用户名: 密码: 验证码:
基于液质联用技术的大小蓟多组分分析与黄酮类成分的药物代谢动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大蓟为菊科蓟属植物蓟Cirsium joponicum DC.的干燥地上部分,小蓟为菊科蓟属植物刺儿菜Cirsium setosum(Willd.)MB.的干燥地上部分,两种药材在中国大部分地区均有分布。具有凉血止血,祛瘀消肿的功能,是《中国药典》2010版收载的常用中药。现代药理研究发现大小蓟具有止血、抗菌、抗肿瘤和抗微生物等作用。大小蓟化学成分复杂,现有研究报道的化学成分主要可分为黄酮及黄酮苷类、酚酸、甾醇、长链烯炔醇、生物碱及一些其他类化合物。目前的化学成分研究和药理学研究揭示了黄酮和酚酸类成分为其止血、抗炎的主要活性成分。
     迄今为止国内外学者对大小蓟的研究主要集中在化学成分鉴定与分离,而对于其质量评价与体内药代动力学研究涉及较少。本文采用LC-ESI-MS/MS技术对大小蓟中的黄酮和酚酸类成分同时进行定性及定量研究,为中药材大蓟和小蓟的质量控制提供新的分析手段。且研究了小蓟中7种活性成分在动物体内的动力学过程和排泄规律,对中药材小蓟的临床应用提供依据。
     第一部分液质联用法同时测定小蓟中11种活性成分的含量及化学计量学分析
     目的:建立一种快速、准确的LC-ESI-MS/MS定量分析方法,可同时分离、测定小蓟中11种活性成分(10种黄酮,包括蒙花苷、刺槐素、芦丁、香叶木素、高车前素、芹菜素、柚皮素、橙皮苷、木犀草素和槲皮素;1种酚酸,原儿茶酸),并用于小蓟药材的质量分析。采用主成分分析及聚类分析的统计方法分类和区分25批不同产地的小蓟药材。
     方法:液相色谱柱为Diamonsil C_(18)柱(150×4.6mm,5μm),流动相为甲醇:水(含有0.1‰乙酸),流速为0.8mL/min,分析时间为19min,梯度洗脱。质谱采用电喷雾离子源(ESI源),TurboV离子源,采用多反应离子监测(MRM),进行正负离子同时检测。源喷射电压(IS)为5500V和-4500V,雾化温度为650℃,雾化气(GS1,N_2)为60psi,辅助气(GS2,N_2)为65psi,气帘气(N_2)为25psi。实验采用SPSS统计软件对数据进行统计分析。
     结果:11种活性成分的线性关系良好(r~2≥0.9941),检测限和定量限分别小于3.96ng/mL和9.90ng/mL,日内日间精密度分别小于3.30%和3.57%。平均回收率范围在96.4%~104.2%,48h内的稳定性良好。主成分分析及聚类分析对25批小蓟药材成功分类区分,证明河北产药材质量最佳。
     结论:本法简便、快速、灵敏度高、专属性好,可用于小蓟药材中蒙花苷、刺槐素、芦丁、香叶木素、高车前素、芹菜素、柚皮素、橙皮苷、木犀草素、槲皮素和原儿茶酸的含量测定,为小蓟药材的质量控制提供了新的方法和手段。
     第二部分液质联用法同时测定大鼠口服小蓟提取物后血浆中7种成分及药代动力学研究
     目的:建立一种同时测定大鼠血浆中蒙花苷、刺槐素、芦丁、橙皮苷、木犀草素、芹菜素和原儿茶酸含量的LC-ESI-MS/MS方法,并成功的用于大鼠灌胃给予小蓟提取物后血浆中7种成分的药代动力学研究,并建立其药-时曲线,阐明药动学参数与特征。
     方法:大鼠灌胃给与小蓟提取物(8mL/kg)后,分别于给药后0.17,0.5,1,1.5,2,3,4,6,8,12,24和36h眼内眦静脉丛取血0.3mL,制备血浆样品,采用乙酸乙酯液-液提取方法进行样品预处理,磺胺甲噁唑为内标。反相Diamonsil C_(18)柱(150×4.6mm,5μm),流动相为A(甲醇)-B(0.1‰乙酸水),梯度洗脱:0.0-1.5min,35%-60%A;1.5-10.0min,60%-63%A;10.0-10.1min,63%-95%A;10.1-15.0min,95%A等度洗脱。进样前预平衡6min,柱温为30℃,流速为0.8mL/min。质谱条件:ESI源,源电压(IS)5500V和-4500V,源温度(TEM)650℃,雾化气(GS1,N_2)60psi,辅助气(GS2,N_2)65psi,气帘气(N_2)25psi。采用电喷雾离子源(ESI),多周期正负离子同时扫描,多反应监测(MRM)模式进行定量。7种被测成分和内标物的监测离子对分别为蒙花苷m/z593.3/285.3、刺槐素m/z283.1/267.9、芦丁m/z609.1/299.9、橙皮苷m/z609.3/300.9、木犀草素m/z284.9/133.1、芹菜素m/z269.0/117.0、原儿茶酸m/z153.0/108.9和磺胺甲噁唑m/z252.0/156.0。
     结果:血浆中蒙花苷、刺槐素、芦丁、橙皮苷、木犀草素、芹菜素和原儿茶酸分别在1.87~935、2.63~1315、7.80~3900、2.68~1340、1.99~995、1.53~765和2.84~1420ng/mL范围内线性关系良好(r~2≥0.9954),最低定量限(LLOQ)≤7.80ng/mL。日内、日间精密度的相对标准偏差(RSD)均小于9.4%,相对误差(RE)为-4.8%~9.8%。平均提取回收率为71.0%~89.7%。大鼠口服灌胃给予小蓟提取物后,血浆中7种待测成分蒙花苷、刺槐素、芦丁、橙皮苷、木犀草素、芹菜素和原儿茶酸在大鼠体内的药代动力学药-时曲线的有所差异。其中,蒙花苷和原儿茶酸吸收最快,达峰时间为给药后2h左右;芦丁、橙皮苷、木犀草素和芹菜素吸收稍慢,达峰时间为给药后3h左右;刺槐素吸收最慢,于给药后6h达到血浆峰浓度。总体来说,大鼠灌胃给予小蓟提取物后,7种待测成分在体内吸收均较迅速,10min均可检测到,并且具有相近的消除速率。
     结论:本研究建立了LC-ESI-MS/MS法同时测定大鼠血浆中蒙花苷、刺槐素、芦丁、橙皮苷、木犀草素、芹菜素和原儿茶酸的含量,可用于小蓟中7种活性成分在大鼠体内的药代动力学研究。该方法简便、快速、灵敏度高、专属性好,对小蓟药材的体内定量分析具有重要意义,有益于传统中药小蓟的临床应用。
     第三部分液质联用法同时测定大鼠口服小蓟提取物后胆汁和尿液中7种成分及排泄动力学研究
     目的:建立LC-ESI-MS/MS同时测定大鼠胆汁和尿液中7种成分(蒙花苷、刺槐素、芦丁、橙皮苷、木犀草素、芹菜素和原儿茶酸)含量的方法,并用于大鼠灌胃给予小蓟提取物后该7种成分的胆汁和尿液排泄动力学研究。
