用户名: 密码: 验证码:
模拟电路测试诊断理论与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模拟电路是航空、国防和现代工业中电子设备的重要组成部分,随着电路集成度和复杂度的提高,现代电子设备对模拟电路的可靠性和测试性的要求越来越高。模拟电路故障测试诊断研究能够极大丰富现代电路理论体系,降低工程应用中因电路故障而带来的损失和维护成本,推动电子系统的故障预测和健康管理技术的发展。本文吸取传统方法优点的同时以可测性分析理论、分数阶时频分析理论、支持向量数据描述(Support Vector Data Description, SVDD)理论为基础,对模拟电路测试诊断中的测试激励选择、测试节点选择、故障特征提取和智能故障诊断方法进行研究。本文的主要贡献在于:
     (1)提出一种基于信号波形分解的测试激励生成方法。由于可选的测试激励信号及参数有无穷组合,理论上选择最优激励信号是一个NP难问题。为了降低测试激励选择的复杂度,提高待测电路故障特征的可诊性,研究了基于信号波形分解的最优测试激励生成技术。根据信号的傅立叶级数和小波基分解原理提出了两种任意波形激励信号的实现方法,将样本的最大类内类间距离作为故障可诊性的判断依据,由遗传算法进化得到最优激励信号。实验验证了新方法能够生成任意波形的激励信号,生成的测试激励信号可提高待测电路的故障可诊性,该方法适合线性电路和非线性电路的测试诊断。
     (2)提出一种基于模糊故障概率的测试节点选择方法。传统的测试节点选择方法中±0.7V的统一模糊区间并不能符合每类电路和故障的特性,而且单一的测点选择标准也不能保证得到全局最优的测试节点集合。为此,研究一种基于模糊故障概率的测试节点选择技术,根据故障样本的正态分布曲线设置故障模糊区间,融合模糊样本交叉曲线面积和隔离故障度的双重信息,选择最优测试节点集合。实验结果表明该方法在最少的测试节点下能诊断出最多的故障,并且模糊故障的误诊概率最低。
     (3)提出一种基于分数阶小波变换的故障特征提取方法。模拟电路中模糊故障的输出特征很相似,难以正确诊断和定位。为了提高故障特征的可区分性,研究一种基于分数阶小波变换的模拟电路故障特征提取技术。首先,将分数阶小波变换理解为在分数阶傅立叶域的小波变换,提出一种基于核分解的离散分数阶小波变换方法。然后,基于此离散方法,提出一种基于多阶分数阶小波变换的故障特征提取方法。实验结果表明新方法提取多阶分数阶空间中的故障信息能够增加故障特征的多样性和可区分性。
     (4)设计一种基于Vague集信息融合的VSVDD(Vague SVDD, VSVDD)分类算法,并应用到模拟电路故障诊断中。模拟电路是多类故障诊断问题,如果描述球体边界松弛,模糊故障会落入多个球体的交叉区域,无法正确诊断,为此提出一种基于Vague集信息融合的VSVDD的模拟电路故障诊断方法。根据在球体空间的分布为测试样本赋予真假隶属度值,并根据球体的大小为每个球体赋予权值,采用最小加权Vague集距离判断样本类别。实验结果表明新方法能够提高模拟电路故障诊断的精度,球体Vague集信息的融合能够改善球体分类器的性能。
Analog circuits are important parts of aerospace, defense and modern industry. With theintegration and the increasing scale of electronic devices, modern electronic equipments has higher andhigher requirement on the reliability and testability for analog circuits. The research of analog circuitfault testing diagnosis is of great significance for enriching the modern circuit theory system, andreducing the losses caused by circuit faults and electronic equipments maintenance, and promoting thetechnology development of electronic system fault prediction and health management. In addition toabsorb the advantages of traditional methods, several new methods, such as testability analysis theory,fractional signal processing, support vector data description, are used to diagnose analog circuit faults.This paper deals with four key technologies of test stimulus selection, test node selection, fault featureextraction and intelligent fault diagnosis method. The contributions of this thesis are that:
     (1) The thesis proposes a test stimulus generation method based on signal waveformdecomposition. Optimal test stimulus selection is a NP hard problem due to infinite options of testsignals and parameters in theory. In order to reduce the complexity of optimal test stimulus selectionand improve the testability of the circuits under test, this paper proposes a new stimulus selectionmethod based on signal waveform decomposition. Two approaches based on Fourier series expansionand wavelet decomposition are introduced to generate random signal. Moreover, the maximum distancewithin/between fault samples is the optimization object to select the optimal stimulus, which isevolved by genetic algorithm. The test results show that the proposed method is effective when isapplied to both of linear circuits and nonlinear circuits and can improve the testability of the circuitunder test.
