用户名: 密码: 验证码:
β-TcP/pluronicF-127复合支架结合BMSCs修复兔关节骨软骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:凋亡相关基因在骨关节炎软骨中的表达及意义目的:研究骨关节炎中细胞凋亡情况,凋亡相关基因(FAS、BCL-2、caspases3)等在骨关节炎中的表达及意义,从而在一定程度阐明骨关节炎的发病机理。方法:通过Hulth法建立兔关节炎模型取得软骨标本,免疫组化S-P法检测凋亡相关基因(FAS、BCL-2、caspases3)在骨性关节炎软骨细胞中的表达情况,TUNEL法检测骨性关节炎软骨细胞凋亡情况,并探讨凋亡相关基因(FAS、BCL-2、caspases3)的表达与软骨细胞凋亡程度之间的相关性。结果:术后8周时关节软骨呈现典型的0A病理特征。实验组和对照组关节软骨细胞凋亡指数的差异具有显著性(P<0.05);在软骨细胞中FAS蛋白表达实验组阳性率高于对照组,差异具有显著性(P<0.05);实验组关节软骨中软骨细胞凋亡程度与FAS蛋白的表达呈正相关,差异具有显著性(P<0.05);在关节软骨细胞中bcl-2蛋白的表达实验组阳性率低于对照组,但差异没有显著性(P>0.05);实验组关节软骨中软骨细胞凋亡程度与bcl-2蛋白的表达呈负相关,差异具有显著性(P<0.05); caspase-3在实验组的软骨细胞阳性率高于对照组,差异具有显著性(P<0.01);实验组关节软骨中软骨细胞凋亡程度与caspase3的表达呈正相关,差异具有显著性(p<0.05);结论:1.Hulth法可制作较好的骨关节炎动物模型。2.关节软骨细胞的凋亡明显增加可能是关节炎形成的重要原因之一。3.骨关节炎中FAS,BCL-2,caspase3等凋亡相关基因的表达与细胞凋亡程度具有明显相关性,表明表达其与骨关节炎有密切关系。
     第二部分兔骨髓间充质干细胞的分离、培养、鉴定及体外诱导分化
     目的:探索兔骨髓间充质干细胞的分离、培养、鉴定及体外诱导分化的方法,研究其体外增殖,分化能力。探讨其作为骨组织工程种子细胞的可行性和应用价值。方法:采用密度梯度离心与全骨髓培养结合的方法分离、纯化兔骨髓间充质干细胞,体外培养;以流式细胞仪检测BMSCs的表面抗原表达;在相差显微镜下观察细胞形态并绘制生长曲线;分别体外诱导第3代细胞向软骨细胞和骨细胞分化,对诱导分化为骨细胞进行碱性磷酸酶染色、VonKossa染色和I型胶原和骨钙素免疫组化染色检测鉴定,对诱导分化为软骨细胞进行甲苯胺蓝染色、番红O染色和Ⅱ型胶原免疫组化染色检测鉴定。结果:经密度梯度离心结合全骨髓培养法分离所得到的细胞形态均一,呈长梭形或纺锤形。BMSCs增殖能力活跃,流式细胞仪检测BMSCs显示CD105,CD44,表达阳性,CD34和CD45表达为阴性。成骨诱导培养后,可见碱性磷酸酶染色、VonKossa染色、I型胶原和骨钙素免疫组化染色阳性;向软骨细胞诱导分化后,细胞甲苯胺蓝染色、番红0染色和Ⅱ型胶原免疫组化染色为阳性。结论:密度梯度分离法与全骨髓培养法结合能理想的分离、纯化BMSCs; BMSCs在体外具有良好的增殖潜能,BMSCs在诱导剂作用下能表现出成骨细胞和软骨细胞生物学特性,是组织工程理想的种子细胞。
     第三部分BMscs/β-TcP/pluronicF-127复合支架修复兔关节软骨缺损的实验研究
     目的:研究β-TcP/pluronicF-127复合支架结合BMSCs修复兔膝关节骨软骨缺损的效果,探讨β-TcP/pluronicF-127复合支架做为组织工程支架承载BMSCs修复骨软骨缺损的可行性。方法:分离培养兔自体MSCs,将36只健康新西兰大白兔并随机分为三组(A组、B组、C组),于股骨髁关节面制备关节软骨缺损模型(每孔直径5mm、深度4-5mm)。A组、B组关节缺损处分别植入BMscs/β-TcP/pluronicF-127.、BMscs/β-TcP复合支架,C组为空白组不作处理。术后3、6个月分别取材,进行缺损区组织学、组织化学和免疫组织化学分析。A组、B组和正常关节标本进行生物力学测试。结果:A组能形成丰富的透明软骨样修复组织,与周围组织整合良好;B组以不成熟透明软骨;C组无修复组织。总的修复效果A组最理想,C组最差。生物力学测试得出: B组和C组标本的蠕变时间和应力松弛时候较正常关节均缩短,杨氏模量较正常关节偏小,但差异均无统计学意义。结论: BMSCs是良好的组织工程种子细胞,β-TcP/pluronicF-127复合支架是良好的生物工程支架,能承载BMSCs至缺损区修复骨软骨缺损缺损,修复效果理想。BMscs/β-TcP/pluronicF-127复合支架材料构建组织工程软骨,是—种修复关节软骨缺损行之有效的方法。
Part Ⅰ Significance and expression of apoptosis control genes in OAcartilage
     objective:To investigate the expression and significance of apoptosis control genes(FAS、BCL-2、caspases3) in articular Cartilage of osteoarthritic animal model and study therelation of the
     expressions with apoptosis of articular chondroeytes cell.Method:Specimens of thearticular cartilage obtained from osteoarthritic animal model established through Hulthmethod in rabbits. Immunohistochemistry was used to detect the expression of apoptosiscontrol genes(FAS、BCL-2、caspases3) in articular cartilage of animal model.TUNELassay was used to detect the apoptosis of the articular chondrocytes cell.The relation of theexpression of apoptosis control genes(FAS、BCL-2、caspases3) with apoptosis of articularchondrocytes cell was studied.results: After eight weeks in operation, the tyPicalhistoPathologic character of aPoPtosis morphology was seen in the articular cartilage.There was statistically significant difference of Al between the osteoarthritic and normalcartilage grouPs(P<0.05). The Positive exPression rate of Fas in osteoarthriticchondrocytes were higher than that in normal chondrocytes,and there was statisticallysignificant difference between chondrocytes of osteoarthritic and normal groups(P<0.05),there was a Positive correlation between degrees of the exPression of FAS andchondrocytes apoptosis in osteoarthritic articular cartilage(P<0.05);The Positive expressionrate of Bcl-2Protein in osteoarthritic chondrocytes was lower than that in normal chondrocytes,but there was no statistically significant difference between the twogroups(P>0.05). There was a negative correlation between degree of the expression ofBcl-2and chondrocytes apoptosis osteoarthritic articular cartilage (P<0.05); The Positiveexpression rate of caspase3in osteoarthritic chondrocytes were higher than that in normalchondrocytes,and there were statistieally significant difference between the two groups(P<0.01).There was a Positive correlation between degrees of the exPression of caspase3and chondrocytes apoptosis in osteoarthritic articular cartilage(P<0.05).Conclusion:1.Hulth method can establishes a ideal model of osteoarthritis.2.The apoptosisof chondrocytes in OA was higher than that in normal. It might be one of the importantcausations of OA.3.There was a significant correlation between degrees of the exPressionof FAS,BCL-2,caspase3and chondrocytes apoptosis in osteoarthritic articular cartilage.Itdemonstrated that the abnormal expression of FAS,BCL-2,caspase3closely related to thebiological behaveior of OA.
