用户名: 密码: 验证码:
泛素化与类泛素(SUMO)化在甲壳动物免疫反应中的功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲壳动物养殖业是我国重要的出口创汇产业。然而,自1992年白斑综合征病毒(White Spot Syndrome Virus, WSSV)病的爆发,给我国乃至世界的水产养殖带来巨大的经济损失。因此,对参与病毒感染和复制的宿主蛋白进行鉴定和功能分析,对预防和控制病毒性疾病有重要的意义。泛素化和SUMO化都需要激活酶E1,结合酶E2和连接酶E3的参与,从而对靶蛋白进行特异性修饰。尽管类泛素SUMO的三维结构和酶促反应过程与泛素非常形似,但两类蛋白修饰的生物学意义却迥然不同。本研究选择对虾泛素结合酶和小龙虾SUMO结合酶,分别研究他们介导的泛素化和SUMO化在病毒感染和复制中的功能,进而阐明甲壳动物与白斑病毒相互作用的分子机理。
     1.中国明对虾泛素结合酶E2(FcUbc)介导白斑综合征病毒含有RING结构域蛋白的泛素化,并抑制病毒的复制
     我们从中国明对虾(Fenneropenaeus chinensis)中克隆得到了一个泛素结合酶E2,命名为FcUbc。FcUbc的cDNA全长967bp,其中开放阅读框447bp,编码148个氨基酸,包含一个泛素结合酶E2催化结构域(UBCc)。FcUbc特异性的分布于对虾肝胰腺和小肠中,在受到白斑病毒刺激后,都呈现出上调表达的趋势。在大肠杆菌(Escherichia coli)中重组表达并纯化了FcUbc,用重组蛋白制备的多克隆抗体进行免疫组化分析,结果显示内源FcUbc蛋白定位于肝胰腺的B细胞和小肠的上皮细胞。
     为了研究其功能,除了重组表达FcUbc外,我们对FcUbc的催化活性位点进行了突变,重组表达了其突变体mFcUbc。利用FcUbc重组蛋白注射对虾,明显降低了染毒对虾的死亡率,并且大大抑制白斑病毒的复制。我们利用体外pull-down实验证实重组FcUbc能够结合病毒的四个含有RING结构域的蛋白(WRD1-4),后者被报道具有潜在的E3连接酶的功能,而突变体mFcUbc丧失了这样的体外结合能力。更重要的是,体外泛素化实验和果蝇S2细胞系(Drosophila melanogaster Schneider2)上的实验都证实了FcUbc介导了WSSV277和WSSV304的RING结构域的泛素化。在感染WSSV的果蝇S2细胞中,过表达的FcUbc增强了病毒WSSV277和WSSV304蛋白的泛素化。以上结果表明中国明对虾FcUbc介导白斑病毒含RING结构域蛋白的泛素化,并最终抑制病毒的复制。
     2.克氏原螯虾SUMO结合酶(UBC9)介导白斑综合征病毒极早期蛋白的SUMO化修饰并最终促进病毒复制
     我们从克氏原螯虾(Procambarus clarkii)中克隆得到了小泛素样修饰蛋白(small ubiquitin-related modifier, SUMO)和SUMO结合酶UBC9。UBC9cDNA全长912bp,开放阅读框483bp,编码160个氨基酸,含有一个UBCc催化结构域,活性位点是位于93位的保守的半胱氨酸。SUMO cDNA全长960bp,开放阅读框282bp,编码93个氨基酸,含有一个泛素样结构域(UBQ),其活性位点是位于C末端的双甘氨酸残基。序列比对和进化树分析显示UBC9和SUMO进化上高度保守,小龙虾的UBC9和SUMO与酵母和人类的蛋白表现出极高的相似性。UBC9和SUMO组成型的存在于小龙虾各组织,在白斑病毒刺激后呈现上调表达。
     我们在大肠杆菌中重组表达并纯化了克氏原螯虾的UBC9、SUMO,突变体mUBC9和rnSUMO,及SUMO的活性形式SUMO-GG。向克氏原螯虾体内注射UBC9或SUMO重组蛋白增强了WSSV的基因复制,而突变体mUBC9和mSUMO则丧失此功能。接下来我们进一步分析了克氏原螯虾SUMO化系统促进白斑病毒复制的分子机理。克氏原螯虾UBC9蛋白体外结合WSSV三种极早期蛋白(IE, WSV051, WSV069和WSV187),其中只有WSV051能够被宿主UBC9介导发生SUMO化修饰。利用干扰降低小龙虾UBC9或SUMO的表达水平,导致病毒晚期基因表达被抑制,极早期基因表达也受到影响而表达量降低;并且这种抑制作用可以被注射的重组UBC9或SUMO解除,从而使感染的WSSV基因表达恢复正常状态。该研究表明小龙虾SUMO化系统被白斑病毒利用来修饰自身的极早期IE蛋白,这种修饰促进了病毒基因的转录和病毒复制。
Shrimp farming is an impotrant export industry in China However, the outbreak of white spot syndrome virus (WSSV) since1992leads to huge economic losses to our country and even the world. Therefore, the identification and functional analysis of host proteins involved in viral infection and replication are significant to the control of shrimp diseases Ubiquitination and SUMOylation need activating enzyme E1, conjugating enzyme E2and ligase enzyme E3to modify target proteins on specific sites. Though spacial structure and enzymatic reaction of SUMOylation are similar with ubiquitination, they result in quite different meanings in biology The study foucs on ubiquitin conjugating enzyme of prawn and SUMO conjugating enzme of crayfish. We investigate the roles ubiquitination and SUMOylation during viral infection and replication, and propose to illustrate the molecular mechanism of shrimp and virus interactions.