     (2) The thesis proposes a node selection method based on fault fuzzy probability. For thetraditional fault dictionary method, the fault fuzzy interval is calculated based on the interval of±0.7V,and the test nodes are selected according to a single standard. However, this traditional method does notensure to obtain the global optimal test node set. In our paper, a test node selection method based onfault fuzzy probability is proposed. The fault fuzzy interval is calculated based on the normaldistribution curve of each class fault. The optimal test node set is selected according to the fusioninformation of normal curve area and fault isolation value. The test results show that the proposedmethod can diagnose most of faults with the least amount of test nodes and reduce the misdiagnosisradio of fuzzy faults.
     (3) The thesis proposes a fault feature extraction method based on fractional wavelet transform. The fuzzy faults with similar features for analog circuits are difficult to diagnose correctly. In order toimprove the testability of fault, a feature extraction method for analog circuit is introduced in this paper,which is based on fractional wavelet transform theory. Firstly, as fractional wavelet transform is a kindof wavelet transform in fractional Fourier domain, a new discrete algorithm is proposed. Then, a newmethod based on multiple-fractional wavelet transform is proposed to extract fault features of analogcircuits. The diagnosis results show that the extracted fault features in multiple fractional domains canimprove the testability of faults.
     (4) The thesis designs a VSVDD classifier method based on Vauge set information fusion. Theproposed method is applied to diagnose multiple-class faults for analog circuits. If the descriptionsphere boundary is not compact, fuzzy faults located in crossed spheres would be misdiagnosed. AVSVDD diagnosis method is introduced based on vague set information fusion. Each test sample isassigned a truth membership value and a false membership value according to the sample spacedistribution. Moreover, each description sphere is assigned a weight value based on the size of sphere.Then, the test samples are diagnosed through the decision rule of minimum weight vague distance. Thediagnosis results improve that this method can improves the performance of sphere classification foranalog circuit fault diagnosis.
引文
[1]L. Milor, V. Visvanathan. Detection of catastrophic faults in analog integrated circuits[J]. IEEETransactions on Computer-Aided Design,1989,8(189):114-130
    [2]G. Devarayanadurg, M. Soma. Analytical fault modeling and static test generation for analogICs[C]. IEEE/ACM International Conference on Computer-Aided Design, California, UnitedStates,1994,44-47
    [3] N. M. Vichare, M. G. Pecht. Prognostics and health management of electronics[J]. IEEE Transactionson Components and Packaging Technologies,2006,29(1):222-229
    [4]曾声奎, M. G. Pecht,吴际.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报,2005,26(5):626-632
    [5]T. Golonek, J. Rutkowski. Genetic algorithm based method for optimal analog test pointsselection[J]. IEEE Transactions on Circuits and Systems II: Express Briefs,2007,54(2):117-121
    [6] J. A. Starzyk, L. Dong, L. Zhi Hong, et al. Entropy-based optimum test points selection for analogfault dictionary techniques[J]. IEEE Transactions on Instrumentation and Measurement,2004,53(3):754-761