     PartⅡ.The isolation,cultivation,identification and differentiation ofrabbit bone mesenchymal stem cells in vitro
     objective:To exPlore the method of isolating,cultivating and identifieation of rabbit bonemesenchymal stem cells (BMSCs),and study their capacity of Proliferation and Potentialof differentiation in vitro. To investigate potential applicability of the MSCs as the seedcells in tissue engineering.Method:Rabbit BMSCs of bone marrow was isolated by densitygradient centrifugation and bone marrow culture,cultured in vitro. hMSCs were analyzedby the flow cytometry to detect the surface antigens. Cellular morphologies were observedunder phase-contrast microscope and the growth curve was drawn accordingly.The3rdPassage cell was induced osteogenesis and chondrogenesis respectively,then alkalinePhosPhatase and VonKossa staining and immunocytochemical stain of collegenⅠ and osteocalcin were used to examined the osteogenesis cells and toluidin blue and safranin ostaining and immunocytochemical stain of collegen Ⅱwere used to examined thechondrogenesis cells.Results: The morphous of BMSCs obtained by density gradientcentrifugation and bone marrow culture are spindle-shaped or Polygon-shape uniformly,The MSCs proliferated rapidly in in vitro culture. Flow cytometry analysis showed that invitro expanded hMSCs expressed mesenchymal cell marker, including CD105、CD44、anddidn’t express CD34、CD45. The staining of the alkaline PhosPhatase, VonLKossa,collegen Ⅰa nd osteocalcin were positive after osteoinduction. VonLKossa staining showedthe calcium nodule. For chondrogenesis cells,the toluidin blue Staining、safranln o stainingand Collegen Ⅱi mmunocytochemical stain was Positive.Conclusion:Density gradientcentrifugation combined with bone marrow culture can isolate and purify the BMSCsideally. BMSCs have satisfactory Proliferation Potentiality in vitro,Under the effect ofinducer,BMSCs can represent specific cyte PhenotyPe of chondrocytes or osteocytes,which are ideal seed cells of tissue engineering.
     Part Ⅲ. Experimental Study on the Repairing Effect of BMscs/β-TcP/pluronicF-127Composite Scaffold on Rabbit Articular OsteoChondralDefects
     Objective:To investigate the reparation effect of osteochondral defect withβ-TcP/pluronicF-127Composite Scaffold combined with BMSCs. ExPlore the feasibilitythatβ-TcP/pluronicF-127Composite Scaffold,loaded with BMSCs,work as tissueengineering scaffold to restore the osteochondral defect.Method: MSCs were isolated andexpanded from autologous rabbit bone marrow.36Newzealand White Rabbits wererandomly divided into three grouPs(A,B,C group). Full-thickness articular osteochondraldefects(5mm in diameter and4-5mm in depth) were created mechanically in the femoral trochlea of the rabbits. BMscs/β-TcP/pluronicF-127、BMscs/β-TcP Composite Scaffoldwere respectively transplanted into the defects of A group and B group,the C groupgroup is blank and underwent no special treatment. Samples were extracted3and6monthsafter operation for histological,histo-chemical and immuno-histo-chemical analysis.Biomechanics test was Proeeed to examine the sample of A grouP,B grouP and normaljoint.Result:The specimens harvested from A group demonstrated a hyaline Cartilageformation, the new formed cartilage integrated satisfactorily with Adjacent normalcartilage;The B group demonstrated a immature Hyaline cartilage. The C grouPdemonstrated no significant repairing effect. In the Whole,the restore effect of A grouP isthe best,and C grouP is the worst. Biomechanics test show: The creep time and stressrelaxation time of A group and B group is shorter than the normal joint,and young,smodulus is smaller than the normal joint but there is no significance difference betweenthem. Conclusion:The BMSCs are satisfactory seed cells of tissue engineering,Theβ-TcP/pluronicF-127Composite Scaffold is a satisfactory scaffold,which can carry BMSCs tothe defect area and restore the osteochondral defect. The restore effect is ideal,Tissueengineering cartilage using BMscs/β-TcP/pluronicF-127composite Scaffold may be aPromising way for the treatment of osteochondral defects.
