用户名: 密码: 验证码:
桑叶有效部位降血糖作用与JNK信号通路的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,糖尿病(Diabetes Mellitus)已成为全世界许多国家的常见病和多发病,其死亡率已居肿瘤、心血管之后的第三位。我国糖尿病患者数量居全球首位,而其中约95%为2型糖尿病患者。因此糖尿病的治疗任务刻不容缓。
     胰岛β细胞功能障碍和外周组织的胰岛素抵抗(Insulin Resistance, IR)是2型糖尿病发病的两个关键因素。c-Jun氨基末端激酶(c-Jun NH2-terminal Kinase, JNK)是有丝分裂原活化蛋白激酶[Mitogen Activated Protein Kinase (MAPK)]超家族的重要一员,该家族还包括ERK和p38。JNK信号通路是参与糖尿病发病机制的重要通路。糖尿病状态下胰岛β细胞中,氧化应激能导致JNK激活,损害核内胰岛素信号通路,从而使胰岛素基因表达水平的降低,破坏胰岛素合成。此外,JNK的激活可使胰岛素受体底物IRS-1ser307位点磷酸化,导致胰岛素抵抗。桑叶及其有效成分已被报道具有良好的降低血糖作用,但其降血糖作用分子机制鲜见报道。JNK信号通路是涉及糖尿病发病的重要通路,桑叶对糖尿病的治疗作用,是否涉及到对此通路的调控作用?本文正是基于对此问题的思考而进行探索性实验研究。
     1.文献研究
     对与2型糖尿病相关的发病机制、中医药治疗2型糖尿病的现状进行了较全面的文献综述,为本研究的立题目的提供依据。主要从以下方面展开文献研究:1.糖尿病目前的流行情况、发病机制研究进展;2.中药及其有效成分治疗2型糖尿病的现状;3.桑叶有效成分及其降血糖作用、机制研究进展;4.JNK信号通路与2型糖尿病发病机制的重要关系研究进展;5. microRNA与2型糖尿病的研究进展。
     2.实验研究
     2.1桑叶有效部位对2型糖尿病大鼠糖脂代谢的影响
     研究目的:建立2型糖尿病动物模型,研究桑叶总黄酮、桑叶总多糖、桑叶水提液分别对2型糖尿病大鼠血糖、血脂的影响。
     研究方法:SD大鼠随机分为正常对照组(NC组8只),糖尿病组,糖尿病组大鼠利用高脂高糖饲料喂养8周联合一次性腹腔注射STZ30mg·kg-1建立2型糖尿病大鼠模型,造模成功的大鼠随机分为模型对照组(DM组),桑叶总黄酮治疗组(MTF组,30mg·kg-’),桑叶总多糖治疗组(MTP组,100mg·kg-1),桑叶水提物治疗组(MWE组,6g·kg-1)和罗格列酮治疗组(RSG组,4mg·kg-1),每组10只。灌胃给药,每周称量大鼠体重、空腹血糖FBG,观察大鼠生存状态。连续给药6周后,麻醉大鼠腹主动脉取全血,测定大鼠血清游离脂肪酸NEFA、胆固醇CHO、甘油三脂TC含量。
     研究结果:①复制的2型糖尿病大鼠模型,与正常对照组大鼠相比较,表现出多饮多食、排泄增加、高血糖、高血脂症状,且后期体重减轻,符合2型糖尿病临床特点。②经过治疗6周,NC组大鼠体重呈直线上升;DM组大鼠体重显著下降,与NC组比较差异具显著性(P<0.01);与DM组相比,MWE、MTP、MTF体重更重,差异具有显著性(P<0.01或0.05)。③MTF、MTP治疗第4周,MWE治疗第5周大鼠FBG开始下降,与未给药时相比具有显著差异(P<0.05)。④给药6周后,与NC组比较,DM组NEFA、TG、CHO均存在显著性差异(P<0.05)。与DM组比较,MWE组TG、CHO降低(P<0.05), NEFA无显著差异(P>0.05);MTF组TG、CHO、MDA均降低(P<0.05),NEFA无显著差异(P>0.05);MTP组TG(P<0.05),NEFA、CHO无显著差异(P>0.05);RSG组NEFA、TG、CHO无显著差异(P>0.05)。
     研究结论:建立的2型糖尿病模型符合实验要求;桑叶有效部位具有改善糖尿病大鼠生存状态、降低空腹血糖、且在降低血糖的同时降低血脂的作用,而罗格列酮具有良好的降血糖作用,无降血脂作用。桑叶各个不同有效部位在降血糖、改善血脂方面的作用表现不一。
     2.2桑叶有效部位对2型糖尿病大鼠胰岛组织的作用及功能的影响
     研究目的:评价桑叶有效部位对2型糖尿病大鼠胰岛组织的作用及胰岛细胞的功能影响。
     研究方法:采用先饲以高脂肪饲料联合一次性腹腔注射小剂量STZ,破坏部分胰岛β细胞的造模方法建立2型糖尿病大鼠模型,接着采用桑叶总黄酮MTF、桑叶总多糖MTP、桑叶水提液MWE治疗6周,干预过程、干预方法与实验2.1中相同。于第6周各组大鼠行灌胃葡萄糖耐量OGTT试验;随后麻醉大鼠腹主动脉取全血,Elisa法测定大鼠胰岛素INS含量;测定大鼠血清MDA、SOD含量;取胰岛组织,分别再行HE染色、透射电镜观察胰岛组织病理学形态变化。
     研究结果:①胰岛HE染色显示:模型组大鼠胰岛内β细胞所剩无几,几乎成空泡状,胰岛细胞萎缩,细胞核呈密集现象,胰腺损伤严重。MTF、MTP、MWE、RSG给药组胰岛细胞较模型组明显改善。②透射电镜结果显示正常对照组大鼠β细胞位于胰岛中央,胞质内有大量的、大小不一的分泌颗粒,颗粒内有大小、形状不同的致密核芯。颗粒的电子密度高低不等,颗粒外包以界膜,核芯与界膜之间有较宽的清亮间隙。胞质内有散在的线粒体,呈圆形或细长形。其余组β细胞胞核固缩,甚至不明显,核膜凹陷,分泌颗粒数量减少,空晕增宽,甚至界膜破裂,呈现不同程度的细胞损伤;③MWE组、MTF组、MTP组及RSG组在OGTT2h时,血糖水平均低于模型组,且差异具有统计学意义(P<0.05)。④给药6周后,与NC组比较,DM组INS、MDA、SOD均存在显著性差异(P<0.05)。与DM组比较,MWE组INS、SOD升高(P<0.05),MDA无显著差异(P>0.05);MTF组INS、SOD升高,MDA降低(P<0.05);MTP组INS、SOD升高,MDA降低(P<0.05);RSG组INS、SOD升高,MDA降低(P<0.05)。
     研究结论:桑叶的各个有效部位均可增加糖尿病大鼠胰岛素分泌,对大鼠胰岛功能具有一定的修复作用。桑叶总黄酮、桑叶总多糖、桑叶水提液这三个部位之间作用没有显著差异,但从OGTT、血清胰岛素含量以及病理检查等数据看,桑叶总黄酮对2型糖尿病大鼠胰岛功能的影响更为明显。
     2.3桑叶有效部位对2型糖尿病大鼠JNK信号通路JNK、AKT、PDX-1、IRS-1mRNA表达的影响
     研究目的:探索桑叶有效部位降血糖、保护胰岛功能的作用机制及其与JNK信号通路的关系,测定桑叶有效部位对2型糖尿病大鼠JNK信号通路JNK、AKT、PDX-1、 IRS-1mRNA表达的影响。