    [7]T. Golonek, D. Grzechca, J. Rutkowski. Optimization of PWL analog testing excitation by meansof genetic algorithm[C]. International Conference on Signals and Electronic Systems, Cracow,Poland,2008,541-544
    [8]M. Aminian, F. Aminian. Neural-network based analog-circuit fault diagnosis using wavelettransform as preprocessor[J]. IEEE Transactions on Circuits and Systems II: Analog and DigitalSignal Processing,2000,47(2):151-156
    [9]C. Alippi, M. Catelani, A. Fort, et al. Automated selection of test frequencies for fault diagnosis inanalog electronic circuits[J]. IEEE Transactions on Instrumentation and Measurement,2005,54(3):1033-1044
    [10]M. Slamani, B. Kaminska. Multifrequency testability analysis for analog circuits[C]. IEEEProceedings of VLSI Test Symposium, New Jersey, USA,1994:54-59
    [11]M. Slamani, B. Kaminska. Fault observability analysis of analog circuits in frequency domain[C].IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, New York,USA,1996,43(2):134-139
    [12]C. Alippi, M. Catelani, A. Fort, et al. SBT soft fault diagnosis in analog electronic circuits: asensitivity-based approach by randomized algorithms[J]. IEEE Transactions on Instrumentationand Measurement,2002,51(5):1116-1125
    [13]S. D. Huynh, K. Seongwon, et al. Automatic analog test signal generation using multifrequencyanalysis[C]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,New York, USA,1999,46(5):565~576
    [14]T. Wang, T. J. Brazil. Volterra-mapping-based behavioral modeling of nonlinear circuits andsystems for high frequencies[J]. IEEE Transactions on Microwave Theory and Techniques,2003,51(5):1433-1440
    [15]B. Bernhard. Generation of optimum test stimuli for nonlinear analog circuits using nonlinearprogramming and time-domain sensitivities[C]. IEEE International Conference on Design,Automation and Test in Europe, Munich, Germany,2001:603-608
    [16]殷时蓉,陈光礻禹,谢永乐.基于遗传算法的模拟电路故障诊断激励优化[J].测控技术,2007:26(6):20-22
    [17]殷时蓉,陈光礻禹,谢永乐.应用Elman网络优化非线性模拟电路测试激励[J].电子科技大学学报,2008,37(4):574-577
    [18]B. Burdiek. The qualitative form of optimum transient test signals for analog circuits derivedform control theory methods[C]. IEEE International Symposium on Circuits and Systems,Arizona, USA,2002,1:157-160
    [19]罗慧,王友仁,林华,姜媛媛.任意周期激励函数的模拟电路测试激励优化设计[J].电子学报,2011,39(8):1950-1954
    [20]罗慧,王友仁,崔江.基于故障可诊性的模拟电路多音正弦测试信号进化设计[J].宇航学报,2011,32(9):2051-2056
    [21]蔡一兵,蔡金燕.一种基于贝叶斯决策理论的模糊集划分方法[J].计算机学报,1998,21(11):1053-1056
    [22]K. K. Pinjala, C. K. Bruce. An approach for selection of test points for analog fault diagnosis[C].IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, San Francisco,CA, USA,2003:278-294
    [23]K. S. V. L. Varaprasad, L. M. Patnaik, H. S. Jamadagni, V. K. Agrawal. A new ATPG techniquefor testing analog circuits[J]. IEEE Transactions on Computer-Aided Design of IntegratedCircuits and Systems,2007,26(1):189-196
    [24] S. J. Seyyed Mahdavi, K. Mohammadi. Evolutionary derivation of optimal test sets for neuralnetwork based analog and mixed signal circuits fault diagnosis approach[J]. MicroelectronicsReliability,2009,49(2):199-208
    [25] V. C. Prasad, N. S. C. Babu. Selection of test points for analog fault diagnosis in dictionaryapproach[J]. IEEE Transactions on Instrumentation and Measurement,2000,49(6):1289-1297