     方法:大鼠灌胃给予小蓟提取物8mL/kg,胆汁按照0-2,2-4,4-6,6-8,8-12,12-24,24-30,30-36h收集,尿液按照0-4,4-8,8-12,12-24,24-36,36-48,48-60,60-72,72-84h时间段收集。采用乙酸乙酯液-液提取方法进行样品前处理,磺胺甲噁唑为内标。反相Diamonsil C_(18)柱(150×4.6mm,5μm),流动相为A(甲醇)-B(0.1‰乙酸水),梯度洗脱:0.0-1.5min,35%-60%A;1.5-10.0min,60%-63%A;10.0-10.1min,63%-95%A;10.1-15.0min,95%A等度洗脱。进样前预平衡6min,柱温为30℃,流速为0.8mL/min。质谱条件:ESI源,源电压(IS)5500V和-4500V,源温度(TEM)650℃,雾化气(GS1,N_2)60psi,辅助气(GS2,N_2)65psi,气帘气(N_2)25psi。采用电喷雾离子源(ESI),多周期正负离子同时扫描,多反应监测(MRM)模式进行定量。7种被测成分和内标物的监测离子对分别为蒙花苷m/z593.3/285.3、刺槐素m/z283.1/267.9、芦丁m/z609.1/299.9、橙皮苷m/z609.3/300.9、木犀草素m/z284.9/133.1、芹菜素m/z269.0/117.0、原儿茶酸m/z153.0/108.9和磺胺甲噁唑m/z252.0/156.0。测定大鼠灌胃给予小蓟提取物后胆汁和尿液中7种成分的累积排泄率。
     结果:胆汁和尿液中7种活性成分在测定浓度范围内均具有良好的线性关系(r~2≥0.9930),日内日间精密度均小于9.6%,相对误差RE均在±15%内。在胆汁样品中提取回收率为65.0%~81.2%,基质效应为85.4%~104.6%。尿液样品中提取回收率为71.0%~83.6%,基质效应为92.0%~104.7%。胆汁及尿液样品稳定性良好。试验结果表明,大鼠的胆汁中检测到蒙花苷、刺槐素、芦丁、橙皮苷、芹菜素和原儿茶酸6个分析物,它们的累计排泄率分别为0.499,0.088,0.163,0.283,0.146和0.338%,6个分析物36h基本排泄完全;大鼠的尿液中检测到蒙花苷、刺槐素、橙皮苷、木犀草素和芹菜素5个分析物,其累积排泄率分别为0.015,1.164,0.329,0.201和2.182%,5个分析物84h基本排泄完全。。
     结论:本研究首次采用LC-ESI-MS/MS法测定了大鼠胆汁和尿液中小蓟中7种活性成分,并研究了其排泄动力学。方法准确,结果可靠,可满足中药材在生物基质中的排泄研究。该法对小蓟药材的进一步临床应用具有重要意义。
     第四部分液质联用技术同时测定大蓟中13种成分及黄酮类成分的裂解规律分析
     目的:建立一种快速、准确的LC-ESI-MS/MS定量分析方法,可同时分离、测定大蓟中13种成分(12种黄酮,包括柳穿鱼叶苷、柳穿鱼黄素、蒙花苷、刺槐素、芦丁、香叶木素、高车前素、芹菜素、柚皮素、橙皮苷、木犀草素和槲皮素;1种酚酸,原儿茶酸),并用于大蓟药材分析。采用ESI-MS/MS法推断大蓟药材中12种黄酮类化合物的裂解规律。
     方法:液相色谱柱为Diamonsil C_(18)柱(150×4.6mm,5μm),流动相为甲醇:水(含有0.1‰乙酸),流速为0.8mL/min,分析时间为19min,梯度洗脱。质谱采用电喷雾离子源(ESI源),TurboV离子源,采用多反应离子监测(MRM),进行正负离子同时检测。源喷射电压(IS)为5500V和-4500V,雾化温度为650℃,雾化气(GS1,N_2)为60psi,辅助气(GS2,N_2)为65psi,气帘气(N_2)为25psi。
     结果:13种活性成分的线性关系良好(r~2≥0.9941),检测限和定量限分别小于3.96ng/mL和9.90ng/mL,日内日间精密度分别小于2.86%和3.67%。平均回收率的范围为95.0%~104.4%,48h内的稳定性良好。并且采用ESI-MS/MS分析技术,对大蓟中12个黄酮类成分对照品的质谱裂解碎片进行分析,总结了黄酮类化合物的质谱裂解规律。
     结论:本法简便、快速、灵敏度高、专属性好,可用于大蓟药材中柳穿鱼叶苷、柳穿鱼黄素、蒙花苷、刺槐素、芦丁、香叶木素、高车前素、芹菜素、柚皮素、橙皮苷、木犀草素、槲皮素和原儿茶酸的含量测定,为大蓟药材的质量控制提供了新的方法和手段。首次总结了大蓟中黄酮类成分ESI-MS/MS裂解规律。
Cirsium japonicum and Cirsium setosum, the members of the familyCompositae, is a wild perennial herb found in many areas of China. They arethe famous traditional Chinese medicine (TCM) and have been used forthousands of years to treat diverse kinds of bleeding (e.g. haematuria, spittingof blood, uterine bleeding) and inflammation. Modern pharmacologicalstudies demonstrated that Cirsium japonicum and Cirsium setosum extractshad a number of bioactivities, including anthemorrhagic, anti-inflammatory,anticancer and antimicrobial activities. Phytochemical studies on Cirsiumjaponicum and Cirsium setosum revealed that they both contained flavonoids,phenolic acids, sterols, triterpenes, alkaloids and so on. Among these,flavonoids and phenolic acids are generally considered to be the major activecomponents.