     研究方法:采用上述方法建立2型糖尿病模型并进行干预治疗后,取大鼠胰岛组织,提取RNA并进行纯度测定。Q-PCR测定大鼠胰岛组织JNK、AKT、PDX-1、IRS-1mRNA的表达水平。
     研究结果:①与正常对照组相比较,模型组大鼠胰岛JNKmRNA的表达水平显著增加(P<0.01),AKT、PDX-1、IRS-1mRNA的表达水平显著降低(P<0.01);②与模型组比较:桑叶总多糖下调了JNKmRNA的表达(P<0.05),上调AKT、IRS-1mRNA的表达水平(P<0.01),对PDX-1mRNA的表达无显著影响;桑叶总黄酮能显著上调AKT、 PDX-1mRNA的表达(P<0.05),对IRS-1mRNA、JNKmRNA有一定的影响,但差异无显著性;桑叶水提液显著上调AKT、PDX-1、IRS-1mRNA的表达(P<0.01),对JNKmRNA表达的影响无显著差异;③罗格列酮可以显著下调JNKmRNA的表达(P<0.05),上调AKT、PDX-1、IRS-1mRNA的表达(P<0.01)。
     研究结论:桑叶总黄酮、总多糖、水提液分别对JNK信号通路JNK、AKT、PDX-1、 IRS-1靶点具有不同程度的影响,它们产生降血糖作用以及保护胰岛组织、修复胰岛功能的分子机制涉及到了JNK信号通路。
     2.4桑叶有效部位对2型糖尿病大鼠JNK信号通路JNK、AKT、PDX-1、IRS-1蛋白表达及磷酸化的影响
     研究目的:探索桑叶有效部位降血糖、保护胰岛功能的作用机制及其与JNK信号通路的关系,测定桑叶有效部位对2型糖尿病大鼠JNK信号通路JNK、AKT、PDX-1、IRS-1蛋白表达及磷酸化水平的影响。
     研究方法:采用上述方法建立2型糖尿病模型并进行干预治疗后,取大鼠胰岛组织,切取一部分于10%的PBS缓冲液甲醛固定后,切片,免疫组化检测JNK、p-JNK的表达;另一部分提取总蛋白,Western blot法检测JNK, p-JNK(Thrl83/Tyrl85), AKT, ph-AKT ser473, IRS-1, p-IRS-lser307, PDX-1在胰岛组织中的表达。
     研究结果:免疫组化结果显示JNK、p-JNK在各组胰腺中具有不同程度的表达。Western blot结果显示:与正常对照组相比较,模型组JNK、IRS-1ser30蛋白磷酸化程度显著增加(P<0.01),Aktser473磷酸化减弱(P<0.01),PDX-1蛋白表达减弱(P<0.01)。与模型组相比较:①桑叶总多糖、桑叶总黄酮、桑叶水提液显著降低JNK(Thr183/Tyr185)、IRS-1ser30磷酸化水平(P<0.01),提高PDX-1蛋白的表达(P<0.01),对Aktser473磷酸化水平无显著影响;②罗格列酮可以显著降低JNK(Thr183/Tyrl85)、IRS-1ser307磷酸化水平(P<0.01),提高PDX-1蛋白的表达(P<0.01),提高Aktser473磷酸化水平(P<0.05)。
     研究结论:桑叶总多糖、桑叶总黄酮、桑叶水提液均可降低JNK磷酸化水平,抑制JNK信号对大鼠胰岛组织的损伤。桑叶的降血糖、保护胰岛功能的作用涉及到了JNK信号通路。
Diabetes Mellitus is a common and frequently-occurring disease in many countries around the world at present, with its mortality rate has been ranked in the tumor, cardiovascular after third. The number of diabetes mellitus patients in China ranks first in the word, and about95%are type2diabetes mellitus patients. Therefore, the tasks brook of treatment of diabetes cannot delay.
     Pancreatic islet beta call dysfunction and the insulin resistance of peripheral tissue are two key factors of the pathogeny of type2diabetes. C-Jun NH2-terminal kinase (JNK) is a key number of the super family of mitogen activated protein kinase (MAPK), the family also includes ERK and p38. JNK signaling pathway is an important pathway in the pathogeny of type2diabetes. In pancreatic cells in type2diabetes mellitus, oxidative stress can lead to the activation of JNK and insulin signaling pathway of nucleus damaged, therefore the insulin gene expression level decreased, cause destruction of insulin synthesis. In addition phosphorylation of IRS-lser307induced by the activation of JNK, leading to insulin resistance. Mulberry leaf and its effective components have been reported to have good effect of reducing blood glucose, but its hypoglycemic mechanism is rarely reported. JNK signaling pathway is an important pathway involved in pathogeny of diabetes mellitus. Is there exists close correlation between the therapeutic effect of mulberry leaf on diabetes and JNK signaling pathway? That is a question we must answer in this paper.