    [26] J. S. Augusto, C. Almeida. A tool for test point selection and single fault diagnosis in linearanalog circuits[C]. International Conference on Design of Systems and Integrated Systems,Barcelona, Spain,2006:1-6
    [27] X. Varghese, J. H. Williams, D. R. Towill. Computer-aided feature selection for enhanced analogsystem fault location[J]. Pattern Recognition,1978,10:265-280
    [28]P. M. Lin, Y. S. Elcherif. Analogue circuits fault dictionary-new approaches andimplementation[J]. International Journal of Circuit Theory and Applications,1985,13:149-172
    [29] W. Hochwald, J. D. Bastian. A dc approach for analog fault dictionary determination[J]. IEEETransactions on Circuits and Systems,1979,26:523-529
    [30]孙秀斌,陈光礻禹,谢永乐.模拟集成电路的测试节点选择[J].电子与信息学报,2004,26(4):645-650
    [31]汪鹏,杨士元.模拟电路故障诊断测试节点优选新算法[J].计算机学报,2006,29(10):1780-1785
    [32]杨成林,田书林,龙兵等.基于启发式图搜索的最小测点集优选新算法[J].仪器仪表学报,2008,29(12):2497-2503
    [33] C. L. Yang, S. L. Tian, B. Long. Application of heuristic graph search to test point selection foranalog fault dictionary techniques[J]. IEEE Transactions on Instrumentation and Measurement,2009,58(7):2145-2158
    [34]蒋荣华,王厚军,龙兵.基于离散粒子群算法的测试选择[J].电子测量与仪器学报,2008,22(2):11-15
    [35]G. N. Stenbakken, T. M. Souders.Test point selection and testability measure via QR factorizationof linear models[J]. IEEE Transaction on Instrumentation and Measurement,1987,36(6):406-410
    [36]J. Spaandonk, T. Kevenaar. Iterative test-point selection for analog circuits[C]. Proceedings of14th VLSI Test Symposium, Princeton, New Jersey,1996:66-71
    [37] C. J. Zhang, G. He, S. H. Liang. Test point selection of analog circuits based on fuzzy theory andant colony algorithm[C]. IEEE Conference on Autotestcon, Salt Lake, UT,2008:8-11
    [38] C. L. Yang, S. L. Tian, B. Long, C. Fang. A novel test point selection method for analog faultdictionary techniques[J]. Journal of Electronic Testing,2010,26(5):523-534
    [39] F. Grasso, A. Luchetta, S. Manetti, M. C. Piccirilli. A method for the automatic selection of testfrequencies in analog fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement,2007,56(7):2322-2329
    [40] M. Hu, H. Wang, G. Hu, S. Y. Yang. Soft fault diagnosis for analog circuits based on slope faultfeature and BP neural networks[J]. Tsinghua Science and Technology,2007,12(1):26-31
    [41] L.S. Milor. A tutorial introduction to research on analog and mixed-signal circuit testing[J]. IEEETransactions on Circuits System II: Analog Digital Signal Process,1998,45(10):1389-1407
    [42] M. Slamani, B. Kaminska. Analog circuit fault diagnosis based on sensitivity computation andfunctional testing[J]. IEEE Transactions on Design and Test of Computers,1992,9(1):30-39
    [43]M. Slamani, B. Kaminska. Fault observability analysis of analog circuits in frequency domain[J].IEEE Transactions on Circuits System II: Analog Digital Signal Process,1996,43(2):134-139
    [44] M. Aminian, F. Aminian. A modular fault-diagnostic system for analog electronic circuits usingneural networks with wavelet transform as a preprocessor[J]. IEEE Transactions onInstrumentation and Measurement,2007,56(5):1546-1554
    [45] F. Aminian, M. Aminian. Fault diagnosis of nonlinear analog circuits using neural networkswith wavelet and Fourier transforms as preprocessors[J]. Journal of Electronic Testing: Theoryand Applications,2001,17(6):471-481