     To date, studies on quantitative determination of chemical constituents inCirsium japonicum and Cirsium setosum and their pharmacokinetics havebeen very few. In present study, we firstly developed an accurate and simpleLC-ESI-MS/MS method for simultaneous determination of the majorcomponents in Cirsium japonicum and Cirsium setosum. The satisfactoryresults demonstrated that the LC-ESI-MS/MS method was a good option forroutine analysis and could be applied as a reliable quality control method forCirsium japonicum and Cirsium setosum. In this study, we developed a rathersensitive and selective LC-ESI-MS/MS method to simultaneously determinelinarin, acacetin, rutin, hesperidin, luteolin, apigenin and protocatechuic acidin rat plasma. The method was applied to pharmacokinetics after oraladministration of Cirsium setosum extract to rats. A sensitive and selectiveLC-ESI-MS/MS method was developed for simultaneous determination of the 7main active components in rat bile and urine and was applied to theexcretion amount study of the analytes after oral administration of Cirsiumsetosum extract. The obtained results would be very helpful for evaluating theclinical application of this herb.
     Part one Simultaneous analysis of11main active components inCirsium setosum based on LC-ESI-MS/MS and combinedwith statistical methods
     Objective: A novel method based on high-performance liquidchromatography coupled with electrospray ionization tandem massspectrometry was developed for simultaneous determination of the11majoractive components including10flavonoids (linarin, acacetin, rutin, diosmetin,hispidulin, apigenin, naringenin, hesperidin, luteolin and quercetin) and1phenolic acid (protocatechuic acid) in Cirsium setosum. The principalcomponent analysis (PCA) and hierarchical cluster analysis (HCA) wereemployed to classify and evaluate the25batches of Cirsium setosum samplesfrom different resources.
     Methods: Chromatographic separation was performed on a C_(18)columnwith linear gradient elution of methanol and0.1‰acetic acid (v/v) at a flowrate of0.8mL/min. The total run time was19min. Multiple-reactionmonitoring (MRM) was employed in positive and negative mode at the sametime in single analysis process. The operating conditions were as follows: theion spray voltage was set to5500and-4500V, respectively; the turbo spraytemperature was650℃; nitrogen was used as the nebulizer gas (60psi) andheater gas (65psi); the curtain gas was kept at25psi and interface heater wason. The effect of origin in Cirsium setosum on the total amount of thoseanalytes was analyzed by PCA using SPSS. The HCA of Samples1-25wasperformed using SPSS software.
     Results: The correlation coefficients were all higher than0.9941. TheLODs and LOQs for each compound were less than3.96ng/mL and9.90ng/mL, which showed a high sensitivity. The overall intra-and inter-dayprecisions (RSD) for the investigated components were less than3.30%and 3.57%, respectively. The average recovery was in the range of96.4%-104.2%.All analytes were found to be stable with48h. The results demonstrated thatthe quantitative difference of eleven active compounds was useful forchemotaxonomy of many samples from different sources and thestandardization and differentiation of many similar samples. Principalcomponent analysis and hierarchical clustering analysis were performed todifferentiate and classify the25batches of Cirsium setosum samples andfurther confirmed the excellent quality of Cirsium setosum from Hebeiprovince.
     Conclusion: A efficient, rapid and sensitive LC-ESI-MS/MS methodoperating both positive and negative scanning modes in single analysisprocess was first established for the qualitation and quantification of11majorcomponents in Cirsium setosum. Validation of the assay showed appropriatesensitivity and specificity and was successfully utilized to analyze25batchesof Cirsium setosum samples from different sources. PCA and HCA validatedeach other and provided more evidence for the quality evaluation of Cirsiumsetosum samples. The satisfactory results demonstrated that theLC-ESI-MS/MS method was a good option for routine analysis and could beapplied as a reliable quality control method for Cirsium setosum. In the future,LC-ESI-MS/MS method will be more and more popular for analysis of herbalmedicine.
     Part two Simultaneous determination and pharmacokinetic study ofseven main active components from Cirsium setosum extractin rat plasma by LC-ESI-MS/MS
     Objective: To establish a sensitive, specific and rapid liquidchromatography-mass spectrometry (LC-ESI-MS/MS) method todetermination the seven main active components including linarin, acacetin,rutin, hesperidin, luteolin, apigenin and protocatechuic acid in rat plasma afterthe orally administrating of Cirsium setosum extract, and this method wasused and validated to study the pharmacokinetics.