     1. Literature study
     This part is a comprehensive literature review on the pathogenesis associated with type2diabetes mellitus and currents status of TCM in the treatment of type2diabetes researches. Based on this, the theoretical foundation of this research was offered. We mainly reviewed the following respects:1.Current situation of diabetes epidemiology and the progress in research on the pathogenesis of diabetes mellitus;2. Current situation of TCM and its effective components in the treatment of type2diabetes;3. Research progress on hypoglycemic effects and mechanism of the effective component of mulberry leaves;4. Current research on the important relationship between JNK signaling pathway and T2DM;5. Research progress on microRNAs associated with T2DM.
     2. Experimental study
     2.1Effect of mulberry leaves effective extracts on glucose and lipid metabolism in T2DM rats.
     Objective
     Establish rat model of type2diabetes mellitus (T2DM), study the effect of total flavones, total polysaccharide and water extracts of mulberry leaves on glucose and lipid metabolism in T2DM rats.
     Methods
     SD rats were randomly divided into one normal control group (group NC, n=8)and one diabetes mellitus group(DM), the T2DM rats model were induced by feeding with high-sugar and high-lipid fodder for8weeks and a single intraperitoneal injection of streptozotocin (STZ), the successful models were divided into5groups at random:diabetes mellitus model group(DM), diabetes with Mulberry leaves flavones extract (30mg·kg-1) treatment group (MTF), diabetes with mulberry leaves polysaccharide extract (100mg·kg-1) treatment group (MTP), diabetes with mulberry leaves aqueous extract (6g·kg-1) treatment group(MWE), diabetes with rosiglitazone (4mg·kg-1)treatment group (RSG),10rats per group. The drug was administered by intragastric administration for6weeks, and the rats were measured the fasting plasma glucose level weekly. Afterwards, the blood plasma was collected by the abdominal aortic method in these anesthetized rats and measure NEFA, CHO, TC levels. The function of islets and fat levels in the blood were evaluated.
     Results
     (1) Compare with NC group rats, the DM group rats show polydipsia, excretion, hyperglycemia, hyperlipemia symptoms, and later weight loss, consistent with the clinical features of T2DM.(2) After6weeks of treatment, the body weight of the NC group rats increased, and compared with NC group the DM group rat decreased with statistical significance (P<0.01);Compared with DM group, the body weight of MWE、MTP、MTF group rats were heavier(P <0. OlorO.05).(3) The FBG level of MTF and MTP group in the4th week and MWE group in the5th week began to decrease; the data were significantly different compared with the moment without drug treatment (P<0.05).(4) The measurements of NEFA、TG、CHO of DM group had significant difference with the NC group after the treatment for6weeks (P<0.05), meanwhile, in the MWE group, the TG, CHO levels decreased compared with the DM group (P<0.05), there was no significant difference in the NEFA levels (P>0.05); The levels of TG、 CHO reduced (P<0.05), there was no significant difference in NEFA level (P>0.05);The levels of TG declined in the MTP group (P<0.05), there was no significant difference in the NEFA and CHO group (P>0.05);In the RSG group, there was no significant difference between them (P>0.05)
     Conclusion
     The T2DM rat model we established can meet the experimental requirements. Each mulberry leaves effective extracts could reduce fasting blood glucose and improve the living condition; meanwhile, they had the effects of decreasing blood glucose, reducing the blood lipid at the same time. Rosiglitazone has good effect on lowering the blood glucose but could not reduce the blood lipid. Furthermore, each effective parts of mulberry leaf had different performances in the aspects of decreasing the blood glucose and the blood lipid.
     2.2Effect of mulberry leaves effective extracts on protecting pancreata and its function in T2DM rats.
     Objective
     To estimate the effect of different parts of mulberry leaves effective extracts on islet tissue and islet cell function in T2DM rats.
     Methods
     Used the same T2DM rat model and treatments as the above we established. The glucose tolerance factor (OGTT assay) was evaluated in the6th week, afterwards, the blood plasma were collected by the abdominal aortic method in these anesthetized rats and measure INS, SOD and MDA levels, the function of islets in the blood and anti-oxidative ability were evaluated accordingly, finally, took islet tissue to observe the changes in morphology and pathology under a light microscope and a transmission electron microscope (TEM).
     Results
     (1)The islet HE staining showed that islet beta cells seldom exist and were almost vacuolar, the islet cells atrophied and cell nuclear were condensed, meanwhile, the pancreas were severely damaged, however, the MTF、MTP、MWE、 RSG levels of pancreas cells in the medicated group improved significantly compared the DM group.(2)The islet TEM told us that β cells were in the center of islet for NC group rats, there was a large number of different size of secretory granules stockpiling in the cytoplasm. In these granules we saw a lot of dense core in all shapes and size. The electron density of granule was not on the same height, and limiting membrane wrapped outside the granules. There was a clear and wide gap between the dense core and limiting membrane. Mitochondria scattered in cytoplasm, round or elongated. The cell nucleus of other groups showed different degrees of pykonsis and cell damage.(3) The blood sugar levels of the MWE, MTF, MTP and RSG groups were lower than those of model group in OGTT2h and had statistical significance (P<0.05).(4) The measurements of INS、SOD、MDA of DM group had significant difference with the NC group after the treatment for6weeks (P<0.05),meanwhile, in the. MWE group, the INS and SOD level increased compared with the DM group (P<0.05) there was no significant difference in the MDA levels (P>0.05);The INS and SOD level of MTF group elevated and the levels of MDA reduced (P<0.05); The INS、SOD level increased while the levels of MDA declined in the MTP group (P<0.05), so did RSG group.
     Conclusion
     Each effective parts of mulberry leaves can increase secretion of insulin and had repair effect on islet function in diabetic rats. There was no significant difference between these three effective extracts. But from the OGTT, the serum insulin level and pathological examination data, effect of mulberry leaves total flavonoids on islet function in T2DM rats was more obvious.
     2.3Effect of mulberry leaves effective extracts on the expression of JNK、 AKT、PDX-1、IRS-1mRNA in T2DM rats.