引文
[1] Ochi M·C linical results of transplantation of tissue-engineered cartilage and futuredirection of cartilage repair-novel approach with minimally invasiveprocedure[J]·Yonsei Med J,2004,45(Suppl):45-74·
    [2] Luis A,Solchaga P D,Victor M,etal·Cartilage regeneration using principles of Tissueengineering [J]·Clin Orthop Res2001,391(suppl):161·
    [3]Marlovits S, Hombauer M, Truppe M, et al. Changes in the ratio of type and type-IIcollagen expression during monolayer culture of human chon drocytes [J]·J BoneJoint Surg (Br),2004,86(5):286-295.
    [4] Ringe J,Kaps C,Schmitt B,et al·Porcine mesenchymal stem cells·Induction of distinctmesenchymal cell lineages[J]·Cell Tissue Res,2002,307(3):321
    [5]LiX, Jin L, Balian G, etal· Demineralized bone matrix gelatin as scaffold forosteochondral tissue engineering[J]·Biomaterials,2006,27(11):2426-2433·
    [6]Derek B,James L,Steven P,et al.Fibrochondrogenesis of Free Intraarticular SmallIntestinal Submucosa Scaffolds.Tissue Eng.2004;10:129-137.
    [1]青少汀,葛宝丰,徐印坎.实用骨科学第二版.北京:人民军医出版社.2001:1192一1205
    [2] Johnson EO,Charchandi A,Babis GC,et al. Apoptosis in osteoarthritis:morphology,mechanisms,and potential means for therapeutic intervention[J]Surg Orthop Adv,2008,17(3):147-152.
    [3]Kim HA,Lee YJ,Seong SC,etal.Apoptotic chondrocyte death in human osteoarthritis.JRheumatol. Journal of Rheumatology,2000;27(2):455一462
    [4] Kim HA, Blanco FJ. Cell death and apoptosis in osteoarthritic cartilage.Curr DrugTargets,2007,8(2):333-345.
    [5]Jan H,Wjsman,Richard R,etal. A new method to detect apoptosis in Paraffin sectionsin situ end labeling of fragmented DNA.J Histochem Cytochem,1993,411(l):1-2
    [6] Lee SW,Song YS,Shin SH,et al. Cilostazol protects rat chondrocytes against nitricoxide induced apoptosis in vitro and prevents cartilage destruction in a rat model ofosteoarthritis[J]. Arthritis Rheum,2008,58(3):790-800.
    [7]Nakagawa T, Zhu H,Morishma N,et al·Caspase-12mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta〔J〕Nature,2000;403(6765):98-103·
    [8]刘陶文。凋亡调控基因Bcl-2家簇研究进展。生物化学与生物物理进展,1999;26(3):216-218.
    [9]Lavrik IN. Regulation of death receptor-induced apoptosis induced via CD95/FAS andother death receptors. Mol Biol (Mosk),2011,45(1):173-179.
    [10]Kim HA,Kim YH,Song YW,Facilitation of fas mediated apoptosis of humanchondrocytes by the Proteasome inhibitor and actinomycin D.J Rheumatol.2003Mar;30(3):550-558
    [11]Shakibaei M,Schulze-Tanzil G,John T,etal. Curcumin Protects human chondrocytesfrom IL-1l beta-induced inhibition of collagen tyPe Ⅱ and betal-integrin exPressionand activation of caspase-3:an immunomorphological study.Ann Anat.2005Nov;187(5-6):487-497
    [12]Matsuo M,Nishida K,Yoshida A.Expression of caspase-3and-9relevant to cartilagedestruction and chondrocyte apoptosis in human osteoarthritic cartilage.Acta MedOkayama.2001;55(6):333-340
    [13].彭黎明,王曾礼.细胞凋亡的基础与临床.北京:人民卫生出版社.2000;38-68
    [14] Dennis Lee,Scott A,Jerry L.Potent and Selective Nonpeptide Inhibitors of capases3and7Inhibit Apoptosis and Maintain Cell Functionality.Biol. Chem.2000;275(21):16007-16014.
    [15] Willis SN,Chen L,Dewson G,et al. Proapoptotic Bak is sequestered by Mcl-1andBcl-xL,but not Bcl-2until displaced by BH32only proteins[J]. Genes Dev,2005,19(11):1294-1305.
    [16] Wang SJ,Guo X,Zuo H,et al. Chondrocyte apoptosis and expression of Bcl-2,Bax, Fas, and iNOS in articular cartilage in patients with Kashin-Beckdisease[J]. Rheumatology,2006,33(3):615-619.