     1. FcUbc of Chinese white shrimp mediates ubiquitination of WSSV RING domain proteins and inhibits viral replication.
     We identified a ubiquitin conjugating enzyme E2from Fenneropenaeus chinensis named FcUbc The full length of FcUbc cDNA is967bp with open reading frame (ORF) of447bp The deduced peptide encoded148amino acids and contains a ubiquitin conjugating catalytic domain (UBCc). FcUbc RNAs and proteins were detected in prawn hepatopancreas and intestine. The recombinant FcUbc and the mutant FcUbc lacking catalytic residue were expressed and purified in Escherichiacoli.
     Subsequently, rFcUbc injected into WSSV-infected shrimp reduced the mortality, and greatly suppressed viral replication. Pull-down assay confirmed that FcUbc combined to four viral RING proteins, which function as potential E3ligase; but the mFcUbc lost the binding ability. More importantly, that FcUbc mediates ubiquitination of RING domains of WSSV277and WSSV304is illustrated by assays in vitro and on Drosophila S2cells. Furthermore, overexpression of FcUbc on S2cells enhanced ubiquitination of viral WSSV277and WSSV304. These results indicate FcUbc mediates ubiquitination of WSSV RING domain proteins and inhibits viral replication ultimately.
     2. SUMO conjugating enzyme of red swamp crayfish, UBC9mediates SUMOylation of WSSV IE protein and facilitates viral replication
     A small ubiquitin-related modifier (SUMO) and SUMO conjugating enzyme UBC9were identified from Procambarus clarkii. The full length of UBC9cDNA is912bp with ORF of483bp coding160amino acids, and the active site is cysteine93. At the same time, that of SUMO cDNA is960bp with ORF of283bp coding93aa, and contains double glycine residues at C-terminal as the active site. Sequence alignment and phylogenetic tree display that UBC9and SUMO are conserved in evolution, and UBC9and SUMO of crayfish show high similarity with these of yeast and human. UBC9and SUMO constitutively expressed in every tissue of crayfish and increase after WSSV challenge. Crayfish UBC9, SUMO, mUBC9, mSUMO and active SUMO-GG are expressed in E. coli
     The viral genes replication was enhanced in crayfish injected with UBC9or SUMO, but not with mUBC9and mSUMO. We analyzed the molecular mechanism of crayfish SUMOylation prompts WSSV replication. Pull-down assay confirmed crayfish UBC9combined to three of WSSV IE proteins, while only one of them, WSV051was SUMO-modified by UBC9in vitro. The decreased expressions of UBC9or SUMO by RNAi, leaded to serious inhibition on viral late genes and down-regulation on ie genes Moreover, the suppressions were removed by subsequent injection of recombinanl UBC9or SUMO, and the gene expressions of WSSV were rescued by UBC9or SUMO proteins. In a word, the study demonstrates that crayfish SUMOylation pathway can be employed by WSSV to modify its IE proteins, which facilitates viral genes transcription and replication.