     Objective
     To investage the mechanism of mulberry leaves effective extracts hypoglycemic, protect the islet function and its relationship with JNK signaling pathway, determine the effect on JNK、AKT、PDX-1、IRS-1mRNA expression of mulberry leaves effective extracts in T2DM rats.
     Methods
     Used the same T2DM rat model and treatments as the above we established. Took islet tissue to extract total RNA and then determine its purity, meanwhile measure the expression of islet tissue of rat with JNK、AKT、PDX-1、IRS-1mRNA by Q-pcr.
     Results
     (1) Compared with NC group, the expression level of JNK mRNA in DM group rat islet significantly increased (P<0.01), and AKT、PDX-1、IRS-1mRNA significantly decreased (P<0.01).(2)Compared with DM group, mulberry leaves total polysaccharide down regulated the expression of JNK mRNA (P<0.05), up-regulated the expression of AKT、IRS-1mRNA (P<0.01), and with no significant effect on PDX-1mRNA expression; mulberry leaves total flavonoids could significantly up-regulate the expression of AKT and PDX-1mRNA(P<0.05), had a certain effect on IRS-1mRNA and JNK mRNA, though there was no significant differences exit; mulberry leaves water extraction down regulated the expression of AKT、PDX-1and IRS-1mRNA (P<0.01), and with no significant effect on JNK mRNA expression;(4) Rosiglitazone had a significant effect on down regulating JNK mRNA expression (P<0.01) and up-regulating AKT、PDX-1and IRS-1mRNA expression (P<0.01)
     Conclusion
     JNK, AKT、PDX-1and IRS-1target of JNK signaling pathway were affected by mulberry leaves total polysaccharide, total flavonoids and water extraction to varying degrees. We believe their molecular mechanism of hypoglycemic activity, protection of islet tissue and repair effect of islet function has business with JNK signaling pathway.
     2.4Effect of mulberry leaves effective extracts on the expression of JNK、 AKT、PDX-1、IRS-1protein expression and phosphorylation in T2DM rats.
     Objective
     To explore the mechanism of mulberry leaves effective extracts hypoglycemic, protect the islet function and its relationship with JNK signaling pathway, determine the effect on JNK、AKT、PDX-1、IRS-1protein expression and phosphorylation of mulberry leaves effective extracts in T2DM rats.
     Methods
     Used the same T2DM rat model and treatments as the above we established. Took islet tissue, cut a small piece then fixed by formalin and embedded by paraffin, afterwards sliced, detected the expression of JNK, p-JNK by immunohistochemistry (IHC); The rest to extract total protein and then determine its purity, meanwhile examined the expression of JNK, p-JNK (Thr183/Tyr185), AKT, p-AKT ser473, IRS-1, p-IRS-lser307, PDX-1in rat islet tissue by western blot.
     Results
     IHC showed that JNK, p-JNK has different degrees of expression in each group in the pancreas. Western blot showed that:compared with NC group, phosphorylation of JNK and IRS-lser307in DM group increased significantly(P <0.01), phosphorylation of Aktser473decreased (P<0.01) and the expression of PDX-1decreased (P<0.01). Compared with DM group:(1) mulberry leaves total polysaccharide, total flavonoids and water extraction could significantly decrease level of the phosphorylation of JNK (Thrl83/Tyrl85). IRS-1ser307(P <0.01), increase the expression of PDX-1(P<0.01), have no notable effect on the phosphorylation of Aktser473;(2) Rosiglitazone could significantly reduce the level of JNK (Thr183/Tyrl85)、IRS-lser307phosphorylation (P<0.01), increase the level of PDX-1expression (P<0.01) and Aktser473phosphorylation(P<0.05).
     Conclusion
     Mulberry leaves total polysaccharide, total flavonoids and water extraction could reduce the level of JNK phosphorylation, protect the pancreatic tissue from JNK damage. The hypoglycemic activity, protecting islet function of mulberry leaves related to JNK signaling pathway.
引文
[1]G. Roglic.糖尿病的流行情况[J].国外医学内分泌学分册,2002,22(6):347
    [2]People's daily online. China has annual increase of 1.2 million diabetes patients[EB/OL]. http//english.peopledaily.com.cn/200011/14/eng2000114_55162.html,2008-02-29.
    [3]Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature,2001,414:799.
    [4]赵斌.JNK通过抑制胰岛素信号通路介导了高糖和软脂酸诱导的胰岛β细胞凋亡[D].上海交通大学博士学位论文.2008,1:1-3.
    [5]Tyrberg B, Levine F. Current and future treatment strategies for type 2 diabetes:the beta-cell as a therapeutic target. Curr Opin Investig Drugs, 2001,2:1568.
    [6]南京中医药大学.中药大辞典[M].上海:上海科学技术出版社,2006.
    [7]CHEN J J, LI X R. Hypolipidemic effect of flavonoids from mulberry leaves in triton WR-1339 induced hyperlipidemic mice[J]. Asia Pac J Clin Nutr,2007,16 (1):290-294.
    [8]BYAMBAA E, KUNINORI S, TAKUYA K, et al. Mulberry (Morus alba L.) leaves and their major flavonol quercetin 3-(6-malonylglucoside) attenuate atherosclerotic lesion development in LDL receptor-deficient mice[J]. Biochemical and Molecular Actions of Nutrients,2005,135:729-734.
    [9]陈建国,来伟旗,步文磊,等.桑叶多糖调节血糖及其作用机制的实验研究[J].中国预防医学杂志,2009,10(12):1126-1128.
    [10]KONG W H, OH S H, AHN Y R, et al. Antiobesity effects and improvement of insulin sensitivity by 1-deoxynojirimycin in animal models[J]. J Agric Food Chem,2008,56:2613-2619.
    [11]TSUYOSHI T, YUMIKO N, TARO H, et al. Intake of 1-Deoxynojirimycin Suppresses Lipid Accumulation through Activation of the β-Oxidation System in Rat Liver[J]. J Agric Food Chem,2009,57:11024-11029.
    [12]Weston C. R, Lambright DG, Davis RJ. Signal transduction. MAP kinase signaling specificity. Science,2002,296:2345.
    [13]Kaneto H, Xu G, Song KH, et al. Activation of the hexosamine pathway leads to deterioration of pancreatic β cell function through the induction of oxidative stress. J Biol Chem,2001,276:31099.