    [17]Hahn P,Lindsten T,Ying G.ProaPtotic Bcl-2Family Members,Bax and Bak,AreEssential for DeveloPmental Photoreceptor Apoptosis.Invest.OPhthalmol.Vis.Sci.2003;44:3598-3605
    [18]Erlacher L,Maier R,Ullrieh R,etal. Differential exPression of the Protooncogenebcl-2in normal and osteoalthritic human articular cartilage.J Rheuxnatol.1995;22:926-931
    [1]YeM,Wang XJ,Zhang YH,etal.Therapeutic effects of differentiated bone marrowstromal cell transPlantation on rat models of Parkinson,s disease.Parkinsonism RelatDisord.2007;13(l):44-49.
    [2]Pei M,He F,Boyee BM,Kish VL.RePair of full-thickness femoral condyle cartilagedefects using allogeneic synovial cell-engineered tissue constructs.OsteoarthritisCartilage.2009;17(6):714-722.
    [3]JenkinsDD, YangGP,功renzHP, etal.Tissue engineering and regenerativemedicine.Clin Plast Surg,2003,30:581一588.
    [4]Smith LA,Liu X,Ma PX.Tissue Engineering with Nano-Fibrous Scaffolds.SoftMatter.2008;4(11):2144-2149.
    [5]VinatierC,GauthierO,FatimiA,etal.An injectable cellulose-based hydrogel for thetransfer of autologous nasal chondrocytes in articular cartilage defects.BiotechnolBioeng.2009;102(4):1259-1267.
    [6]MarlovitsS,HombauerM, TruppeM, etal. Changes in the ratio of type-I and type-IIcollagen expression during monolayer culture of human chondrocytes [J]·J Bone JointSurg(Br),2004,86(5):286-295.
    [7]Song HX,LiFB,ShenHL,etal.Repairing articular cartilage defects withtissue-engineering cartilage in rabbits. Chin J Traumatol.2006;9(5):266-271.
    [8]Chen WH,LaiWF,DengWP,etal.Tissue engineered cartilage using human articularchondrocytes immortalized by HPV-16E6and E7genes. J Biomed Mater ResA.2006;76(3):512-520.
    [9]Hwang NS, Kim MS, Sampattavanich S, etal. Effects of three-dimensional culture andgrowth factors on the chondrogenic differentiation of murine embryonic stemcells[J]·Stem Cells,2006,24(2):284-291·
    [10]Segers VF,Lee RT.Stem-cell theraPy for cardiac disease.Nature.2008;451(7181):937一942.
    [11]Zhou XZ,LeungVY,DongQR, et al. Mesenchymal stem cell-based repair of articularcartilage with polyglycolic acid-hydroxyapatite biphasic scaffold[J]·Int J Artif Organs,2008,31(6):480-489·
    [12]Danisovic L, Varga l, Polak S, etal.Morphology of invitro exPanded humanmusele-derived stem cells.Biomed PaP Med Fac Univ Palacky Olomouc CzechRePub.2008:152(2):235一238,
    [13]Katayama R,Wakitani1S,TsumakiN, et al. Repair of articular cartilage defects inrabbitsusingCDMP1gene-transfected autologous mesenchymal cells derived frombone marrow[J]·Rheumatology(Oxford),2004,43(8):980-985.
    [14]Pittenger MF,Mackay AM,Beek SC,etal.Multilineage Potential of adult humanmesenchymal stem cells.scienee.1999:284(5411):143-147.
    [15]Gronthos S,Zannettino AC,Hay SJ,etal.Molecular and cellular characterisation ofhighly Purified stromal stem cells derived from human bone marrow.JCellSci.2003;116(9):1827-1835.
    [16]Kolf CM,Cho E,Tuan RS.Mesenehymal stromal cells.Biology of adult mesenchymalstem cells:Regulation of niche, self-renewal and differentiation. ArthritisResTher.2007:9(l):204-213.
    [17]Delorme B, Chateauvieux S, Charbord P.The concept of mesenehymal stemcells[J].Regen Med.2006;1(4):497-509.
    [18] Jaiswal N, Haynesworth SE, Caplan AI, et al. Osteogenic Differentiation of Purified,Culture-Expanded Human Mesenchymal Stem Cells In Vitro. J Cell Biochem1997;64(2):295一312
    [19]Allampall K, Chakraborty J,Robinson J.Effect of ascorbic acid and growth factors oncollagen metabolism of flex or ve tionaculum cells from individuals with and withoutcarpal tunnel syndrome[J].Occup Environ Med,2000,42(3):251-259.
    [20] Beresford JN, Graves SE, Smoothy CA. Formation of mineralized nodules by bonederived cells in vitro: A model of bone formation. Am J Med Genet1993;45(2):163一78
    [21]Lin HT,Tarng YW,Chen YC,etal.Using human Plasma suPPlemented medium tocultiVate human bone marrow-derived mesenchymal stem cell and evaluation of itsmultiPlelineage Potential[J」.TransPlant Proc.2005;37(10):4504-4505.
    [22] Stein GS, Lian JB. Molecular mechanisms mediating proliferation/differentiationinterrelationships during progressive development of the osteoblast phenotype[J]Endocr Rev,1993,14:424-442
    [23]Kafienah W, Mistry S, Dickinson SC, etal.Three-dimensional cartilage tissueengineering using adult stem cells from osteoarthritis Patients.ArthritisRheum.2007;56(1):177-187.
    [24]Kulyk WM,Franklin JL,Hoffiman LM.Sox9exPression during chondrogenesis inmicreromass cultures of embryonic limb mesenc hyme[J」.ExP CellRes.2000;255(2):327-332.
    [25]Schaefer DJ,Klemt C,Zhang XH,etal.Tissue engineering with mesenehymal stemcells for cartilage and bone regeneration[J].Chirurg.2000;71(9):1001-1008.