引文
Abbott, D.W., Yang. Y., Hutti. J.E., Madliavarapu. S., Kelliher. M.A., and Cantley, L.C. (2007). Coordinated regulation of Toll-like receptor and NOD2 signaling by K63-linkcd polyubiquilin chains. Molecular and cellular biology 27. 6012-6025
    Adhikary. S., Mariuoni. F., Hock. A., Hulleinan. E., Popov. N., Beicr. R., Bernard. S., Quarto. M., Capra. M., Goctlig. S., el al. (2005) The ubiquitin ligasc HcctH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 123.409-421.
    Ahn. J.H., Xu. Y. Jang. W.J., Malunis. M.J., and Hayward. G.S (2001). Evaluation of interactions of human cylomcgalovinis immcdiatc-carlv 1E2 regulatory protein with small ubiquilin-likc modifiers and their conjugation cnzyme Ubc9. Journal of virology 75. 3859-3872.
    Alkuraya, F.S., Saadi, I., Lund, J.J., Turbc-Doan, A., Morton, C.C., and Maas. R.L. (2006). SUMO1 haploinsufficicncy leads to cleft lip and palate Science (New York. N.Y.313. 1751
    Anckar. J., Hictakangas. V. Dcncssiouk. K.., Thicle. D.J., Johnson. M.S., and Sistoncn. L (2006). Inhibition of DNA binding by differential sumoylation of heat shock factors. Molecular and cellular biology 26. 955-964.
    Andaloussi. S.E., Lchto. T., Mager. I., Roscntlial-Aizinan. K., Oprca. [I. Simonson. OF., Sork. H., E.zal. K., Copolovici. DM., Kurrikoff. K.., ct al. (2011). Design of a peptidc-based vector. PcpFcct6. for efficient delivery ofsiRNA in cell culture and systcinically in vivo. Nucleic acids research 39. 3972-3987.
    Andres. G. Alcjo. A., Simon-Matco. C. and Salas. ML. (2001). African swine fever virus protease, a new viral member of the SUMO-1-spccific protease family. The Journal of biological chemistry 276. 780-787.
    Ardley. H.C., and Robinson. PA. (2005). E.3 ubiquitiii ligascs. Essays in biochemistry 41. 15-30.
    Bcttcrmann. K., Bcncsch. ML Weis. S., and Haybacck. J (2012) SUMOylalion in carcinogcncsis. Cancer letters 316. 113-125.
    Bhoj. V.G., and Chen. Z.J. (2009). Ubiqiiitylation in innate and adaptive immunity. Nature 458, 430-437.
    Boggio. R., and Chiocca. S. (2006). Viruses and suinoylatioii: recent highlights. Current opinion in microbiology 9. 430-436.
    Boggio. R . Colombo. R., Hay. R.T., Dractla. G.F., and Chiocca. S. (2004) A mechanism for inhibiting the SUMO pathway Molecular cell 16, 549-561.
    Cayrol. C. and Flcmington. E.K. (1996). The Epstcin-Barr vims bZIP tmnscription factor Zta causes G0/G1 cell cycle arrest through induction of cyclm-dcpcndcnt kinase inhibitors. The EMBO journal 15. 2748-2759.
    Chaivisuthangkura. P., Phattanapaijilkul. P. Thainmapalcrd. N., Rukpralanpoin. S., Longyant. S., Sithigorngul. W., and Sithigorngul. P. (2006) Development of a polyclonal antibody specific to VP19 cinclope protein of white spot syndrome virus (WSSV) using a recombinant protein preparation. Journal of virological methods 133. 180-184
    Chang. L.K., Liu. ST., Kno. C.W., Wang. VV.H . Clmang. J.Y., Bianchi. E. and Hong. Y.R. (2008). Enhancement of transaclivation activity of Rta of Epstein-Barr virus by RanBPM Journal of molecular biology 379. 23 1-242.
    Chang. T.H., Kubota, T. Matsuoka. M., Jones. S., Bradfutc. S.B., Bra>. M., and O/ato. K. (2009). Ebola Zaire vims blocks type 1 intcrfcron produclion by exploiting the host SUMO modification machinery, PLoS pathogens 5. e1000493.
    Chauchereau. A., Amazit, L., Quesne. M., Guiochon-Mantel. A., and Milgrom. E. (2003). Sumoylation of the progesterone receptor and of the steroid receptor coactivator SRC-1. The Journal of biological chemistry 278,12335-12343.