    [14]. Michael G. Roper, Wei-jun Qian, Bei B. Zhang, et al. Effect of the Insulin Mimetic L-783,281 on Intracellular [Ca2+] and Insulin Secretion From Pancreatic β-Cells. Diabetes,2002,51:S43-S49.
    [15]中华医学会糖尿病学会.中国糖尿病防治指南[M].北京:北京大学医学出版社,2004:2-3,5-6,9-12.
    [16]Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature,2001,414:799
    [17]赵斌.JNK通过抑制胰岛素信号通路介导了高糖和软脂酸诱导的胰岛β细胞凋亡[D].上海交通大学博士学位论文.2008,1:1-3.
    [18]Tyrberg B, Levine F. Current and future treatment strategies for type 2 diabetes:the beta-cell as a therapeutic target. Curr Opin Investig Drugs, 2001,2:1568.
    [19]邓尚平.临床糖尿病学仁[M].四川科学技术出版社,2000:31.
    [20]林兰.中西医结合糖尿病学[M].北京:中国医药科技出版社,1999:71-72.
    [21]Reaven GM. Role of insulin in human disease[J]. Diabetes,1988, 37(12):1595-1607.
    [22]Dickson LM, Rhodes CJ. Pancreatic β-cell growth and survival in the onset of type 2 diabetes:a role for protein kinase B in the Akt? Am J Physiol Endocrinol Metab 2004;287:E192-E198.
    [23]Anita M. Hennige, Deborah J. Burks, Umut Ozcan, et al. Upregulation of insulin receptor substrate-2 in pancreaticβ cells prevents diabetes. J. Clin. Invest,2003,112:1521-1532.
    [24]Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H. Glucose toxicity in beta-cells:type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes,2003,52:581-587.
    [25]Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappa B. Nat Med, 2005,11:183-190.
    [26]Kaneto H, Xu G, Song KH, et al. Activation of the hexosamine pathway leads to deterioration of pancreatic β cell function through the induction of oxidative stress. J Biol Chem,2001,276:31099.
    [27]Storling J, Zaitsev SV, Kapelioukh IL, et al. Calcium has a permissive role in interleuk in-beta-induced c-jun-N-terminal kinase activation in insulin cells. Endocrinology,2005:146(7):3026-3036.
    [28]Arkan MC, Hevener AL, Greten FR, et al, IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med,2005,11:191-198.
    [29]Newsholme P, Haber EP, Hirabara SM, Rebelato EL, et al. Diabetes associated cell stress and dysfunction:role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol,2007,583:9-24.
    [30]Izumi T, Yokota-Hashimoto H, Zhao S, et al, Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. Diabetes,2003,52:409-416.
    [31]Araki E, Oyadomari S, Mori M, et al, Endoplasmic reticulum stress and diabetes mellitus. Intern Med,2003,42:7-14.
    [32]Lowell BB, Shulman GI,Mitochondrial dysfunction and type 2 diabetes. Science,2005,307:384-387.
    [33]Kaneto H, Xu G, Fujii N, et al. Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J Biol Chem,2002,277:30010.
    [34]张秋梅,张哲,于德民,等.人参糖肽治疗2型糖尿病的临床观察[J].中国现代医学杂志,2003,13(6):59-62.
    [35]李世辉,魏影飞,周慧敏,等.人参皂甙Rgl对2型糖尿病患者高凝状态作用的临床观察[J].中华实用中西医杂志,2004,4(17):702-703.
    [36]李世辉,魏影飞.人参皂甙Rgl对2型糖尿病患者细胞免疫功能的影响[J].中华实用中西医杂志,2004,4(17):2321-2322.
    [37]刘祥秀,孔德明,张雅丽.单味中药黄芪对胰岛素抵抗并高血压防治作用的实验研究[J].贵阳中医学院学报,2005,27(1):22-25.
    [38]朱章志,黄从强,何敏.健脾益气中药对脾气虚证2型糖尿病大鼠胰岛素受体的影响[J].中药新药与临床药理,2004,15(2):107-109.
    [39]于震,王军,李更生,等.地黄甙D滋阴补血和降血糖作用的实验研究[J].辽宁中医杂志,2001,28(4):240-242.
    [40]张汝学,顾国明,张永祥,等.地黄低聚糖对实验性糖尿病与高血糖大鼠糖代谢的调节作用[J].中药药理与临床,1996,14-17.
    [41]黄智璇,欧阳蒲月.灵芝多糖降血糖作用的研究[J].亚太传统医药,2008,4(8):24.
    [42]董英,张慧慧.苦瓜多糖降血糖活性成分的研究[J].营养学报,2008,30(1):54.
    [43]Zhang G Q, Huang Y D, Bian Y, et al. Hypoglycemic activity of the fungi Cordyceps militaris, Cordyceps sinensis, Tricholoma mongolicum, and Omphalia lapidescens in streptozotocin-induced diabetic rats [J]. Microbiol Biotechnol, 2006,72,1152.
    [44]刘霄.巴戟天多糖的降血糖和抗氧化作用研究[J].中药材,2009,32(6):949.
    [45]魏守蓉,薛寸宽,何学斌,等.绞股蓝多糖降血糖作用的实验研究[J].中国老年学杂志,2005,25:418.
    [46]公惠玲,李卫平,尹艳艳,等.黄精多糖对链脲菌素糖尿病大鼠降血糖作用及其机制探讨[J].中国中药杂志,2009,24(9):1149.
    [47]黄桂红,邓航,黄纯真,等.杨桃根多糖对糖尿病小鼠降血糖作用的实验研究[J].中成药,2009,31(9):1438.
    [48]李健,张令文,黄艳,等.苦瓜总皂苷降血糖及抗氧化作用的研究[J].食品科学,2007,28(9):518.
    [49]张俐勤,戚向阳,陈维军,等.罗汉果皂苷提取物对糖尿病小鼠血糖、血脂及抗氧化作用的影响[J].中国药理学通报,2006,22(2):237.
    [50]高昌琨,高健,徐先祥.麦冬总皂苷对实验性高血糖小鼠的降糖作用[J].中国实验方剂学杂志,2007,13(5):33.