     Methods: Six rats were given single doses of Cirsium setosum extract (8 mL/kg) and blood samples were collected into heparinized centrifuge tubesfrom the vein of the eye ground0.17,0.5,1,1.5,2,3,4,6,8,12,24and36hafter a single oral administration. Within30min after blood withdrawal, thesamples were centrifuged at4000rpm for10min and the separated plasmasamples were frozen in polypropylene tubes at-20°C prior to analysis. Theplasma samples were pretreated and extracted by a simple liquid–liquidextraction (LLE) method by ethyl acetate. Sulfamethoxazole (SMZ) was usedas internal standard. Chromatographic conditions: Reverse-phase DiamonsilC_(18)column (150×4.6mm,5μm) with the column temperature set at30℃. Alinear gradient elution of eluents A (methanol) and B (0.1‰acetic acid; v/v)was used for the separation. The following gradient condition was used: initial0–1.5min, linear change from35%A to60%A;1.5–10min, linear changefrom60%A to63%A;10–10.1min, linear change from63%A to95%A; and10.1–15min, isocratic elution95%A; finally35%A maintained for6min. Theflow rate was set at0.8mL/min. Mass spectrometry: The mass spectrometerwas operated by switching the ESI source between the positive and negativemodes for a single run. The ion spray voltage was set to5500V and4500V,the turbo spray temperature was kept at650℃. Nebulizer gas (gas1) andheater gas (gas2) was set at60and65arbitrary units, respectively. The curtaingas was kept at25arbitrary units. For structural identification of each analyte,the information-dependent acquisition (IDA) method was used to trigger theenhanced product ion (EPI) scans by analyzing MRM signals. The optimizedmass transition ion-pairs (m/z) for quantitation were593.3/285.3for linarin,283.1/267.9for acacetin,609.1/299.9for rutin,609.3/300.9for hesperidin,284.9/133.1for luteolin,269.0/117.0for apigenin,153.0/108.9forprotocatechuic acid and252.0/156.0for IS. The total run time was15.0minbetween injections.
     Results: The calibration curves were linear over the investigatedconcentration range:1.87~935ng/mL (linarin),2.63~1315ng/mL (acacetin),7.80~3900ng/mL (rutin),2.68~1340ng/mL (hesperidin),1.99~995ng/mL(luteolin),1.53~765ng/mL (apigenin) and2.84~1420ng/mL (protocatechuic acid), with all correlation coefficients higher than0.9954. Thelower limits of quantitation (LLOQ) of these analytes were less than7.80ng/mL. The intra-and inter-day RSD were no more than9.4%and the relativeerrors were within the range of-4.8%to9.8%. The average extractionrecoveries for all compounds were between71.0%and89.7%. Linarin andprotocatechuic acid could achieve the maximum plasma concentration at2h,while rutin, hesperidin, luteolin and apigenin could achieve the maximumplasma concentration at3h after oral administration. But acacetin need6h toachieve the maximum plasma concentration after oral administration Theseven analytes have distinctive pharmacokinetic parameters in vivo. All of theseven analytes were absorbed rapidly and have the similar elimination rate.
     Conclusion: A selective LC-ESI-MS/MS method was developed andvalidated for the simultaneous determination of linarin, acacetin, rutin,hesperidin, luteolin, apigenin and protocatechuic acid in rat plasma after theorally administrating of Cirsium setosum extract. The results showed that thismethod is robust, specific and sensitive and it can successfully fulfill therequirements of pharmacokinetic study. The results provided a meaningfulbasis for the clinical application of this herb.
     Part three Simultaneous determination and excretion study of sevenmain active components in rat bile and urine after oraladministration of Cirsium setosum extract byLC/electrospray ionization mass spectrometry
     Objective: A sensitive and selective LC-ESI-MS/MS method wasdeveloped and validated for simultaneous analysis of seven main activecomponents (linarin, acacetin, rutin, hesperidin, luteolin, apigenin andprotocatechuic acid) in rat bile and urine. Then, the excretion profiles of thesecomponents were further investigated after a single oral administration ofCirsium setosum extract.
     Methods: Six rats were administered with Cirsium setosum extract at asingle oral dosage of8mL/kg. Bile samples were collected during0-2,2-4,4-6,6-8,8-12,12-24,24-30,30-36h periods. Urine samples were collected during0-4,4-8,8-12,12-24,24-36,36-48,48-60,60-72,72-84h periods.Blank bile and urine samples were collected to check whether they were freeof interfering components. All samples were stored at-20℃until additionalextraction and analysis. The seven main active components and IS wereextracted by a simple liquid–liquid extraction (LLE) method by ethyl acetate.Sulfamethoxazole (SMZ) was used as internal standard. Chromatographicconditions: Reverse-phase Diamonsil C_(18)column (150×4.6mm,5μm) withthe column temperature set at30℃. A linear gradient elution of eluents A(methanol) and B (0.1‰acetic acid; v/v) was used for the separation. Thefollowing gradient condition was used: initial0–1.5min, linear change from35%A to60%A;1.5–10min, linear change from60%A to63%A;10–10.1min, linear change from63%A to95%A; and10.1–15min, isocratic elution95%A; finally35%A maintained for6min. The flow rate was set at0.8mL/min. Mass spectrometry: The mass spectrometer was operated byswitching the ESI source between the positive and negative modes for a singlerun. The ion spray voltage was set to5500V and4500V, the turbo spraytemperature was kept at650℃. Nebulizer gas (gas1) and heater gas (gas2)was set at60and65arbitrary units, respectively. The curtain gas was kept at25arbitrary units. For structural identification of each analyte, theinformation-dependent acquisition (IDA) method was used to trigger theenhanced product ion (EPI) scans by analyzing MRM signals. The optimizedmass transition ion-pairs (m/z) for quantitation were593.3/285.3for linarin,283.1/267.9for acacetin,609.1/299.9for rutin,609.3/300.9for hesperidin,284.9/133.1for luteolin,269.0/117.0for apigenin,153.0/108.9forprotocatechuic acid and252.0/156.0for IS. The total run time was15.0minbetween injections.
     Results: The correlation coefficients were all higher than0.9930. Theresults of the inter-and intra-day precision (≤9.6%) and accuracy (within±15%) at QC concentrations were acceptable. The extraction recovery ofanalytes ranged from65.0%to81.2%for bile, and from71.0%to83.6%forurine. For matrix effect, the values ranged from85.4%to104.6%for bile, and from92.0%to104.7%for urine, which indicates no matrix effect forquantification of the target flavones in the developed method. Stability dataindicated good stability for all the analytes over four storage conditions in bileand urine. In the bile samples, the six analytes (linarin, acacetin, rutin,hesperidin, apigenin and protocatechuic acid) excreted completely in thirty-sixhours and the cumulative biliary excretion of six analytes excreted were0.499%,0.088%,0.163%,0.283%,0.146%,0.338%, respectively. In the urinesamples, the five analytes (linarin, acacetin, hesperidin, luteolin and apigenin)excreted completely in eighty-four hours. The cumulative urinary excretion offive analytes excreted were0.015%,1.164%,0.329%,0.201%,2.182%,respectively.