    [1].Steinwachs MR,Guggi T,Kreuz PC.Marrow stimulation techniques. Injury.2008;39(SuPPIl):S26一31.
    [2].Mainil-Varlet P, Aigner T, Brittberg M,,etal.International Cartilage RePairSociety.Histological assessment of cartilage rePair: a rePort by the HistologyEndPoint Committee of the International Cartilage RePair Society(ICRS).J BoneJoint Surg Am.2003;85-A SuPPI2:45-57.
    [3]Knlyt MC,Dhert WJ,Oner FC,etal.Analysis of ectoPic and orthotoPic bone formationin cell-based tissue-engineered constructs in goats.Biomaterials2007;28(10):1798-1805.
    [4] Luis A,Solchaga P D,VictorM,etal·Cartilage regeneration using principles of Tissueengineering [J]·ClinOrthop Res,2001,391(suppl):161·
    [5]Cancedda R,Dozin B,Giannoni P,et al.Tissue engineering and cell therapyof cartilageand bone.Matrix Biol,2003,22(1):81~91
    [6] Kuo CK,Li WJ,Mauck Robert L,et al.Cartilage tissue engineering:its potential anduses.Curr Opin Rheumatol,2006,18(1):64~73
    [7].Sage A,Chang AA,Sehumacher BL,Sah RL,Watson D.Cartilage outgrowth in fibrinscaffolds. Am J Rhinol Allergy.2009;23(5):486-491.
    [8]VinatierC,GauthierO,FatimiA,etal.An injectable cellulose-based hydrogel for thetransfer of autologous nasal chondrocytes in articular cartilage defects.BiotechnolBioeng.2009;102(4):1259-1267.
    [9]Marlovits S,Hombauer M,Truppe M,et al.Changes in the ratio of type ⅠandtypeⅡ collagen expression during momolayer culture of humanchondrocytes.J BoneJoint Surg(Br),2004,86(5):286~295
    [10]Song HX,LiFB,ShenHL,etal.Repairing articular cartilage defects withtissue-engineering cartilage in rabbits. Chin J Traumatol.2006;9(5):266-271.
    [11] Keller G.Embryonic stem cell differentiation:emergence of a new era inbiology andmedicine.Genes Dev,2005,19:1129~1155
    [12]Hwang NS, Kim MS, Sampattavanich S, etal. Effects of three-dimensional culture andgrowth factors on the chondrogenic differentiation of murine embryonic stemcells[J]·Stem Cells,2006,24(2):284-291·
    [13].Segers VF, Lee RT.Stem-cell theraPy for cardiac disease. Nature.2008;451(7181):937-942.
    [14]Zhou XZ,LeungVY,DongQR, et al. Mesenchymal stem cell-based repair of articularcartilage with polyglycolic acid-hydroxyapatite biphasic scaffold[J]·Int J Artif Organs,2008,31(6):480-489·
    [15]LI J,Mareddy S,Tan DM,etal.Minimal Common Osteoehondrocytic DifferentiationMedium for the Osteogenic and Chondrogenic Differentiation of Bone MarrowStromal Cells in the Construction of Osteochondral Graft.Tissue Eng partA.2009;15(9):2481-2490.
    [16]Katayama R,Wakitani1S,TsumakiN, etal. Repair of articular cartilage defects inrabbitsusingCDMP1gene-transfected autologous mesenchymal cells derived frombone marrow[J]·Rheumatology(Oxford),2004,43(8):980-985.
    [17]Baksh D,Song L,Tuan RS.Adult mesenchymal stem cells: characterization,differentiation,and application in cell and gene therapy. J Cell MolMed,2004,8:301-316
    [18] Peterson L,BrittbergM,KivirantaI,etal·Autologous chondrocyte transplantation.Biomechanics and long-term durability [J]·Am J Sports Med,2002,30(1):2·
    [19]EndresM,Neumann K, Schroder SE, et al.Human polymer-based cartilage grafts forthe regeneration of articular cartilage defects[J]·Tissue Cell2007,39(5):293-301·
    [20]Chou CH,ChengWT,KuoTF,etal.Fibrin glue mixed with gelatin/hyaluronicacid/chondroitin-6-sulfate tri-copolymer for articular cartilage tissue engineering:theresults of real-time polymerase chain reaction.J Biomed Mater Res A.2007;82(3):757-767.
    [21]Ahn JH, Lee TH, Oh JS, et al.A Novel Hyaluronate-Ateloeollagenβ-TCP-HydroxyaPatite BIphasic Scaffold for the RePair of Osteochondral Defects inRabbits.Tissue Eng Part A.2009;15(9):2595-2604.
    [22]Guo X,wang C,DuanC,etal.RePair of osteochondral defects with autologouschondrocytes Seeded onto bioceramic scaffold in sheep.Tissue Eng.2004Nov-Dec;10(11-12):1830-40.
    [23]Lu JX,Flautre B,Anselme K,etal. Study of Porous interconnections of hioceramicon cellular rehabilitation in vitro and in vivo. Bioceramics,1997,10:583一586
    [24]吴俊,孙俊英.组织工程支架材料研究进展〔J〕.中国矫形外科杂志,2004,12(3、4):282-4
    [25]王会才,张震宇,辛伟光.微重力三维动态诱导骨髓间充质干细胞复合可注射型支架材料Pluronic F-127修复关节软骨缺损[J].中国组织工程研究与临床康复,2007,11(14):2609-2612.
    [1] Redman SN,Oldfield SF, ArcherCW, et al. Current strategies for articular cartilagerepair[J]·European Cells and Materials,2005,14(9):23.