    [46] L. F. Yuan, Y. G. He, J. Y. Huang, Y. C. Sun. A new neural-network-based fault diagnosisapproach for analog circuits by using kurtosis and entropy as a preprocessor[J]. IEEETransactions on Instrumentation and Measurement,2010,59(3):586-595
    [47]侯青剑,王宏力.一种基于EMD的模拟电路故障特征提取方法[J].系统工程与电子技术,2009,31(6):1525-1528
    [48]罗慧,王友仁,崔江.基于最优分数阶傅里叶变换的模拟电路故障特征提取新方法[J].仪器仪表学报,2009,30(5):997-1001
    [49]罗慧,王友仁,崔江.基于分数阶Hilbert变换的模拟电路双层故障特征提取方法[J].电工技术学报,2010,25(6):150-154
    [50] J. Kovacevic, M. Vetterli. Perfect reconstruction filter banks with rational sampling factors[J].IEEE Transactions on Signal Processing,1993,41(6):2047-2066
    [51]D. Labat. Recent advances in wavelet analyses: a review of concepts[J]. Journal of Hydrology,2005,314(1-4):275-288
    [52] H. M. Ozaktas, U. Sumbul. Interpolating between periodicity and discreteness through thefractional Fourier transform[J]. IEEE Transactions on Signal Processing,2006,54(11):4233-4243
    [53]陶然,邓兵,王越.分数阶Fourier变换及其应用[M].北京:清华大学出版社,2009
    [54] S. N. Sharma, R. Saxena, S. C. Saxena. Tuning of FIR filter transition bandwidth using fractionalFourier transform[J]. Signal Processing,2007,87:3147-3154
    [55] N. Singh, A. Sinha. Optical image encryption using fractional Fourier transform and chaos[J].Optics and Laser in Engineering,2008,2(46):117-123
    [56] D. Grzechca, T. Golonek, J. Rutkowski. Analog fault AC dictionary creation-the fuzzy setapproach[C]. IEEE International Symposium on Circuits and Systems, Island of Kos, Greece,2006:5744-5747
    [57]陈圣俭,洪炳容,王月芳等.可诊断容差模拟电路软故障的新故障字典法[J].电子学报,2002,28(2):127-129
    [58]彭敏放,何怡刚.容差模拟电路的模糊软故障字典法诊断[J].湖南大学学报,2005,32(1):25-28
    [59]彭敏放,何怡刚.一种新的容差模拟电路故障屏蔽字典法[J].微电子学与计算机,2004,21(6):199-202
    [60] L. Rapisarda, R. A. Decarlo. Analog multi-frequency fault diagnosis [J].IEEE Transaction onCircuits and Systems,1983,30(3):223-234
    [61] J. W. Bandler, R. M. Biernacki, A. E. Salama, J. A. Starzyk. Fault isolation in linear analoguecircuits using the L1norm[C]. IEEE international symposium on Circuits and Systems, Rome,1982:114-1143
    [62] Z. Guo, J. Savir. Coefficient-based test of parametric faults in analog circuits[J]. IEEETransactions on Instrumentation and Measurement,2006,55(1):150-157
    [63] Y. He. A neural based L1norm optimization approach for diagnosis of nonlinear circuits withtolerance[C]. IEE Proceedings on Circuits, Devices and Systems, United Kingdom,2001,148(4):223-228
    [64] Z. A. Garczarczyk. Polynomial fault diagnosis of linear analog circuits[C]. The18th EuropeanConference on Circuit Theory and Design, Seville, Spain,2007:842-845
    [65] A. Pradhan, R. Vemuri. Fast analog circuit synthesis using sensitivity based near neighborsearches[C]. Conference on Design, Automation and Test in Europe, New York, USA,2008,3:523-526
    [66] T. Long, H. J. Wang, B. Long. A classical parameter identification method and a modern testgeneration algorithm[J]. Circuits System Signal Process,2011,30:391-412
    [67] Z. Huang, C. Lin, R. Liu. Node-fault diagnosis and a design of testability[J]. IEEE Transactionson Circuits and Systems,1983,30(5):257-265
    [68] J. W. Bandler, A. E. Salama. Fault diagnosis of analog circuits[C]. Proceedings of the IEEE,1985,73(8):1279-1325
    [69] M. Catelani, G. Fedi, S. Giraldi, et al. A new symbolic approach to the fault diagnosis of analogcircuits[C]. Instrumentation and Measurement Technology Conference, Brussels, Belgium,1996,2:1182-1189