    [51]胡翠华.人参二醇组皂苷对大鼠实验性2型糖尿病的影响[J].吉林大学学报,2003,3(1):80.
    [52]苗明三,孙艳红,纪晓宁,等.玉米须总皂苷对四氧嘧啶加葡萄糖所致小鼠病因性糖尿病模型的影响[J].中华中医药杂志,2007,22(3):181.
    [53]王定勇,冯玉静,陈铭祥.广东匙羹藤总皂苷降血糖作用的实验研究[J].中医药导报,2008,14(2):16.
    [54]李琳琳,张月明,王雪飞,等.胡芦巴粗提物对血糖和血脂作用的实验研究[J].新疆医科大学学报,2005,28(2):98-101.
    [55]毕会民,邓向群,张妍,等.胰岛素抵抗大鼠骨骼肌超微结构改变及葛根素治疗的效果[J].中华糖尿病杂志,2005,13(2):95-97.
    [56]李向荣,龙宇红,方晓.桑叶提取液对实验性糖尿病大鼠血糖、LPO含量及SOD水平的影响[J].中国老年学杂志,2003,23(2):101-103.
    [57]Narasimhanaidu Kamalakkannan, Ponnaian Stanely, Mainzen Prince. Anti-hyperglycaemic and Antioxidant Effect of Rutin, a Polyphenolic Flavonoid, in Streptozotocin Induced Diabetic Wistar Rats[J]. Basic & Clinical Pharmacology & Toxicology,2006,98,97.
    [58]樊秋菊.九里香叶总黄酮降血糖作用的研究[J].吉林大学学报,2008:108.
    [59]张立.杨梅苷对四氧嘧啶模型小鼠降血糖作用的初步研究[J].中国现代药物应用,2009,3(15):29.
    [60]Yolanda Y. Perez, Enrique Jimenez-Ferrer, Alejandro Zamilpa, et al. Effect of a Polyphenol-Rich Extract from Aloe vera Gel on Experimentally Induced Insulin Resistance in Mice[J]. American J Chinese Medicine,2007,35(6), 1037.
    [61]唐红,沈艳.黄连素对不同中医证型2型糖尿病降糖作用临床研究[J].上海中医药杂志,2008,42(12):22.
    [62]耿鹏,朱元元,杨洋,等.桑枝生物碱与儿茶素的降血糖作用[J].中草药,2007,38(8):1228.
    [63]钱东生,罗琳,何敏,等.山茱萸乙醇提取液对Ⅱ型糖尿病大鼠的治疗效应[J].南通医学院学报,2000,20(4):337-339.
    [64]胡宗礼,舒思洁,洪爱蓉,等.山茱萸对糖尿病小鼠血糖和组织糖原含量的影响[J].1999,13(1):12-14.
    [65]方志伟,刘非,付井成,等.地骨皮降血糖作用的实验研究[J].中医药学报,2004,32(4):47-48.
    [66]王晋南,武士芬.芪参降糖胶囊改善2型糖尿病胰岛素抵抗的临床观察[J].世界中西医结合杂志,2007,2(6):348.
    [67]熊曼琪,林安钟,朱章志,等.加味桃核承气汤对2型糖尿病大鼠胰岛素抵抗的影响[J].中国中西医结合杂志,1997,17(3):165-168.
    [68]徐卫东,林君如,朱姗颖,等.复方苦瓜饮对2型糖尿病大鼠模型胰岛素抵抗的影响[J].江苏大学学报:医学版,2003,13(2):99-100
    [69]翟茜,李保应,高海青,等.葡萄子原花青素对糖尿病大鼠主动脉载脂蛋白A-I表达的影响.山东大学学报(医学版),2009,47(6):1-4,19
    [70]罗蕾,刘红.灯盏花素对2型糖尿病大鼠肾脏肥大的抑制作用与机制研究.时珍国医国药,2009,20(1):86-87
    [71]陈秋,朱玉霞,张蓉,等.蜕皮甾酮对胰岛素抵抗HepG2细胞胰岛素信号转导蛋白表达的影响.江苏医药,2009,35(3):311-313,374
    [72]宋光耀,王敬,曲东明,等.银杏叶提取物对胰岛素抵抗大鼠骨骼肌蛋白激酶B表达的影响.中国全科医学,2009,12(6):455-457
    [73]公惠玲,李卫平,尹艳艳,等.黄精多糖对链脲菌素糖尿病大鼠降血糖作用及其机制探讨.中国中药杂志,2009,34(9):1149-1154
    [74]赵小萍,曾嵘,王俭勤,等.大黄素对高糖介导的大鼠NRK52E TSPl和TGF-β1表达的影响.中国民族民间医药,2009,18(14):1-3
    [75]SUN Y K, LIAN L G, WON C L, et al. Antioxidative Fiavonoids from the Leaves of Morus alba [J]. Arch Pharm Res,1999,22(1):81-85.
    [76]邱进,王晓静,王元书,等.桑叶化学成分的研究[J].中成药,2008,30(9):1-2.
    [77]PAOLA D, PAOLA D, FRANCESCO C, et al. Characterization of the polyphenolic fraction of morus alba leaves extracts by hplc coupled to a hybrid IT-TOF MS system[J]. J Sep Sci,2009,32:3627-3634.
    [78]ZHANG X Q, YING J, WANG G C, et al. Four new flavonoids from the leaves of Morus mongolica [J]. Fitoterapia,2010,81 (7):813-815.
    [79]杨燕,王洪庆,陈若芸.桑叶中的黄酮类化合物[J].药学学报,2010,45(1):77-81.
    [80]刘兰,夏玮,姬宁.桑叶多糖提取纯化工艺初探[J].贵州林业科技.2010,38(3):45-48.
    [81]夏玮,沈芳红,王顺春,等.桑叶多糖MPA-1的分离纯化和结构性质[J].华东理工大学学报,2009,35(4):587-591.
    [82]赵明,王佩香,于小风,等.桑叶多糖PMP11的分离纯化及结构初探[J].中国药房,2010,21(35):3324-3327.
    [83]赵明,常珏,王佩香,等.桑叶多糖PMP12的分离纯化及结构初探[J].江苏大学学报,2010,20(2):153-157.