    Chen, A.J., Wang. S., Zhao, X.F., Yu, X.Q., and Wang, J.X. (2011). Enzyme E2 from Chinese white shrimp inhibits replication of white spot syndrome virus and ubiquitinates its RING domain proteins. Journal of virology 85,8069-8079
    Chen. D., Wang, Q., Huang, H., Xia, L., Jiang, X., Kan, L., and Sun. Q. (2009). Effete-mediated degradation of Cyclin A is essential for the maintenance of germline stem cells in Drosophila. Development 136,4133-4142.
    Chen, L.L., Lo. C.F., Chiu, Y.L., Chang, C.F., and Kou, GH. (2000). Natural and experimental infection of white spot syndrome virus (WSSV) in benthic larvae of mud crab Scylla serrata. Diseases of aquatic organisms 40,157-161.
    Chen, L.L., Wang, H.C., Huang. C.J., Peng, S.E., Chen, Y.G., Lin. S.J., Chen, W.Y., Dai, C.F., Yu, H.T., Wang. C.H., et al. (2002). Transcriptional analysis of the DNA polymerase gene of shrimp white spot syndrome virus. Virology 301,136-147.
    Chuang, S.M., and Madura. K. (2005). Saccharomyces cerevisiae Ub-conjugating enzyme Ubc4 binds the proteasome in the presence of translationally damaged proteins. Genetics 171.1477-1484.
    Ciechanover, A., Orian. A., and Schwartz. A.L. (2000). Ubiquitin-mediated proteolysis:biological regulation via destruction. BioEssays:news and reviews in molecular, cellular and developmental biology 22,442-451.
    Correa, J.D., Jr.. Farina, M., and Allodi, S. (2002). Cytoarchitectural features of Ucides cordatus (Crustacea Decapoda) hepatopancreas:structure and elemental composition of electron-dense granules. Tissue & cell 34,315-325.
    Coscoy, L., and Gancm, D. (2003). PHD domains and E3 ubiquitin ligases:viruses make the connection. Trends in cell biology 13,7-12.
    Craig, A., Ewan. R., Mesmar. J., Gudipati, V, and Sadanandom, A. (2009). E3 ubiquitin ligases and plant innate immunity. Journal of experimental botany 60,1123-1132.
    Curtin. J.F., and Cotter. T.G (2003). Live and let die:regulatory mechanisms in Fas-mediated apoptosis. Cellular signalling 15,983-992.
    Desterro, J.M., Rodriguez. M.S., and Hay, R.T. (1998). SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Molecular cell 2,233-239.
    Desterro, J.M., Rodriguez, M.S., Kemp, GD., and Hay, R.T. (1999). Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. The Journal of biological chemistry 274,10618-10624.
    Dhar, A.K., Roux, M.M., and Klimpel. K.R. (2001). Detection and quantification of infectious hypodennal and hematopoietic necrosis virus and white spot virus in shrimp using real-time quantitative PCR and SYBR Green chemistry. Journal of clinical microbiology 39,2835-2845.
    Di Napoli, M., and Papa. F. (2003). The proteasome system and proteasome inhibitors in stroke: controlling the inflammatory response. Curr Opin Investig Drugs 4.1333-1342.
    Dohmen, R.J., Madura. K., Bartel. B., and Varshavsky. A. (1991). The N-end rule is mediated by the UBC2(RAD6) ubiquitin-conjugating enzyme. Proceedings of the National Academy of Sciences of the United States of America 88,7351-7355.
    Du. X.J., Wang, J.X., Liu, N., Zhao, X.F., Li. F.H., and Xiang. J.H. (2006). Identification and molecular characterization of a peritrophin-like protein from fleshy prawn (Fcnncropcnacus chinensis). Molecular immunology 43. 1633-1644.
    Duerst, R.J., and Morrison. L.A. (2003). Innate immunity to herpes simplex virus type 2. Viral immunology 16. 475-490.
    Durand, S.V., and Lightner, D V (2002). Quantitative real-time PCR for the measurement of white spot syndrome virus in shrimp. J Fish Dis 25. 381-389
    El McHichi, B., Regad. T. Maroui. M.A., Rodriguez, M.S., Amincv, A., Gcrbaud. S., Escriou. N., Dianoux, L., and Chclbi-Alix, M.K. (2010). SUMOylation promotes PML degradation during enccphalomyocarditis virus infection. Journal of virology 84. 11634-11645.