     Conclusion: The method is robust and specific and it can successfullycomplete the requirements of the excretion study of seven main activecomponents in rat bile and urine in Cirsium setosum. These results may offeruseful information for clinical application of traditional Chinese medicines.
     Part four Simultaneous analysis of13main active components inCirsium joponicum based on LC-ESI-MS/MS andfragmentation study of flavonoids with ESI-MS/MS innegative ion mode
     Objective: A novel method based on high-performance liquidchromatography coupled with electrospray ionization tandem massspectrometry was developed for simultaneous determination of the13majoractive components including12flavonoids (pectolinarin, pectolinarigenin,linarin, acacetin, rutin, diosmetin, hispidulin, apigenin, naringenin, hesperidin,luteolin and quercetin) and1phenolic acid (protocatechuic acid) in Cirsiumjoponicum.12flavonoids were selected to research mass spectrum applicationwith ESI-MS/MS and the fragmentation rules of flavonoids profits for theidentification of unknown flavonoid compounds rapidly and accurately.
     Methods: Chromatographic separation was performed on a C_(18)columnwith linear gradient elution of methanol and0.1‰acetic acid (v/v) at a flowrate of0.8mL/min. The total run time was19min. Multiple-reaction monitoring (MRM) was employed in positive and negative mode at the sametime in single analysis process. The operating conditions were as follows: theion spray voltage was set to5500and-4500V, respectively; the turbo spraytemperature was650℃; nitrogen was used as the nebulizer gas (60psi) andheater gas (65psi); the curtain gas was kept at25psi and interface heater wason. The effect of origin in Cirsium joponicum on the total amount of thoseanalytes was analyzed by PCA using SPSS. The HCA of Samples1-25wasperformed using SPSS software.
     Results: The correlation coefficients were all higher than0.9941. TheLODs and LOQs for each compound were less than3.96ng/mL and9.90ng/mL, which showed a high sensitivity. The overall intra-and inter-dayprecisions (RSD) for the investigated components were less than2.86%and3.67%, respectively. The average recovery was in the range of95.0%-104.4%.All analytes were found to be stable with48h. Four fragmentation rules offlavonoids were summarized.
     Conclusion: A efficient, rapid and sensitive LC-ESI-MS/MS methodoperating both positive and negative scanning modes in single analysisprocess was first established for the qualitation and quantification of11majorcomponents in Cirsium joponicum. Validation of the assay showedappropriate sensitivity and specificity and was successfully utilized to analyze25batches of Cirsium joponicum samples from different sources. Thesatisfactory results demonstrated that the LC-ESI-MS/MS method was a goodoption for routine analysis and could be applied as a reliable quality controlmethod for Cirsium joponicum. In the future, LC-ESI-MS/MS method will bemore and more popular for analysis of herbal medicine. Fragmentation rulesof12flavonoids in Cirsium joponicum were first study.
引文
1国家药典委员会编.中华人民共和国药典(一部).北京:中国医药科技出版社,2010,45-46
    2杨星昊,崔敬浩,丁安伟.小蓟提取物对凝血、出血及实验性炎症的影响.四川中医,2006,24(1):17-19
    3孟永海,王秋红,杨柳,等.黑龙江产小蓟的药理作用研究.中医药信息,2011,28(2):17-18
    4李煜,王振飞,贾瑞贞.小蓟水提液对4种癌细胞生长抑制作用的研究.中华中医药学刊,2008,26(2):274-275
    5屠伯言.中药对结核菌抗菌作用的研究概况.上海中医药杂志,1966,4:157-161
    6乔作现.凉血解毒、柔肝理脾法治疗慢性丙型肝炎30例疗效观察.新中医,2003,35(8):35-36
    7侯云芬,付学娟,王成菊.小蓟花治疗顽固性失眠.中国民间疗法,1998,3:55-55
    8潘珂,尹永芹,孔令义.小蓟化学成分的研究.中国现代中药,2006,8(4):7-9
    9周清,陈玲,刘志鹏,等.小蓟的化学成分研究.中药材,2007,30(1):45-47
    10许浚,张铁军,龚苏晓,等.小蓟止血活性部位的化学成分研究.中草药,2010,41(4):542-544
    11陈毓,丁安伟,杨星昊,等.小蓟化学成分药理作用及临床应用研究述要.中医药学刊,2005,23(4):614-615
    12顾玉诚,屠呦呦.小蓟化学成分研究.中国中药杂志,1992,17(9):547-548,576
    13Kuntic V, Filipovic I, Vujic Z. Effects of rutin and hesperidin and their Al(III) and Cu (II) complexes on in vitro plasma coagulation assays.Molecules,2011,16(2):1378-1388
    14Singh RP, Agrawal P, Yim D, et al. Acacetin inhibits cell growth and cellcycle progression, and induces apoptosis in human prostate cancer cells:structure-activity relationship with linarin and linarin acetate.Carcinogenesis,2005,26(4):845-854
    15沈钦海,马臻,陈国民.芦丁对HepG2细胞生长的影响.第三军医大学学报,2006,28(18):1885-1887
    16Martinez-Vazquez M, Ramirez Apan TO, Lastra AL, et al. A comparativestudy of the analgesic and anti-inflammatory activities of pectolinarinisolated from Cirsium subcoriaceum and linarin isolated from Buddleiacordata. Planta Medica,1998,64(2):134-137
