R. Resta, Physical Review B 56,10105 (1997).
    [31]T. Bredow, K. Jug, and R. A. Evarestov, physica status solidi (b) 243, R10 (2006).
    [32]F. Cora, Molecular Physics:An International Journal at the Interface Between Chemistry and Physics 103,2483 (2005).
    [1]A. Fujishima and K. Honda, Nature 238,37 (1972).
    [2]O. R. Inderwildi and M. Kraft, ChemPhysChem 8,444 (2007).
    [3]T. L. Thompson and J. T. Yates, Chemical Reviews 106,4428 (2006).
    [4]U. Diebold, Surface Science Reports 48,53 (2003).
    [5]A. L. Linsebigler, G. Lu, and J. T. Yates, Chemical Reviews 95,735 (1995).
    [6]P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, and M.-H. Whangbo, Angewandte Chemie International Edition 47,7931 (2008).
    [7]P. Wang, B. Huang, Q. Zhang, et al., Chemistry-A European Journal 16,10042 (2010).
    [8]P. Wang, B. Huang, X. Zhang, et al., Chemistry-A European Journal 15,1821 (2009).
    [9]X. Bao, M. Muhler, B. Pettinger, R. Schlogl, and G. Ertl, Catalysis Letters 22,215 (1993).
    [10]M. I. Litter, Applied Catalysis B:Environmental 23,89 (1999).
    [11]A. Nagy and G. Mestl, Applied Catalysis A:General 188,337 (1999).
    [12]I. M. Arabatzis, T. Stergiopoulos, M. C. Bernard, D. Labou, S. G. Neophytides, and P. Falaras, Applied Catalysis B:Environmental 42,187 (2003).
    [13]T. Hirakawa and P. V. Kamat, Langmuir 20,5645 (2004).
    [14]T. Hirakawa and P. V. Kamat, Journal of the American Chemical Society 127,3928 (2005).
    [15]C. Hu, Y. Lan, J. Qu, X. Hu, and A. Wang, The Journal of Physical Chemistry B 110, 4066 (2006).
    [16]M. R. Elahifard, S. Rahimnejad, S. Haghighi, and M. R. Gholami, Journal of the American Chemical Society 129,9552 (2007).
    [17]M. K. Seery, R. George, P. Floris, and S. C. Pillai, Journal of Photochemistry and Photobiology A:Chemistry 189,258 (2007).
    [18]K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, Journal of the American Chemical Society 130,1676 (2008).
    [19]J.O. Hansen, E. Lira, P. Galliker, et al., The Journal of Physical Chemistry C 114, 16964 (2010).
    [20]M. Logar, B. t. Jancar, S. o. Sturm, and D. Suvorov, Langmuir 26,12215 (2010).
    [21]Q. Sun and Y. Xu, The Journal of Physical Chemistry C 114,18911 (2010).
    [22]D. Wodka, E. b. Bielariska, R. P. Socha, M. Elzbieciak-Wodka, J. Gurgul, P. Nowak, P. Warszynski, and I. Kumakiri, ACS Applied Materials & Interfaces 2, 1945 (2010).
    [23]J. Yu, J. Xiong, B. Cheng, and S. Liu, Applied Catalysis B:Environmental 60,211 (2005).
    [24]B. Cheng, Y. Le, and J. Yu, Journal of Hazardous Materials 177,971 (2010).
    [25]M. Xu, Y. Gao, E. M. Moreno, M. Kunst, M. Muhler, Y. Wang, H. Idriss, and C. Woll, Physical Review Letters 106,138302 (2011).
    [26]X. Q. Gong and A. Selloni, Journal of Physical Chemistry B 109,19560 (2005).
    [27]M. Gratzel, Nature 414,338 (2001).
    [28]G. S. Herman, M. R. Sievers, and Y. Gao, Physical Review Letters 84,3354 (2000).
    [29]M. Lazzeri and A. Selloni, Physical Review Letters 87,266105 (2001).
    [30]A. Vittadini, M. Casarin, and A. Selloni, Theoretical Chemistry Accounts 117,663 (2007).
    [31]A. Vittadini, A. Selloni, F. P. Rotzinger, and M. Gratzel, Physical Review Letters 81, 2954 (1998).
    [32]H. G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng, and G. Q. Lu, J. Am. Chem. Soc.131,4078 (2009).
    [33]E. Mete, O. Gulseren, and S. Ellialtioglu, Physical Review B 80,035422 (2009).
    [34]E. Mete, D. Uner, O. Gulseren, and S. Ellialtioglu, Physical Review B 79,125418 (2009).
    [35]Z. Zuo, W. Huang, P. Han, Z. Li, and J. Huang, J. Nat. Gas Chem.18,78 (2009).
    [36]J. Yu, L. Qi, and M. Jaroniec, The Journal of Physical Chemistry C 114,13118 (2010).
    [37]G. Kresse and J. Furthmuller, Computational Materials Science 6,15 (1996).