    [2]Salk RS,Chang TJ,D'Costa WF,et al.Sodium hyaluronate in the treatment ofosteoarthritis of the ankle:a controlled,randomized,double blind pilot study.J BoneJoint Surg Am,2006,88(2):295-302.
    [3]BIAN L, KAPLUM M, WILLIAMS DY, et al. Influence of chondroitin sulfate on thebiochemical mechanical and frictional properties of cartilage explants in long-termculture[J]. Biomech.2008,6(2):105-106.
    [4]Kamali F,Bayat M,Torkaman G,et al.The therapeutic effect of low level laser onrepair of osteochondral defects in rabbit knee.J PhotochemPhotobiol B,2007,88(1):1115.
    [5]Wang WW,Vega KI,Klein TJ,et al.Continuous passive motion applied to whole jointsstimulates chondrocyte biosynthesis of PRG4.Osteoarthritis and Cartilage,2007,15(5):566574.
    [6]JACKSON L L, TAHIRI K, MONTEMBAULT A, et al. Cell therapy in cartilagerepair:cellular and molecular basees[J]. Soc Biol.(fre)2008,202(4):313-321.
    [7]REVELL C M, ATHANASIOU K A. Success rates and immunologic responses ofautogenic and xenogenic treatments to repair articular cartilage defects[J]. Tissue EngPart B Rev.2008,14(8):1141-1143.
    [8]Steadman JR,Rodkey WG,Rodrigo JJ.Microfracture:surgical technique andrehabilitation to treat chondral defects.C1inOrthopRelat Res,2001,391(Suppl):S362369.
    [9]PRIDIE J, NETTER P, FOURNEL-GIGLEUX S, et al. Agrecan and articularcartilage:assessment of glycosyltransferases for the restoration of cartilage matrix inosteoarthritis[J]. SocBiol,2008,202(4):281-288.
    [10]Gudas R,Kalesinskas RJ,Kimtys V,et al.A prospective randomized clinical studyof mosaic osteochondral autologous transplantation versus microfracture for thetreatment of osteochondral defects in the knee joint in young athletes.Arthroscopy,2005,21:1066-1075.
    [11]JOHNSON L L, HE F, WEI L, et al. Melatonin enhances cartilage matrix synthesis byporcine articular chondrocytes[J]. Pineal Res.2008,10(9):102-103.
    [12]JOHNSON LL, Arthroscopic abrasion arthroplasty: a review [J]. ClinOrthop,2003,391:306-317.
    [13] Steadman JR, MillerBS, Karas SC, et al. The microfracture technique in the treatmentof full-thickness chondral lesions of the knee in National Football League players[J]·JKnee Surg,2003,16(2):83-86.
    [14]Henderson I, Tuy B, Oakes B. Reoperation after autologous chondrocyteimplantation.Indications and findings.J Bone Joint Surg Br,2004,86(2):205-211.
    [15]Rosenberger RE, Gomoll AH, Bryant T, etal. Repair of large chondral defects of theknee with autologous chondrocyte implantation in patients45years or older[J]·Am JSports Med,2008,36(12):2336-2344·
    [16]Grande DA,Breitbart AS,Mason J,et al.Cartilage tissue engineering:currentlimitations and solutions.ClinOrthopRelat Res,1999,367(Suppl):S176S185.
    [17]Wakitani S,Mitsuoka T,Nakamura N,et a1.Autologous bone marrow stromal celltransplantation for repair of full thickness articular cartilage defects in humanpatellae:two case reports.Cell Transplant,2004,13(5):595600.
    [18]Wakitani S,Aoki H,Harada Y,et a1.Embryonic stem cells form articular cartilage,not teratomas,in osteochondral defects of rat joints.Cell Transplantation,2004,13(4):331336.
    [19] Togo T, Utani A, Naitoh M, et al. Identification of cartilage progenitor cells in theadult ear perichondrium: utilization for cartilage reconstruction[J]·Lab Invest,2006,86(5):445-457·
    [20]Slynarski K,Deszczynski J,Karpinski J.Fresh bone marrow and periosteumtransplantation for cartilage defects of the knee.Transplant Proc,2006,38(1):318319.
    [21]Hangody L, Duska Z, K觃rp觃ti Z. Autologousosteochondralmosaicplasty.Techniques in Knee Surgery,2002,1(1):110.
    [22]Aubin PP,Cheah HK,Davis AM,et al.Long term follow up of fresh femoralosteochondral allograft for post traumatic knee defects.ClinOrthopRelat Res,2001,391(Supp1):S318S327.
    [23] Luis A,Solchaga P D,VictorM,etal·Cartilage regeneration using principles of Tissueengineering [J]·ClinOrthop Res,2001,391(suppl):161·
    [24]VinatierC,GauthierO,FatimiA,etal.An injectable cellulose-based hydrogel for thetransfer of autologous nasal chondrocytes in articular cartilage defects.BiotechnolBioeng.2009;102(4):1259-1267.
    [25]Krishnan SP, Skinner JA,CarringtonRW,etal.Collagen-covered autologouschondrocyte implantation for osteochondritisdissecans of the knee:two-to seven-yearresults.J Bone Joint Surg Br.2006;88(2):203-205.
    [26]MarlovitsS,HombauerM, TruppeM, etal. Changes in the ratio of type-I and type-IIcollagen expression during monolayer culture of human chondrocytes [J]·J Bone JointSurg(Br),2004,86(5):286-295.
    [27]Song HX,LiFB,ShenHL,etal.Repairing articular cartilage defects withtissue-engineering cartilage in rabbits. Chin J Traumatol.2006;9(5):266-271.