    17Fernandez S, Wasowski C, Paladini AC, et al. Sedative andsleep-enhancing properties of linarin, a flavonoid-isolated from Valerianaofficinalis. Pharmacology Biochemistry Behavior,2004,77(2):399-404
    18Martinez-Vazquez M, Ramirez Apan TO, Lastra AL, et al. Analgesic andantipyretie activities of an aqueous extract and of the flavone linarin ofBuddleia cordata. Planta Medica,1996,62:137-140
    19冯子明,杨桠楠,姜建双,等.小蓟的化学成分研究.中国实验方剂学杂志,2012,18(6):219-221
    20陈毓. HPLC法测定小蓟饮片中蒙花苷含量.海峡药学,2010,22(12):52-54
    21侯坤,许浚,张铁军. HPLC同时测定小蓟中蒙花苷和绿原酸的含量.中国实验方剂学杂志,2010,16(13):62-64
    22周文序,田珍.中药大、小蓟中柳穿鱼苷和芦丁的薄层扫描法定量分析.药物分析杂志,1994,14(6):39-40
    23崔敬浩,杨星昊,丁安伟,等.小蓟、小蓟炭中黄酮类成分的含量测定和薄层鉴别.四川中医,2006,24(3):32-34
    24杨瑞瑞,郭耀武. HPLC法测定小蓟中芦丁的含量.现代中医药,2006,26(4):52-55
    25Li SP, Zhao J, Yang B. Strategies for quality control of Chinese medicines.Journal of Pharmaceutical and Biomedical Analysis,2011,55:802-809
    26Alberto WD, Del Pilar DM, Valeria AM, et al. Pattern recognitiontechniques for the evaluation of spatial and temporal variations in waterquality. A case study: Suquía River Basin (Cordoba-Argentina). WaterResearch,2001,35(12):2881-2894
    27Kannel PR, Lee S, Kanel SR, et al. Chemometric application inclassification and assessment of monitoring locations of an urban riversystem. Analytica Chimica Acta,2007,582(2):390-399
    28Kong WJ, Wang JB, Zang QC, et al. Fingerprint-efficacy study of artificialCalculus bovis in quality control of Chinese materia medica. FoodChemistry,2011,127:1342-1347
    29Zhou X, Zhao Y, Lei P, et al. Chromatographic fingerprint study on Evodiarutaecarpa (Juss.) Benth by HPLC/DAD/ESI-MSn technique. Journal ofseparation science,2010,33(15):2258-2265
    30Zhao Y, Zhou X, Chen HG, et al. Determination of dehydroevodiamine inEvodia rutaecarpa (Juss.) Benth by high performance liquidchromatography and classification of the samples by using hierarchicalclustering analysis. Fitoterapia2009,80(7):415-420
    1国家药典委员会编.中华人民共和国药典(一部).北京:中国医药科技出版社,2010,45-46
    2曹琴,陈建涛.小蓟的化学成分研究.药学实践杂志,2010,28(4):271-273
    3孟永海,王秋红,姜海,等.小蓟化学成分研究.中药材,2009,32(1):58-61
    4韩百翠,李宁,李铣.小蓟化学成分的分离与鉴定.沈阳药科大学学报,2008,25(10):793-795
    5陈毓,丁安伟,杨星昊,等.小蓟化学成分药理作用及临床应用研究述要.中医药学刊,2005,23(4):614-615
    6潘珂,尹永芹,孔令义.小蓟化学成分的研究.中国现代中药,2006,8(4):7-9
    7许浚,张铁军,龚苏晓,等.小蓟止血活性部位的化学成分研究.中草药,2010,41(4):542-544
    8周清,陈玲,刘志鹏,等.小蓟的化学成分研究.中药材,2007,30(1):45-47
    9顾玉诚,屠呦呦.小蓟化学成分研究.中国中药杂志,1992,17(9):547-548,576
    10周文序,田珍.中药大小蓟的黄酮类成分的分离和鉴定.北京医科大学学报,1994,26(4):309
    11杨星昊,崔敬浩,丁安伟.小蓟提取物对凝血、出血及实验性炎症的影响.四川中医,2006,24(1):17-19
    12李丹,吴莲波,吴秉纯.中药小蓟的药理作用研究进展.黑龙江中医药,2010,3:46-47
    13倪晓霓.大蓟与小蓟的研究现状及展望.时珍国医国,2005,16(6):548-549
    14王海荣,张兰桐.液-质联用中大气压电离接口技术及其在药物分析中的应用.中国医院药学杂志,2006,26(9):1137-1139
    1国家药典委员会编.中华人民共和国药典(一部).北京:中国医药科技出版社,2010,45-46
    2曹琴,陈建涛.小蓟的化学成分研究.药学实践杂志,2010,28(4):271-273
    3顾玉诚,屠呦呦.小蓟化学成分研究.中国中药杂志,1992,17(9):547-548,576
    4潘珂,尹永芹,孔令义.小蓟化学成分的研究.中国现代中药,2006,8(4):7-9
    5韩百翠,李宁,李铣.小蓟化学成分的分离与鉴定.沈阳药科大学学报,2008,25(10):793-795
    6陈毓,丁安伟,杨星昊,等.小蓟化学成分药理作用及临床应用研究述要.中医药学刊,2005,23(4):614-615
    7孟永海,王秋红,姜海,等.小蓟化学成分研究.中药材,2009,32(1):58-61
    8许浚,张铁军,龚苏晓,等.小蓟止血活性部位的化学成分研究.中草药,2010,41(4):542-544
    9周清,陈玲,刘志鹏,等.小蓟的化学成分研究.中药材,2007,30(1):45-47
    10周文序,田珍.中药大小蓟的黄酮类成分的分离和鉴定.北京医科大学学报,1994,26(4):309
    11杨星昊,崔敬浩,丁安伟.小蓟提取物对凝血、出血及实验性炎症的影响.四川中医,2006,24(1):17-19
    12李丹,吴莲波,吴秉纯.中药小蓟的药理作用研究进展.黑龙江中医药,2010,3:46-47
    13倪晓霓.大蓟与小蓟的研究现状及展望.时珍国医国,2005,16(6):548-549
    14Zhu H, Ren YP, Sun YG, et al. Determination of cnidilin and its twometabolites in rat bile and stool after oral administration byHPLC/electrospray ionization tandem mass spectrometry. BiomedicalChromatography,2012
    15Chang Q, Wang GN, Li Y, et al. Oral absorption and excretion of icaritin,an aglycone and also active metabolite of prenylflavonoids from theChinese medicine Herba Epimedii in rats. Phytomedicine,2012,19:1024-1028
    1国家药典委员会编.中华人民共和国药典(一部).北京:中国医药科技出版社,2010,23-24
    2陈凯云,罗小泉,陈海芳,等.中药大蓟的研究进展.江西中医学院学报,2007,19(4):56
    3赵鹏,雷小梅,连秀珍,等.甘肃大蓟提取物对Hep细胞毒性作用研究.医药卫生,2005,34(4):214
    4Park JC, Hur JM, Park JG, et al. Effects of methanol extract of Cirsiumjaponicum var. ussuriense and its principle,hispidulin-7-O-neohesperidoside on hepatic alcohol-metabolizing enzymesand lipid peroxidation in ethanol-treated rats. Phytotherapy Research,2004,18(1):19-24