    [38]G. Kresse and J. Furthmuller, Physical Review B 54,11169 (1996).
    [39]G. Kresse and J. Hafner, Phys. Rev. B 47,558 (1993).
    [40]G. Kresse and D. Joubert, Physical Review B 59,1758 (1999).
    [41]E. Sanville, S. D. Kenny, R. Smith, and G. Henkelman, Journal of Computational Chemistry 28,899(2007).
    [42]W. Tang, E. Sanville, and G. Henkelman, Journal of Physics:Condensed Matter 21, 084204 (2009).
    [43]K. Yang, Y. Dai, and B. Huang, Physical Review B 76,195201 (2007).
    [1]A. Fujishima and K. Honda, Nature 238,37 (1972).
    [2]A. L Linsebigler, G. Lu, and J. T. Yates, Chemical Reviews 95,735 (1995).
    [3]U. Diebold, Surface Science Reports 48,53 (2003).
    [4]T. L Thompson and J. T. Yates, Chemical Reviews 106,4428 (2006).
    [5]X. Chen and S. S. Mao, Chemical Reviews 107,2891 (2007).
    [6]A. Fujishima, X. Zhang, and D. A. Tryk, Surface Science Reports 63,515 (2008).
    [7]Q. Wang, J. J. Li, and C. Z. Gu, The Journal of Physical Chemistry C 116,16864 (2012).
    [8]I. Paramasivam, H. Jha, N. Liu, and P. Schmuki, Small 8,3073 (2012).
    [9]M. Grandcolas, A. Louvet, N. Keller, and V. Keller, Angewandte Chemie 121,167 (2009).
    [10]H.-F. Zhuang, C.-J. Lin, Y.-K. Lai, L. Sun, and J. Li, Environmental Science & Technology 41,4735 (2007).
    [11]J. M. Macak, M. Zlamal, J. Krysa, and P. Schmuki, Small 3,300 (2007).
    [12]G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Letters 5,191 (2004).
    [13]M. Zhang, Z. Jin, J. Zhang, X. Guo, J. Yang, W. Li, X. Wang, and Z. Zhang, Journal of Molecular Catalysis A:Chemical 217,203 (2004).
    [14]G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Letters 6,215 (2005).
    [15]D. V. Bavykin, J. M. Friedrich, and F. C. Walsh, Advanced Materials 18,2807 (2006).
    [16]G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, and C. A. Grimes, Solar Energy Materials and Solar Cells 90,2011 (2006).
    [17]K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, Nano Letters 7,69 (2006).
    [18]D. Kuang, J. r. m. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, and M. Gratzel, ACS Nano 2,1113 (2008).
    [19]K. Shankar, J. Bandara, M. Paulose, H. Wietasch, O. K. Varghese, G. K. Mor, T. J. LaTempa, M. Thelakkat, and C. A. Grimes, Nano Letters 8,1654 (2008).
    [20]J. Y. Kim, J. H. Noh, K. Zhu, A. F. Halverson, N. R. Neale, S. Park, K. S. Hong, and A. J. Frank, ACS Nano 5,2647 (2011).
    [21]J. Yan and F. Zhou, Journal of Materials Chemistry 21,9406 (2011).
    [22]T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Langmuir 14,3160 (1998).
    [23]T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Advanced Materials 11,1307 (1999).
    [24]G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, and L M. Peng, Applied Physics Letters 79,3702 (2001).
    [25]S. M. Liu, L. M. Gan, L. H. Liu, W. D. Zhang, and H. C. Zeng, Chemistry of Materials 14,1391 (2002).
    [26]B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang, and N. Wang, Applied Physics Letters 82,281 (2003).
    [27]A. Nakahira, W. Kato, M. Tamai, T. Isshiki, K. Nishio, and H. Aritani, Journal of Materials Science 39,4239 (2004).
    [28]C.-C. Tsai and H. Teng, Chemistry of Materials 16,4352 (2004).
    [29]H. Kochkar, N. Lakhdhar, G. Berhault, M. Bausach, and A. Ghorbel, The Journal of Physical Chemistry C 113,1672 (2009).
    [30]C. N. R. Rao and A. Govindaraj, Advanced Materials 21,4208 (2009).
    [31]D. V. Bavykin, A. N. Kulak, and F. C. Walsh, Langmuir 27,5644 (2011).
    [32]C. L. Wong, Y. N. Tan, and A. R. Mohamed, Journal of Environmental Management 92,1669 (2011).
    [33]P. Dong, Y. Wang, B. Liu, L. Guo, Y. Huang, and S. Yin, Applied Surface Science 258,7052 (2012).
    [34]Y. R. Smith, B. Sarma, S. K. Mohanty, and M. Misra, ACS Applied Materials & Interfaces 4,5883 (2012).
    [35]S. So, K. Lee, and P. Schmuki, Journal of the American Chemical Society 134, 11316 (2012).