    [28]Chen WH,LaiWF,DengWP,etal.Tissue engineered cartilage using human articularchondrocytes immortalized by HPV-16E6and E7genes. J Biomed Mater ResA.2006;76(3):512-520.
    [29]Hwang NS, Kim MS, Sampattavanich S, etal. Effects of three-dimensional culture andgrowth factors on the chondrogenic differentiation of murine embryonic stemcells[J]·Stem Cells,2006,24(2):284-291·
    [30] RingeJ,KapsC,SchmittB,etal·Porcinemesenchymal stem cells·Induction of distinctmesenchymal cell lineages[J]·Cel Tissue Res,2002,307(3):321·
    [31]Zhou XZ,LeungVY,DongQR, et al. Mesenchymal stem cell-based repair of articularcartilage with polyglycolic acid-hydroxyapatite biphasic scaffold[J]·Int J Artif Organs,2008,31(6):480-489·
    [32]MasuokaK,AsazumaT,HattoriH,etal.Tissue engineering of articular cartilage withautologous cultured adipose tissue-derived stromal cells using atelocollagenhoneycomb-shaped scaffold with a membrane sealing in rabbits.Biomed Mater Res BAppl Biomater.2006;79(1):25-34.
    [33]Katayama R,Wakitani1S,TsumakiN, et al. Repair of articular cartilage defects inrabbitsusingCDMP1gene-transfected autologous mesenchymal cells derived frombone marrow[J]·Rheumatology(Oxford),2004,43(8):980-985.
    [34] Peterson L,BrittbergM,KivirantaI,etal·Autologous chondrocytetransplantation·Biomechanics and long-term durability [J]·Am J SportsMed,2002,30(1):2·
    [35]Li X, Jin L, Balian G, etal· Demineralized bone matrix gelatin as scaffold forosteochondral tissue engineering[J]·Biomaterials,2006,27(11):2426-2433·
    [36]Geoffrey R,JeffreyM,DawnM,etal.Chondrogenic Potential of Adipose Tissue-DerivedStromal Cells in Vitro and in vivo. BiochemBiophys ResCommun.2002;290(2):763-769.
    [37]Kim IY, SeoSJ,Moon HS, etal·Chitosan and its derivatives for tissue engineeringapplications[J]·BiotechnolAdv,2008,26(1):1-21·
    [38]Chou CH,ChengWT,KuoTF,etal.Fibrin glue mixed with gelatin/hyaluronicacid/chondroitin-6-sulfate tri-copolymer for articular cartilage tissue engineering: theresults of real-time polymerase chain reaction.J Biomed Mater ResA.2007;82(3):757-767.
    [39]ChristophelJJ,Chang JS, Park SS. Transplanted tissue-engineered cartilage[J]·ArchFacial PlastSurg,2006,8(2):117-122·
    [40]Di Carlo BB,HuJC,GrossT,etal.Biomaterial effects in articular cartilage tissueengineering using polyglycolic acid, a novel marine origin biomaterial, IGF-I,andTGF-beta1.Proc InstMechEng[H].2009;223(1):63-73.
    [41]王会才,张震宇,辛伟光.微重力三维动态诱导骨髓间充质干细胞复合可注射型支架材料Pluronic F-127修复关节软骨缺损[J].中国组织工程研究与临床康复,2007,11(14):2609-2612.
    [42]EndresM,Neumann K, Schroder SE, et al.Human polymer-based cartilage grafts forthe regeneration of articular cartilage defects[J]·Tissue Cell2007,39(5):293-301·
    [43]Gabler F, FrauenschuhS,Ringe J, etal.Emulsion-based synthesis ofPLGA-microspheres for the in vitro expansion of porcine chondrocytes[J].BiomolEng,2007,24(5):515-520·
    [44]Huang HP,MouSS,MaAD.prearation of a composite memrane with collagen scaffoldmaterial for tissue culture.(Chinese).Di Yi Jun yi Da xue Xuebao.2004;24(7):832-833.
    [45]Chou CH,ChengWT,KuoTF,etal.Fibrin glue mixed with gelatin/hyaluronicacid/chondroitin-6-sulfate tri-copolymer for articular cartilage tissue engineering:theresults of real-time polymerase chain reaction.J Biomed Mater ResA.2007;82(3):757-767.
    [46]USGRAVE D S, FU F H, HURARD J. Gene therapy and tissue engineering inorthopaedic surgery [J], J Am, AcadOrthopSurg,2002,10(1):6.
    [47]Benito MJ,Veale DJ, Fitzgerald O,et al. Synovial tissue inflammation in early and lateosteoarthritis[J].Ann Rheum Dis,2005,64(9):1263-1267.
    [48]Jacques C,Gosset M, BerenbaumF,etal. The role of IL-1and IL-1Ra in jointinflammation and cartilage degradation [J]. VitamHorm,2006,74:371-403.
    [49]Murakami S, Lefebvre V, Crombrugge B. Potent inhibition of the master chondrogenicfactor Sox9gene by inteleukin-1and tumor necrosis factor-alpha[J]. BiolChem,2000,275(5):3687-3692.
    [50]Naghmeh R, Eline S. Association of the risk of osteoarthritis wit high innateproduction of interleukin-1βand low innate production of interleukin-10ex vivo.Uponlipopolysaccharide stimulation[J].Arthritis Rheum,2005,52(5):1443-1450.
    [51]Van Roon JA, Lafeber FP, Bijlsma JW. Synergistic activity of interleukin-4andInterleukin-10in suppression of inflammation and joint destruction in rheumatoidarthritis [J]. Arthritis Rheum,2001,44(1):3-12.