    [70] G. Fedi, A. Liberatore, A. Luchetta, et al. A symbolic approach to the fault location in analogcircuits[C]. IEEE International Symposium on Circuits and Systems, GA, USA,1996,4:810-813
    [71] Y. He, Y. Tan, Y. Sun. A neural network approach for fault diagnosis of large-scale analogcircuits[C]. IEEE International Symposium on Circuits and Systems, Arizona, USA,2002,1:153-156
    [72] A. Salama, J. Starzyk, J. Bandler. A unified decomposition approach for fault location in largeanalog networks[J]. IEEE Transactions on Circuits and Systems,1984,31(7):609-621
    [73]张洪波,何怡刚,周炎淘等.主成分分析与概率神经网络在模拟电路故障诊断中的应用[J].计算机控制与测量,2008,16(12):1789-1827
    [74]金瑜,陈光礻禹,刘红.基于小波神经网络的模拟电路故障诊断[J].测控技术,2007,26(7):64-69
    [75]禹旺兵,彭良玉,禹恒州.基于小波分析和神经网络的模拟电路故障诊断方法[J].微电子学与计算机,2007,24(7):43-46
    [76]韩晓静,王友仁,崔江.基于小波径向基网络的电力电子电路故障诊断[J].微电子学,2007,36:1-3
    [77]李春明,王勇.基于小波神经网络的模拟电路故障诊断[J].微计算机信息,2007,23(1):204-205
    [78]金瑜,陈光礻禹,刘红.用多小波神经网络诊断模拟电路故障的方法[J],计算机辅助设计与图形学学报,2007,19(10):1247-1251
    [79]崔洪亮,李艾华.基于模糊BP神经网络的模拟电路实时故障诊断[J].传感器与微系统,2008,27(1):27-29
    [80]陈龙,于盛林.遗传神经网络在模拟电路故障诊断中的应用[J].计算机仿真,2007,24(9):293-296
    [81]崔江,王友仁,刘权.基于高阶谱与支持向量机的电力电子电路故障诊断技术[J].中国电机工程学报,2007,27(10):62-65
    [82]胡清,王荣杰,詹宜巨.基于支持向量机的电力电子电路故障诊断技术[J].中国电机工程学报,2008,28(12):107-111
    [83]孙永奎,陈光礻禹,李辉.基于自适应小波分解和SVM的模拟电路故障诊断[J].仪器仪表学报,2008,29(10):2105-2109
    [84]唐静远,师奕兵,张伟.基于支持向量机集成的模拟电路故障诊断[J].仪器仪表学报,2008,29(6):1216-1220
    [85]唐静远,师奕兵,姜丁.基于SVDD和D-S理论的模拟电路故障诊断[J].测控技术,2008,27(9):56-86
    [86] X. B. Mao, L. H. Wang, C. X. Li. SVM classifier for analog fault diagnosis using fractalfeatures[C]. Second International Symposium on Intelligent Information Technology Application,Cotonou, Benin,2008,12:553-557
    [87] J. Y. Tang, Y. B. Shi, L. F. Zhou, W. Zhang. Analog circuit fault diagnosis using Ada Boost andSVM[C]. International Conference on Communications, Circuits and Systems, Xiamen, China.2008,5:1184-1187
    [88] Z. H. Zhao, G. X. Xu, J. L. Xiao, B. B. Liu. Analog circuits fault diagnosis based on AdaptiveFuzzy Neural Network[C].Control and Decision Conference, Cancun, Mexico.2008,7:473-477
    [89] K. Mohammadi, S. J. Seyyed Mahdavi. On improving training time of neural networks in mixedsignal circuit fault diagnosis applications[J]. Microelectronics Reliability,2008,48(5):781-793
    [90] M. A. E.Gamal, M. D. A. Mohamed. Ensembles of neural networks for fault diagnosis in analogcircuits[J]. Journal of Electronic Testing,2007,24(4):323-339
    [91] R. Salat, S. Osowski. Analog filter diagnosis using support vector machine[C]. EuropeanConference on Circuit Theory and Design, Krakow,2003:421-424
    [92] K. Siwek, S. Osowski, T. Markiewicz. Support vector machine for fault diagnosis in electricalcircuits[C]. Nordic Signal Processing Symposium, Reykjavik, Iceland,2006:342-345
    [93] J. Cui, Y. Wang. A novel approach of analog circuit fault diagnosis using support vectormachines classifier[J]. Measurement,2011,44(1):281-289
    [94] P. Jantos, D. Grzechca, T. Golonek. Heuristic methods to test frequencies optimization foranalogue circuit diagnosis[J]. Bulletin of the Polish Academy of Sciences Technical Sciences,2008,56(1):29-38
    [95]V. Namias. The fractional order Fourier transform and its application to quantum mechanics[J].IMA Journal of Applied Mathematics,1980,25:241-265