    [36]M. Kitano, E. Wada, K. Nakajima, S. Hayashi, S. Miyazaki, H. Kobayashi, and M. Hara, Chemistry of Materials (2013).
    [37]A. V. Bandura and R. A. Evarestov, Surface Science 603, L117 (2009).
    [38]A. N. Enyashin, T. A. Denisova, and A. L. Ivanovskii, Chemical Physics Letters 484, 44 (2009).
    [39]D. Szieberth, A. M. Ferrari, Y. Noel, and M. Ferrabone, Nanoscale 2,81 (2010).
    [40]H. Tokudome and M. Miyauchi, Chemistry Letters 33,1108 (2004).
    [41]A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, and P. Schmuki, Nano Letters 6,1080 (2006).
    [42]Z. Jiang, F. Yang, N. Luo, B. T. T. Chu, D. Sun, H. Shi, T. Xiao, and P. P. Edwards, Chemical Communications 0,6372 (2008).
    [43]J. Geng, D. Yang, J. Zhu, D. Chen, and Z. Jiang, Materials Research Bulletin 44, 146 (2009).
    [44]Y. Hirose, T. Mori, Y. Morishita, A. Itadani, T. Kudoh, T. Ohkubo, T. Matsuda, S. Kittaka, and Y. Kuroda, Inorganic Chemistry 50,9948 (2011).
    [45]H.-H. Ou, S.-L Lo, and C.-H. Liao, The Journal of Physical Chemistry C 115,4000 (2011).
    [46]R. P. Antony, T. Mathews, K. Panda, B. Sundaravel, S. Dash, and A. K. Tyagi, The Journal of Physical Chemistry C 116,16740 (2012).
    [47]C.-C. Hu, T.-C. Hsu, and L.-H. Kao, International Journal of Photoenergy 2012,1 (2012).
    [48]D. Bavykin, A. Lapkin, P. Plucinski, L. Torrente-Murciano, J. Friedrich, and F. Walsh, Top Catal 39,151 (2006).
    [49]F. Xiao, The Journal of Physical Chemistry C 116,16487 (2012).
    [50]S. Wongkasemjit, C. Piwnuan, H. Maneesuwan, T. Chaisuwan, and A. Luengnaruemitchai, Catalysis Communications 33,51 (2013).
    [51]S. Zhang, F. Peng, H. Wang, H. Yu, S. Zhang, J. Yang, and H. Zhao, Catalysis Communications 12,689 (2011).
    [52]M. Casarin, A. Vittadini, and A. Selloni, ACS Nano 3,317 (2009).
    [53]C. Dong, X. Li, and J. Qi, The Journal of Physical Chemistry C 115,20307 (2011).
    [54]A. N. Enyashin and A. L. Ivanovskii, The Journal of Physical Chemistry C 113, 20837 (2009).
    [55]J. N. Hart, S. C. Parker, and A. A. Lapkin, ACS Nano 3,3401 (2009).
    [56]T. He, M. Zhao, X. Zhang, et al., The Journal of Physical Chemistry C 113,13610 (2009).
    [57]F. M. Hossain, A. V. Evteev, I. V. Belova, J. Nowotny, and G. E. Murch, Computational Materials Science 48,854 (2010).
    [58]Q.-q. Meng, J.-g. Wang, Q. Xie, and X.-n. Li, The Journal of Physical Chemistry C 114,9251 (2010).
    [59]L. Miao, S. Tanemura, R. Huang, C. Y. Liu, C. M. Huang, and G. Xu, ACS Applied Materials & Interfaces 2,2355 (2010).
    [60]C. Ratanatawanate, Y. Tao, and K. J. Balkus, The Journal of Physical Chemistry C 113,10755 (2009).
    [61]J. Wang, L. Wang, L. Ma, J. Zhao, B. Wang, and G. Wang, Physica E:Low-dimensional Systems and Nanostructures 41,838 (2009).
    [62]G. Kresse and D. Joubert, Physical Review B 59,1758 (1999).
    [63]G. Kresse and J. Furthmuller, Physical Review B 54,11169 (1996).
    [64]G. Kresse and J. Furthmuller, Computational Materials Science 6,15 (1996).
    [65]E. Sanville, S. D. Kenny, R. Smith, and G. Henkelman, Journal of Computational Chemistry 28,899 (2007).
    [66]W. Tang, E. Sanville, and G. Henkelman, Journal of Physics:Condensed Matter 21, 084204 (2009).
    [67]E. Finazzi, C. Di Valentin, A. Selloni, and G. Pacchioni, The Journal of Physical Chemistry C 111,9275 (2007).
    [68]A. Nambu, J. Graciani, J. A. Rodriguez, Q. Wu, E. Fujita, and J. F. Sanz, J. Chem. Phys.125,8 (2006).
    [69]X.-Q. Gong, A. Selloni, O. Dulub, P. Jacobson, and U. Diebold, Journal of the American Chemical Society 130,370 (2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700