    [52] GoldringSR,Goldring MB. The role of cytokines in cartilage matrix degeneration inosteoarthritis.ClinOrthopRelatRes,2004,427(Suppl):27-36.
    [53] Futani H, Okayama A, Matsui K. Relation between interleukin-18and PGE2insynovial fluid of osteoarthritis:A potential therapeutic target of cartilage degradation.J Immunother,2002,25(Suppl1):61-64.
    [54] Lee D,LongSA,Adams JL, et a.l Potent and selective nonpeptide inhibitors of caspases3and7inhibit apoptosis and maintain cell functionality. J BiolChem,2000,275:16007-16014.
    [55] RiquetRB,LaiW-FT, Birkhead JR, eta.l Suppression of type Ⅰcolagen gene expressionby prostaglandins in fibroblasts ismediated at the transcriptional level. Mol Med,2000,6:705-719.
    [56]Abramson SB, Amin A. Blocking the effects of IL-1in rheumatoid arthritis protectsbone and cartilage[J]. Rheumatology,2002,41(9):972-980.
    [57]Pola E, Papaleo P, Pola R, et a.l Interleukin-6gene polymorphism and risk ofosteoarthritis of the hip:A case-control study. Osteoarthritis Cartilage,2005,13:1025-1028.
    [58] Rowan AD, Koshy PJ, Shingleton WD, etal. Synergistic effects of glycoprotein130binding cytokines in combination with interleukin-1on cartilage collagen breakdown.Arthritis Rheum,2001,44:1620-1632.
    [59] BresnihanB.The safety and efficacy of interleukin-1receptor antagonist in thetreatment of rheumatoid arthritis.Sem in Arthritis Rheum,2001,30(Suppl2):17-20.
    [60] Lubberts E, Joosten LA, van den BersselaarL, etal Intra-articular IL-10gene transferregulates the expression of collagen-induced arthritis(CIA) in the knee and ipsilateralpaw. ClinExpImmunol2000,120:375-383.
    [61] Fernandes JC, Pelletier JM, Pelletier JP. The role of cytokines in osteoarthritispathophysiology.Biorheology,2002,39:237-246.
    [62]Morales TI, Joyce ME, SobelME,etal.Transforming growth factorbeta in calf articularcartilage organ cultures: synthesis and distribution[J].Arch BiochemBiophys,1991,288(2):397-405.
    [63]TchetinaEV,AntoniouJ,TanzerM, et al Transforming growth factor-β2suppressescollagen cleavage in cultured human osteoarthritic cartilage, reduces expression ofgenes associated with chondrocyte hypertrophy and degradation, and increasesprostaglandin E2Production.Am J Patho,l2006,168:131-140.
    [64]Davies LC,BlainEJ,GilbertSJ,etal.The potential of IGF-1and TGFbeta1forpromoting"adult"articular cartilage repair:an in vitro study.TissueEng PartA.2008;14(7):1251-1261.
    [65]Zhang M, Zhou Q,LiangQQ,etal. IGF-1regulation of type Ⅱc ollagen and MMP-13expression in rat endplate chondrocytes via distinct signaling pathways[J].Osteoarthritis Cartilage,2009,17(1):100-106.
    [66]LaflammeC,Rouabhia M. Effect of BMP-2and BMP-7homodimers and a mixture ofBMP-2/BMP-7homodimers on osteoblast adhesion and growth following culture ona colagenscaffold[J]. Biomed Mater,2008,3(1):15008.
    [67]NakaseT,MiyajiT,TomitaT, etal. Localization of bone morphogenetic protein-2inhuman osteoarthritic cartilage and osteophyte. Osteoarthritis Cartilage,2003,11:278-284.
    [68]BobaczK,UllrichR,AmoyoL,et al. Stimulatory effects of distinct members of the bonemorphogenetic protein family on ligament fibroblasts[J].Ann Rheum Dis,2006,65(2):169-177.
    [69]LoeserRF,PacioneCA,ChubinskayaS.The combination of insulin-like growth factor1and osteogenic protein1promotes increased survival of and matrix synthesis bynormal and osteoarthritic human articular chondrocytes.ArthritisRheum.2003;48:2188–2196.
    [70]TayAG,FarhadiJ,SuetterlinR,etal.Cellyield,proliferation,andpostexpansiondifferentiation capacity of human ear,nasal,and rib chondrocytes. TissueEng.2004;10:762-770.
    [71]龙华,袁华,马保安,等.腺病毒介导TGF-β1及BMP-7基因共表达感染骨髓基质干细胞修复兔关节软骨缺损[J].中国骨与关节损伤杂志,2008,23(6):471-474.
    [72]MadryH,KaulG,CucchiariniM,etal.Enhanced repair of articular cartilage defects invivo by transplanted chondrocytes overexpressing insulin-like growth factorI(IGF-I).Gene Ther.2005;12:1171-1179.
    [73]SchulzRM, BaderA·Cartilage tissue engineering and bioreactor systems for thecultivation and stimulation of chondrocytes[J]. Eur Biophys,2007,36(4-5):539-568·
    [74] Vunjak N G,SearbyN,De L J,etal·Microgravity studies of cells and tissues[J]·Ann N YAcad Sci,2002,974:504·
    [75]MartinezI,Elvenes J, Olsen R, etal· Redifferentiation of in vitro expandedadultarticularchondrocytesby combining the hanging-drop cultivation method withhypoxic environment[J]·Cell Transplant,2008,17(8):987-996·

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700