    Everett, R.D., Earnshaw, W.C., Findlay, J., and Lomonte. P. (1999). Specific destruction of kinctochorc protein CENP-C and disruption of cell division by herpes simplex vims immedialc-carly protein Vimwl10. The EMBO journal 18. 1526-1538
    Galinier, R., Gout, E., Lortat-Jacob, H., Wood. J., and Chroboczek, J. (2002) Adenovirus protein involved in virus internalization recruits ubiquitin-protein ligascs Biochemistry 41. 14299-14305.
    Gao. G, Wong. J., Zhang. J., Mao. I., Shravah. J., Wu. Y., Xiao. A., Li. X., and Luo. H. (2010). Protcasome activator REGgamma enhances coxsackicviral infection by facilitating p53 degradation. Journal of virology 84. 11056-11066.
    Gfellcr. A., Licchti. R., and Farmer. E.E. (2010). Arabidopsis jasmoiiatc signaling pathway. Science signaling 3, cni4.
    Gudjonsson, T., Altmcycr, M., Savic, V. Toledo, L., Dinant. C. Grofte, M., Bartkova. J. Poulscn. M., Oka, Y. Bekker-Jcnscn. S., el al (2012). TRIP12 and UBR5 suppress spreading of clironialin ubiquitylalion at damaged chromosomes. Cell 150. 697-709.
    Ha. Y.M., Kim, Y.I,, Kim. K.H., and Kim. S.K. (2008). Neutralization of white spot syndrome vims (WSSV) for Pcnacus chinensis by anliscruni raised against rcconibinant VP19. Journal of environmental biology /Academy of Environmental Biology. India 29. 513-517.
    Hara-Kudo. Y. Kasuga. Y. Kiuchi. A., Horisaka. T. Kawasumi. T. and Kumagai, S. (2003). Increased sensitivity in PCR detection of tdh-positivc Vibrio parahacmohticus in seafood with purified template DNA. Journal of food protection 66. 1675-1680.
    Hay. R.T. (2001) Protein modification by SUMO. Trends in biochemical sciences 26. 332-333.
    He, F. Fcnncr. B.J., Godwin. A.K., and Kwang. J (2006). White spot syndrome virus open reading frame 222 encodes a viral E3 ligasc and mediates degradation of a host tumor suppressor via ubiquitination. Journal of virology 80. 3884-3892.
    He. F., and Kwang. J. (2008). Identification and characterization of a new E3 ubiquitin ligasc in white spot syndrome vims involved in vims latency. Virology journal 5. 151.
    He, F. Syed, S.M., Hamccd. AS., and Kwang. J (2009). Viral ubiquitin ligase WSSV222 is required for efficient white spot syndrome virus replication in shrimp. The Journal of general virology 90. 1483-1490.
    Hcalon. PR . Dcyricux. A.F., Bian. XL., and Wilson. VG. (2011). HPV E6 proteins target Ubc9. the SUMO conjugating enzyme. Virus research 158. 199-208
    Hershko, A., and Cicchanovcr. A (1998). The ubiquitin system Annual review of biochemistry (>7. 425-479.
    Hilt, W., and Wolf, D.H (2004) The ubiquitin-proteasonic system: past, present and future. Cell Mol Life Sci 61. 1545.
    Hoffmann, T.J., Nelson, EL Darouiche. R., and Rosen. T. (1988). Vibrio vulnificus septicemia. Archives of internal medicine 148. 1825-1827
    Holmstrom, S., Van Antwerp, ME., and Iniguez-Lluhi. J.A. (2003). Direct and distinguishable inhibitory roles for SUMO isoforms in the control of transcriptional synergy. Proceedings of the National Academy of Sciences of the United Slates of America 100. 15758-15763.
    Huang, T.T., Wuerzbcrger-Davis. S.M., Wu. Z.H., and Miyamoto. S. (2003). Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB actuation by genotoxic stress. Cell 115, 565-576.
    Imai, N., Matsuda. N., Tanaka, K . Nakano. A., Matsumoto. S . and Kang. W. (2003). Ubiquitin ligase activities of Bombyx mori nucleopolyhedrovirus RING finger proteins. Journal of virology 77. 923-930.