    5陆颖,段书涛,潘家祜,等.中药大蓟化学成分的研究.天然产物研究与开发,2009,21,563-565,615
    6植飞,孔令义,彭司勋.中药大蓟的化学及药理研究进展.中草药,2001,32(7):664-667
    7蒋秀蕾,范春林,叶文才.大蓟化学成分的研究.中草药,2006,37(4):510-512
    8顾玉诚,屠呦呦.大蓟化学成分的研究.中国中药杂志,1992,17(8):489-490,512
    9倪晓霓,赵宏阳,杭太俊.大蓟、小蓟中黄酮类成分的不同提取方法及含量测定.江苏药学与临床研究,2005,13(1):33-35
    10杨燕飞.大蓟中黄酮类成分的鉴别与含量测定.中国药事,2006,20(5):296-298
    11周文序,田珍.中药大小蓟的黄酮类成分的分离和鉴定.北京医科大学学报,1994,26(4):309
    12倪晓霓,黄花红,杭太俊.大蓟、小蓟中黄酮类成分含量测定及色谱分析.齐鲁药事,2005,24(12):90-92
    13徐英,尹亮亮,王弘,等.采用负离子的ESI-IT-TOF/MSn方法研究黄酮类苷元的裂解规律.第九届全国中药和天然药物学术研讨会大会报告及论文集,2007:1-5
    14Liu PW, Du YF, Zhang XW, et al. Rapid Analysis of27Components ofIsodon serra by LC-ESI-MS/MS. Chromatographia,2010,72:265-273
    15March RE, Lewars EG, Stadey CJ, et al. A comparison of flavonoidglycosides by electrospray tandem mass spectrometry. InternationalJournal of Mass Spectrometry,2006,248(1-2):61-85
    1李倩,罗祖良,杨小丽,等.中药质量控制方法研究述评.中药研究,2012,27(167):448-451
    2Tsaoa R, Deng ZY. Separation procedures for naturally occurringantioxidant phytochemicals. Journal of Chromatography B,2004,812:85-99
    3Drasar P, Moravcova J. Recent advances in analysis of Chinese medicalplants and traditional medicines. Journal of Chromatography B,2004,812(1-2):3-21
    4Li SP, Zhao J, Yang B. Strategies for quality control of Chinese medicines.Journal of Pharmaceutical and Biomedical Analysis,2011(55):802-809
    5de Rijke E, Out P, Niessen WM, et al. Analytical separation and detectionmethods for flavonoids. Journal of Chromatography A,2006,1112(1-2):31-63
    6Liu R, Ye M, Guo H, et al. Liquid chromatography/electrospray ionizationmass spectrometry for the characterization of twenty-three flavonoids inthe extract of Dalbergia odorifera. Rapid Commun Mass Spectrom,2005,19(11):1557-1565
    7Horvath CR, Martos PA, Saxena PK. Identification and quantification ofeight flavones in root and shoot tissues of the medicinal plant huang-qin(Scutellaria baicalensis Georgi) using high-performance liquidchromatography with diode array and mass spectrometric detection.Journal of Chromatography A,2005,1062(2):199-207
    8Zhou Y, Jiang RW, Hon PM, et al. Analyses of Stemona alkaloids inStemona tuberosa by liquid chromatography/tandem mass spectrometry.Rapid Commun Mass Spectrom,2006,20(6):1030-1038
    9Shi P, He Q, Song Y, et al. Characterization and identification of isomericflavonoid O-diglycosides from genus Citrus in negative electrosprayionization by ion trap mass spectrometry and time-of-flight massspectrometry. Analytica Chimica Acta,2007,598(1):110-118
    10Zhou Y, Zou X, Liu X, et al. Multistage electrospray ionization massspectrometric analyses of sulfur-containing iridoid glucosides in Paederiascandens. Rapid Commun Mass Spectrom,2007,21(8):1375-1385
    11Ren L, Xue X, Zhang F, et al. Studies of iridoid glycosides using liquidchromatography/electrospray ionization tandem mass spectrometry. RapidCommun Mass Spectrom,2007,21(18):3039-3050
    12Cui M, Song F, Zhou Y, et al. Rapid identification of saponins in plantextracts by electrospray ionization multi-stage tandem mass spectrometryand liquid chromatography/tandem mass spectrometry. Rapid CommunMass Spectrom,2000,14(14):1280-1286
    13Zhang HJ, Cheng YY. An HPLC/MS method for identifying majorconstituents in the hypocholesterolemic extracts of Chinese medicineformula 'Xue-Fu-Zhu-Yu decoction'. Biomedical Chromatography,2006,20(8):821-826
    14Cui L, Abliz Z, Xia M, et al. On-line identification ofphenanthroindolizidine alkaloids in a crude extract from Tylophoraatrofolliculata by liquid chromatography combined with tandem massspectrometry. Rapid Commun Mass Spectrom,2004,18(2):184-190
    15Yi T, Leung KS, Lu GH, et al. Identification and determination of themajor constituents in traditional Chinese medicinal plant Polygonummultiflorum thunb by HPLC coupled with PAD and ESI/MS.Phytochemical Analysis,2007,18(3):181-187
    16Parejo I, Jáuregui O, Viladomat F, et al. Characterization of acylatedflavonoid-O-glycosides and methoxylated flavonoids from Tagetesmaxima by liquid chromatography coupled to electrospray ionizationtandem mass spectrometry. Rapid Commun Mass Spectrom2004,18(23):2801-2810
    17Ye M, Yan Y, Guo DA. Characterization of phenolic compounds in theChinese herbal drug Tu-Si-Zi by liquid chromatography coupled toelectrospray ionization mass spectrometry. Rapid Commun MassSpectrom,2005,19(11):1469-1484