    [84]吕庆,夏玮,张文清,等.桑叶多糖的分离纯化与分析[J].食品与发酵工业,2007,33(7):167-170.
    [85]欧阳臻,陈钧,李永辉.桑叶多糖的分离纯化及组成研究[J].食品科学,2005,26(3):181-184.
    [86]KIYOTAKA N, KENTA 0, OHKI H, et al. Determination of iminosugars in mulberry leaves and silkworms using hydrophilic interaction chromatography-tandem mass spectrometry [J]. Analytical Biochemistry,2010,22(1):217-222.
    [87]NAOKI A, TORU Y, KAYO Y, et al. Polyhydroxylated alkaloid isolated from mulberry trees (morus alba 1.) and silkworms (Bombyx mori L.) [J]. J Agric Food Chem,2001,49:4208-4213.
    [88]李向荣,陈菁菁,刘晓光,等.桑叶总黄酮对高脂血症动物的降血脂效应[J].中国药学杂志,2009,44(21):1630-1634.
    [89]陈玲玲,刘炜,陈建国,等.桑叶总黄酮对糖尿病小鼠降血糖作用的研究[J].海峡药学,2010,22(9):24-28.
    [90]任丽平,李先佳,宗自卫,等.桑叶黄酮和多糖对Ⅱ型糖尿病的影响[J].中国医药导报,2008,10(6):916-918.
    [91]陈建国,来伟旗,步文磊,等.桑叶多糖调节血糖及其作用机制的实验研究[J].中国预防医学杂志,2009,10(12):1126-1128.
    [92]YoshiakiA, HivomuM. The structure of moranoline, apiperidine alkaloid from morus species. Nippon Nogei KagakuKaishi,1976,50(11):571-572.
    [93]原爱红,马骏,蒋晓峰,等.桑叶中糖苷酶抑制活性组分的筛选及体外活性研究[J].统计大学学报,2005,26(4):8-12.
    [94]KONG W H, OH S H, AHN Y R, et al. Antiobesity effects and improvement of insulin sensitivity by 1-deoxynojirimycin in animal models [J]. J Agric Food Chem,2008,56:2613-2619.
    [95]Kimura M, Chen F. Antihyperglycemic effects of N-containing sugars derived from mulberry leaves in streptozoc induced diabetic-mice [J]. Wakanly akugaku Zasshi 1995,12(1):214-219.
    [96]PARK MY, LEE KS, SUNG MK. Effects of dietary mulberry, Korean red ginseng, and banaba on glucose homeostasis in relation to PPAR-a, PPAR-Y, and LPL mRNA expressions [J]. Lif Sci,2005,77:3344-3354.
    [97]方飞,罗明俐,苏楠,吴新荣.桑叶提取物对胰岛素抵抗HepG2细胞葡萄糖摄取的影响及其分子机制.药学学报,2012,47(11):1452-1456,2012.
    [98]朱玉霞,邹德平,刘学鹏,等.桑叶黄酮对2型糖尿病大鼠胰岛素抵抗影响的研究[J].四川医学,2008,29(9):1114-1116.
    [99]吕欢,罗明琍,方飞,吴新荣.桑叶提取物对体外α-葡萄糖苷酶活性的影响[J].时珍国医国药,2012,23(1):41-42.
    [100]陈建国,来伟旗,步文磊,等.桑叶多糖调节血糖及其作用机制的实验研究[J].中国预防医学杂志,2009,10(12):1126-1128.
    [101]XIAO M, TATSURO E, HAJIME K, et al. Berberine induced activation of 5-adenosine monophosphate-activatedprotein kinase and glucose transport in rat skeletal muscles [J]. Metab Clin Exp,2010:1619-1627.JNK信号通路与2型糖尿病
    [102]Weston C.R, Lambright DG, Davis RJ. Signal transduction. MAP kinase signaling specificity. Science,2002,296:2345.
    [103]Manning AM, Davis RJ. Targeting JNK for therapeutic benefit:from junk to gold [J].Nat Rev Drug Discov,2003,2 (7):554-565.
    [104]Johnson GL, Nakamura K. The c-jun kinase/stress-activated pathway: regulation, function and role in human disease, Biochim Biophys Acta-Mol Cell Res,2007,1773(8):1341-1348.
    [105]Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature,2002,420:333.
    [106]Davis R.J. Signal transduction by the JNK group of MAP kinases. Cell, 2000,103:239.
    [107]Shen H-M, Z-g. Liu. JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radical Biology&Medicine,2006,40:928.
    [108]KONG W H, OH S H, AHN Y R, et al. Antiobesity effects and improvement of insulin sensitivity by 1-deoxynojirimycin in animal models[J]. J Agric Food Chem,2008,56:2613-2619.
    [109]White MF. Insulin signaling in health and disease. Science,2003, 302:1710.
    [110]Schubert M, Brazil DP, Burks DJ, et al. Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci,2003,23:7084.
    [111]Lee K, Tirasophon W, Shen X, et al. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev,2002,16:452
    [112]Aguirre V, Uchida T, Yenush L, et al. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem,2000,275:9047.
    [113]Kaneto H, Xu G, Fujii N, et al. Involvement of c-J un N-terminal kinasein oxidative stress-mediated suppression of insulin gene expression. J Biol Chem,2002,277:30010. [16]
    [114]McGarry JD, Dobbins RL. Fatty acids, lipotoxicity and insulin secretion. Diabetologia,1999,42:128.
    [115]Kaneto H, Xu G, Song KH, et al. Activation of the hexosamine pathway leads to deterioration of pancreatic β cell function through the induction of oxidative stress. J Biol Chem,2001,276:31099.
    [116]White MF. Insulin signaling in health and disease. Science,2003, 302:1710
    [117]Zhao Bin. High glucose and palmitate-induced pancreatic β cell apoptosis is mediated by JNK activation via inhibition of insulin signaling[D]. Shanghai Jiao Tong University,2008,1:6.
    [118]Julieta DD, M onica M, Carme C. Hypoglycemic Action of Thiazolidinediones/Peroxisome Proliferator-Activated Receptor y by Inhibition of the c-Jun NH2-Terminal Kinase Pathway[J].Diabetes, 2007,56:1865-1872.