    Jaber, T, Bohl. C.R., Lewis. GL., Wood, C, West. J.T., Jr., and Weldon. R.A., Jr. (2009). Human Ubc9 contributes to production of fully infectious human immunodeficiency virus type 1 virions. Journal of virology 83, 10448-10459.
    Janevvay. C.A., Jr. (1989). The role of CD4 in T-cell activation: accessory molecule or co-receptor? Immunology today 10. 234-238.
    Jentsch, S., McGratli, J.P., and Varshavsky, A. (1987). The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329, 131-134.
    Jin. J.B., Jin, Y.H., Lee. J., Miura, K., Yoo. C.Y., Kim, W.Y., Van Oosten. M., Hyun. Y, Somers, D.E., Lee, I., et al. (2008). The SUMO E3 ligase. AtSIZL regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. The Plant journal : for cell and molecular biology 53, 530-540.
    Johnson, M.C., Maxwell, J.M., Loh. P.C., and Leong. J.A. (1999). Molecular characterization of the glycoproteins from two warm water rhabdoviruses: snakehead rhabdovirus (SHRV) and rhabdovirus of penaeid shrimp (RPS)/spring viremia of carp vims (SVCV). Vims research 64, 95-106.
    Kanchanaphum. P., Wongteerasupaya, C, Sitidilokratana, N., Boonsaeng. V. Panyim. S., Tassanakajon. A., Withyachumnarnkul, B., and Flegel, T.W. (1998). Experimental transmission of white spot syndrome virus (WSSV) from crabs to shrimp Penaeus monodon. Diseases of aquatic organisms 34. 1-7.
    Kandadi. M.R., Yu. X., Frankel, A.E., and Ren. J. (2012). Cardiac-specific catalase overexpression rescues anthrax lethal toxin-induced cardiac contractile dysfunction: role of oxidative stress and autophagy. BMC medicine 10, 134.
    Kannan, K., Kaminski, N., Rechavi. G. Jakob-Hirsch. J., Amariglio. N., and Givol, D (2001). DNA microarray analysis of genes involved in p53 mediated apoptosis: activation of Apaf-1. Oncogcnc 20. 3449-3455.
    Karin. M., and Bcn-Neriah. Y. (2000). Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annual review of immunology 18, 621-663.
    Kim. E.T., Kim, Y.E., Huh. Y.H., and Aim. J.H. (2010) Role of noncovalcnt SUMO binding by the human cytomegalovirus 1E2 transacti valor in lylic growth. Journal of virology 84, 8111-8123.
    Kim. J.H., Sung. K.S., Jung. S.M., Lee. Y.S., Kwon. J.Y., Choi, C.Y., and Park, S.H. (2011). Pellino-1, an adaptor protein of intcrleukin-1 reccptor/toll-like receptor signaling, is sumoylated by Ubc9. Molecules and cells 31, 85-89.
    Kuhclj, R., Dolinar, M., Pungercar. J., and Turk. V (1995). The preparation of catalytically active human calhcpsin B from its precursor expressed in Eschcrichia coli in me fonn of inclusion bodies. European journal of biochemistry / FEBS 229. 533-539.
    Kurcpa, J., Walker, J.M., Smalle. J., Gosink, MM., Davis. S.J., Durham. T.L., Sung. D.Y., and Vierstra, R.D. (200.3). The small ubiquitin-Iikc modifier (SUMO) protein modification system in Arabidopsis, Accumulation ofSUMOl and -2 conjugates is increased b\ stress. The Journal of biological chemistry 278. 6862-6872.
    Lee, H.R., Kim, D.J., Lee, J.M., Choi, C.Y., Aha BY. Hayward, G.S., and Aim. J.H. (2004). Ability of the human cytomcgalovirus IE1 protein to modulate sumoylation of PML correlates with its functional activities in transcriplional regulation and infectivity in cultured fibroblast cells. Journal of virology 78. 6527-6542.
    Lee, J., Nam, J., Park, H.C., Na. G. Miura, K.., Jin. J.B., Yoo, C.Y., Back. D., Kim. D.H., Jcong. J.C. et al. (2007). Salicylic acid-mediated innate immunity in Anibidopsis is regulated by SIZ1 SUMO E3 ligase. The Plant journal : for cell and molecular biology 49. 79-90
    Leu, J.H., Yang, R. Zhang, X., Xu. X., Kou. G.H., and Lo. C.F. (2009). Whispovirus Current topics in microbiology and immunology 328. 197-227.