    [96]H. M. Ozaktas, B. Barshan. Convolution, filtering, and multiplexing in fractional Fourier domainsand their relation to chirp and wavelet transforms[J]. Journal of the Optical Society of America A,1993,11(2):547-559
    [97] D. Mendlovic, H. M. Ozaktas, A. W. Lohmann. Self Fourier functions and fractional Fouriertransform[J]. Optics Communications,1994,105:36-38
    [98] S. C. Pei, J. J. Ding. Fractional cosine, sine and Hartley transforms[J]. IEEE Transactions onSignal Processing,2002,7(50):1661-1680
    [99] S. C. Pei, M. H. Yeh. Discrete fractional Hilbert transform[J]. IEEE Transactions on Circuits andSystems-II: Analog and Digital Signal Processing,2000,11(47):1307-1311
    [100] S. C. Pei, C. C. Tseng, M. H. Yeh, J. J. Shyu. Discrete fractional Hartley and Fouriertransforms[J]. IEEE Transactions on Circuits and Systems-II: Analog and Digital SignalProcessing,1998,6(45):665-675
    [101] A. Akan, Y. Cekic. A fractional Gabor expansion[J]. Journal of the Franklin Institute,2003,340:391-397
    [102]陈喆,王宏禹,邱天爽.基于分数阶傅立叶变换的模糊函数的研究[J].信号处理,2003,19(6):499-502
    [103] D. Mendlovic, Z. Zalevsky, D. Mas, et al. Fractional wavelet transform[J]. Applied Optics,1997,36(20):4801-4806
    [104]H. Ying. The fractional wave packet transform[J]. Multidimensional Systems and SignalProcessing,1998,4(9):399-402
    [105]M. Unser, T. Blu. Construction of fractional spline wavelet bases[M]. Bellingham: SPIE-INTSoc Optical Engineering,1999
    [106]M. Unser, T. Blu. Fractional splines and wavelets[J]. Siam Review,2000,42(1):43-67
    [107]T. Blu, M. Unser. The fractional spline wavelet transform: definition end implementation[C].IEEE International Conference on Acoustics, Speech, and Signal Processing, Istanbul, Turkey,2000,6:512-515
    [108]L. F. Chen, D. M. Zhao. Optical image encryption based on fractional wavelet transform[J].Optics Communications,2005,254(4-6):361-367
    [109]L. F. Chen, D. M. Zhao. Color image encoding in dual fractional Fourier-wavelet domain withrandom Phases[J]. Optics Communications,2009,282(17):3433-3438
    [110]L.H. Bao, L. F. Chen, D. M Zhao. Optical encryption with cascaded fractional wavelettransforms[J]. Journal of Zhejiang University (Science),2006,7(8):1431-1435
    [111] A. Bhagatji, N. K. Nishcahl, A. K. Gupta, et al. Extended fractional wavelet joint transformcorrelator[J]. Optics Communications,2008,281(1):44-48
    [112]黄思齐.分数阶小波变换[J].测控技术.2009,28(2):12-16
    [113] S. C. Pei, M. H. Yeh, C. C. Tseng. Discrete fractional Fourier transform based on orthogonalprojections[J]. IEEE Transaction on Signal Processing,1999,47(5):1335-1347
    [114]L. B. Almeida. The fractional Fourier transform and time-frequency representations[J]. IEEETransactions on Signal Processing,1994,42(11):3084-3091
    [115]H. Luo, Y. R. Wang, J. Cui. A SVDD approach of fuzzy classification for analog circuit faultdiagnosis with FWT as preprocessor[J]. Expert Systems with Applications,2011,38(8):10554-10561
    [116] R. D. Sunil, Z. Jila, B. Satyendra, et al. Testing analog and mixed-signal circuits with built-inhardware-a new approach[J]. IEEE Transactions on Instrumentations and Measurement,2007,56(3):840-855
    [117] B. Kaminska, K. Arabi, I. Bell, et al. Analog and mixed-signal benchmark circuits[C].International Testing Conference, Washington, USA,1997,(1-6):183-190