    [119]刘光宇,安振梅.罗格列酮钠保护STZ糖尿病大鼠胰岛β-细胞及对JNK信号通路的影响研究[J].四川大学学报(医学版),2009,40(3):430-434.
    [120]窦家庆,章秋,鲁云霞,等.吡格列酮对糖尿病大鼠肝脏及JNK表达的影响[J].安徽医药,2010,14(2):146-150.
    [121]Tang X, Muniappan L, Tang G, et al. Identification of glucose-regulated miRNAs from pancreatic β cells reveals a role form iR-30d in insulin transcription [J]. RNA,2009,15(2):287-293.
    [122]RoggliE, B ritan A, Gattesco S, et al. Involvement of microRNAs in the cytotoxic effects exerted by proinllammatory cytokines on pancreatic beta-cells[J]. Diabetes,2010,59(4):978-986.
    [123]Lovis P, Gat tesco S, Regazzi R. Regu lat ion of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs [J].Biol Chem,2008,389(3):305-312.
    [124]Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion [J]. Nature,2004,432(7014):226-230.
    [125]Michael S, Barry JG, Timon WH, Type 2 diabetes:principles of pathogenesis and therapy. Lancet,2005,365:1333-1346.
    [126]He A, Zhu L, Gupta N, et al. Overexpression of micro ribonucleic acide 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T2-L1 adipocytes. Mol Endocrinol,2007,21:2785-2794.
    [127]Xie H, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes, 2009, Feb.
    [128]Xiao J, Luo X, Lin H, et al. MicroRNA miR-133 represses HERG K+channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem, 2007,282:12363-12367.
    [129]Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acadd Sci USA,2007,104:3432-3437.
    [130]张国铎,谢丽,等.延胡索总碱对人肝癌细胞系HepG2抑制作用及其对microRNA表达谱的影响[J].南京中医药大学学报,2009,25(3):181-184.
    [131]刘锐锋,何相伟,等.小檗碱对心肌细胞microRNA24的干预作用及其可能机制[J].中国分子心脏病学杂志,2011.11(6):365-369.
    [132]李娟娥,王磊,秦灵灵,刘铜华.自发性2型糖尿病啮齿类动物模型研究概况[J].中国实验方剂学杂志,2010,16(6):267-5.
    [133]Chalkley S M, Hettiarachchi M, Chisholm D J, et al. Long term high-fat feeding leads to severe insulin resistance but not diabetes in Wistar rats[J]. Am J Physiol Endocrinol Metab,2002,282:E1231-8.
    [134]殷峻,陈名道,周丽斌,等.长程高脂饮食对实验大鼠糖尿病形成的影响[J].中国医师杂志,2004,6:47-49.
    [135]田爱平,郭赛珊,申竹芳.高脂饲料与胰岛素抵抗动物模型[J].中国药理学通 报,2006,22(3):267-9.
    [136]刘光宇,安振梅.罗格列酮钠保护STZ糖尿病大鼠胰岛β-细胞及对JNK信号通路的影响研究[J].四川大学学报医学版,2009,40(3):430-434.
    [137]Ronald B. Goldberg, Meng H. TAN, David M. Kendall, etal. A Comparison of Lipid and Glycemic Effects of Pioglitazone and Rosiglitazone in Patients With Type 2 Diabetes and Dyslipidemia[J]. Diabetes Care 2005,28:1547-1554.
    [138]McCord JM, Keele BB, Jr., Fridovich I. An enzyme-based theory of obligate anaerobiosis:the physiological function of superoxide dismutase[J]. Proc Natl Acad Sci USA,1971,68(5):1024-1027.
    [139]Ilhan N, Halifeoglu I, Ozercan HI. Tissue malondialdehyde and adenosine triphosphatase level after experimental liver ischaemia-reperfusion damage[J]. Cell Biochem Funct,2001,19(3):207-212.
    [140]TSUYOSHI T, YUMIKO N, TARO H, et al. Intake of 1-Deoxynojirimycin Suppresses Lipid Accumulation through Activation of the β-Oxidation System in Rat Liver[J]. J Agric Food Chem,2009,57:11024-11029.
    [141]何跃,陈洁,袁援生.JNK信号通路在临床研究中的进展[J].医学综述,2010,16(4):507-510.
    [142]Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature,2002,420:333.
    [143]Kaneto H, Xu G, Fujii N, et al. Involvement of c-J un N-terminal kinasein oxidative stress-mediated suppression of insulin gene expression. J Biol Chem,2002,277:30010.
    [144]CHEN J J, LI X R. Hypolipidemic effect of flavonoids from mulberry leaves in triton WR-1339 induced hyperlipidemic mice[J]. Asia Pac J Clin Nutr,2007,16(1):290-294.
    [145]陈建国,来伟旗,步文磊,等.桑叶多糖调节血糖及其作用机制的实验研究[J].中国预防医学杂志,2009,10(12):1126-1128.
    [146]Tsuyoshi T, Yumiko N, Taro H, etal. Intake of 1-Deoxynojirimycin Suppresses Lipid Accumulation through Activation of the β-Oxidation System in Rat Liver [J]. J Agric Food Chem,2009,57:11024-11029.
    [147]王慧敏,都健.JNK信号转导通路与2型糖尿病[J].国际内科学杂志,2009,36(3):128-132.
    [148]赵斌.JNK通过抑制胰岛素信号通路介导了高糖和软脂酸诱导的胰岛β细胞凋亡[D].上海交通大学硕士学位论文,2008.
    [149]Weston C. R, Lambright DG, Davis RJ. Signal transduction. MAP kinase signaling specificity. Science,2002,296:2345
    [150]Kaneto H, Xu G, Song KH, et al. Activation of the hexosamine pathway leads to deterioration of pancreatic β cell function through the induction of oxidative stress. J Biol Chem,2001,276:31099.
    [151]Michael G. Roper, Wei-jun Qian, Bei B. Zhang, et al. Effect of the Insulin Mimetic L-783,281 on Intracellular [Ca2+] and Insulin Secretion From Pancreatic β-Cells.Diabetes,2002,51:S43-S49.
    [152]Hideaki K, Taka-aki M, Takeshi M, et al. PDX-1 functions as a master factor in the pancreas[J]. Frontiers in Bioscience,2008,13:6406-6420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700