    18Zhang X, Xiao HB, Xue XY, et al. Simultaneous characterization ofisoflavonoids and astragalosides in two Astragalus species byhigh-performance liquid chromatography coupled with atmosphericpressure chemical ionization tandem mass spectrometry. Journal ofSeparation Science,2007,30(13):2059-2069
    19Zhou DY, Xu Q, Xue XY, et al. Identification of O-diglycosyl flavanonesin Fructus aurantii by liquid chromatography with electrospray ionizationand collision-induced dissociation mass spectrometry. Journal ofPharmaceutical and Biomedical Analysis,2006,42(4):441-448
    20袁杰,龚又明,鞠鹏,等. HPLC-MS法分析朝鲜淫羊藿中的化学成分.中草药,2004,35(4):371-374
    21丁明玉,李红霞,刘德麟.用生物筛选法筛选中药活性成分的研究.世界科学技术-中药现代化,2002,4(1):36-39
    22Cogne AL, Queiroz EF, Wolfender JL, et al. On-line identification ofunstable catalpol derivatives from Jamesbrittenia fodina by LC-MS andLC-NMR. Phytochemical Analysis,2003,14(2):67-73
    23Exarchou V, Fiamegos YC, van Beek TA, et al. Hyphenatedchromatographic techniques for the rapid screening and identification ofantioxidants in methanolic extracts of pharmaceutically used plants.Journal of Chromatography A,2006,1112(1-2):293-302
    24王永禄,王丽瑶.制备型高效液相色谱法及其在中药研究中的应用.中医药通报,2006,5(3):60-63
    25徐宝财,张桂菊,王关兴,等.高速逆流色谱技术及其在药物分离分析中的应用.药物分析杂志,2006,10:1516-1521
    26Kim CY, Kim J. Preparative isolation and purification of geniposide fromgardenia fruits by centrifugal partition chromatography. PhytochemicalAnalysis,2007,18(2):115-117
    27Peng J, Fan G, Qu L, et al. Application of preparative high-speedcounter-current chromatography for isolation and separation of schizandrinand gomisin A from Schisandra chinensis. Journal of Chromatography A,2005,1082(2):203-207
    28魏晋梅,罗玉柱,曹禄兴,等.高效液相色谱法同时测定沙枣果实中5种酚类化合物.食品工业科技,2011,8:392-393
    29Chai XY, Li SL, Li P. Quality evaluation of Flos lonicerae through asimultaneous determination of seven saponins by HPLC with ELSD.Journal of Chromatography A,2005,1070(1-2):43-48
    30Qi LW, Yu QT, Li P, et al. Quality evaluation of Radix Astragali througha simultaneous determination of six major active isoflavonoids and fourmain saponins by high-performance liquid chromatography coupled withdiode array and evaporative light scattering detectors. Journal ofChromatography A,2006,1134(1-2):162-169
    31Chan W, Lee KC, Liu N, et al. A sensitivity enhanced high-performanceliquid chromatography fluorescence method for the detection ofnephrotoxic and carcinogenic aristolochic acid in herbal medicines.Journal of Chromatography A,2007,1164(1-2):113-119
    32Yi T, Leung KS, Lu GH, et al. Identification and determination of themajor constituents in traditional Chinese medicinal plant Polygonummultiflorum thunb by HPLC coupled with PAD and ESI/MS.Phytochemical Analysis,2007,18(3):181-187
    33Wang D, Song Y, Li SL, et al. Simultaneous analysis of sevenastragalosides in Radix Astragali and related preparations by liquidchromatography coupled with electrospray ionization time-of-flight massspectrometry. Journal of Separation Science,2006,29(13):2012-2022
    34Li XQ, Xiong ZL, Ying XX, et al. A rapid ultraperformance liquidchromatography electrospray ionization tandem mass spectrometricmethod for the qualitative and quantitative analysis of the constituents ofthe flower of Trollius ledibouri Reichb. Analytica Chimica Acta,2006,580(2):170-180
    35Guan J, Lai CM, Li SP. A rapid method for the simultaneousdetermination of11saponins in Panax notoginseng using ultraperformance liquid chromatography. Journal of Pharmaceutical andBiomedical Analysis,2007,44(4):996-1000
    36田雨露,杨晖,李勤,等.非水毛细管电泳法分离分析了淫羊藿中的朝藿啶K、淫羊藿苷和淫羊藿次苷.大连国际色谱学术报告会和展览会文集,2007
    37Dong L, Deng C, Wang B, et al. Fast determination of Z-ligustilide inplasma by gas chromatography/mass spectrometry following headspacesingle-drop microextraction. Journal of Separation Science,2007,30(9):1318-1325
    38van Beek TA, van Veldhuizen A, Lelyveld GP, et al. Quantitation ofbilobalide and ginkgolides A, B, C and J by means of nuclear magneticresonance spectroscopy. Phytochemical Analysis,1993,4(6):261-268
    39Chang WT, Thissen U, Ehlert KA, et al. Effects of growth conditions andprocessing on Rehmannia glutinosa using fingerprint strategy. PlantaMedica,2006,72(5):458-467
    40许红玮.毛细管电泳色谱技术在中药质量控制研究中应用.中药饮片质量分析与中药鉴别技术交流研讨会,2009:141-146
    41梁鑫淼,丰加涛,金郁,等.中药质量控制技术发展展望.色谱,2008,26(2):130-135

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700