    [118] F. Aminian, M. Aminian, H. W. Collins. Analog fault diagnosis of actual circuits using neuralnetworks[J]. IEEE Transactions on Instrumentation and Measurement,2002,51(3):544-549
    [119]王成华,王友仁,胡志忠.现代电子技术基础(模拟部分)[M].北京:北京航空航天大学出版社,2005
    [120]D. Tax, R. Duin. Support vector domain description[J]. Pattern Recognition Letter,1999,20(11-13):1191-1199
    [121]D. Tax, R. Duin. Support vector data description[J]. Machine Learning,2004,54(1):45-66
    [122]D. Tax, P. Juszczak. Kernel whitening for one-class classification[J]. International Journal ofPattern Recognition and Artificial Intelligence,2003,17(3):333-347
    [123]K. Sjostrand, M. S. Hansen, H. B. Larsson, R. Larsen. A path algorithm for the support vectordomain description and its application to medical imaging[J]. Medical Image Analysis,2007,11(5):417-428
    [124]M. M. Jordi, B. Lorenzo, C. G. Valls. A support vector domain description approach tosupervised classification of remote sensing images[J]. IEEE Transactions on Geoscience andRemote Sensing,2007,45(8):2683-2692
    [125]S. W. Lee, J. Park, S. W. Lee. Low resolution face recognition based on support vector datadescription[J]. Pattern Recognition,2006,39(9):1809-1812
    [126]Y. H. Liu, S. H. Lin, Y. L. Hsueh, M. J. Lee. Automatic target defect identification forTFT-LCD array process inspection using kernel FCM-based fuzzy SVDD ensemble[J]. ExpertSystems with Applications,2009,36(2):1978-1998
    [127] H. G. Bu, J. Wang, X. B. Huang. Fabric defect detection based on multiple fractal features andsupport vector data description[J]. Engineering Applications of Artificial Intelligence,2009,22(2):224-235
    [128]张庆,徐光华,王晶等.基于支持向量域描述的多故障诊断动态模型[J].西安交通大学学报,2007,41(5):593-597
    [129] M. Zhu, Y. Wang, S. Chen, et al. Sphere-structured support vector machines for multi-classpattern recognition[J]. Lecture Notes in Computer Science,2003,2639:589-593
    [130]朱孝开,杨德贵.基于推广能力测度的多类SVDD模式识别方法[J].电子学报,2009,37(3):464-469
    [131]D. Lee, J. Lee. Domain described support vector classifier for multi-classification problems[J].Pattern Recognition,2007,40(1):41-51
    [132]J. Wang, P. Neskovic, N. C. Leon. Bayes classification based on minimum bounding spheres[J].Neurocomputing,2007,70(4-6):801-808
    [133] Y. Zhang, X. D. Liu, F. Di. Xie. Fault classifier of rotating machinery based on weightedsupport vector data description[J]. Expert Systems with Applications,2009,36(4):7928-7932
    [134] Y. Zhang, Z. X. Chi. A Fuzzy support vector classifier based on Bayesian optimization[J]. FuzzyOptimization and Decision Making,2008,7(1):75-86
    [135] W. S. Kang, J. Y. Choi. Domain density description for multiclass pattern classification withreduced computational load[J]. Pattern Recognition2008,41(6):1997-2009
    [136] Y. Zhang, X. Y. Wei, H. F. Jiang. One-class classifier based on SBT for analog circuit faultdiagnosis[J]. Measurement,2008,41(4):371-380
    [137]W. L. Gau, D. J. Buehrer. Vague sets[J]. IEEE Transactions on Systems, Man and Cybemetics1993,23(2):610-614
    [138]H. Bustince, P. Burillo. Vague sets are intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems,1996,79(3):403-405
    [139] S. M. Chen. Measures of similarity between vague sets[J]. Fuzzy Sets and Systems,1995,74(2):217-223
    [140] D. H. Hong, C. H. Choi. Multicriteria fuzzy decision-making problems based on vague settheory[J]. Fuzzy Sets and Systems,2000,114(1):103-113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700