    Li. F., Li. M., Ke, W., Ji. Y. Bian. X., and Yan. X. (2009a) Identification of the immcdialc-carly genes of white spot syndrome vims Virology 385. 267-274.
    Li. F., and Xiang. J. (2013). Recent advances in researches on the innate immunity of shrimp in China. Developmental and comparative immunology 39. 11-26.Li. M., Guo. D., Isalcs. CM., Eizirik. D.L., Atkinson. M., She. J.X., and Wang. C.Y (2005). SUMO wrestling with type I diabetes. J Mol Med(Bcrl)83, 504-513.
    Li, W., Gao, B., Lee, S.M., Bennett, K., and Fang. D. (2007). RLE-1. an E3 ubiquitin ligase. regulates C. clcgans aging by catalyzing DAF-I6 polvubiquilination. Developmental cell 12. 235-246.
    Li. X.C., Wang. X.W., Wang. Z.H., Zhao. X.F., and Wang. J.X. (2009b). A three-domain Kazal-typc scrinc proteinase inhibitor exhibiting domain inhibitory and bacteriostatic activities from freshwater crayfish Procambarus clarkii. Developmental and comparative immunology 33. 1229-1238.
    Lightncr. D.V. (1996). Epizootiology. distribution and the impact on international trade of two penacid shrimp viruses in the Americas. Rev Sci Tech 15. 579-601.
    Lightncr, D.V, (2011). Virus diseases of farmed shrimp in the Western Hemisphere (the Americas): a review. Journal of invertebrate pathology 106. 110-130.
    Lightncr, D.V., Redman. R.M., and Bell. T.A. (1983). Infectious hypodermal and hematopoictic necrosis, a newly recognized virus disease of penacid shrimp. Journal of invertebrate pathology 42. 62-70.
    Lin. F. Huang. H., Xu. L., Li. F. and Yang. F (2011) Identification of three immcdiatc-caih genes of white spot syndrome virus Archives of virology 156. 1611-1614.
    Lin. X., Liang. M., Liang. Y.Y., Brunicardi. F.C., and Feng. XII. (2003) SUMO-I/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4 The Journal of biological chemistry 278. 3 1043-31048.
    Liu. W.J., Chang. Y.S., Wang. C.H., Kou. G.H . and Lo. C.F. (2005) Microarnn and RT-PCR screening for white spot syndrome virus immediate-early genes in cycloheximidc-trcalcd shrimp. Virology 334. 327-341.
    Liu. Y.C. (2004). Ubiquitin ligases and the immune response Annual review of immunology 22. 81-127.
    Longva, K.E., Blystad, F.D., Stang, E., Larsen, A.M., Johannessen, L.E., and Madshus. l.H. (2002). Ubiquitination and proteasomal activity is required for transport of the EGF receptor to inner membranes of multivesicular bodies. The Journal of cell biology 156. 843-854.
    Lorenzo, M.E., Jung, J.U., and Ploegh, H.L. (2002). Kaposi's sarcoma-associated hcrpesvirus K3 utilizes the ubiquitin-proteasomc system in routing class major histocompatibility complexes to late endocytic compartments. Journal of virology 76. 5522-5531.
    Maeda, A., Lee. B.H., Yoshimatsu, K.., Saijo. M., Kurane. I., Arikawa, J., and Morikawa. S. (2003). The intraccllular association of the nucleocapsid protein (NP) of hantaan virus (HTNV) with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9). Virology 305. 288-297.
    Mahajan, R., Delphin, C. Guan, T., Gerace, L., and Melchior, F. (1997). A small ubiquitin-related polypeptide involved in targeting RanGAPl to nuclear pore complex protein RanBP2. Cell 88. 97-107.
    Mangel, W.F., McGrath, W.J., Toledo, D.L., and Anderson, C.W. (1993). Viral DNA and a viral peptide can act as cofactors of adenovirus virionproteinase activity. Nature 361, 274-275.
    Mannen, H., Tseng. H.M., Clio. C.L., and Li, S.S. (1996). Cloning and expression of human homolog HSMT3 to yeast SMT3 suppressor of MIF2 mutations in a centromere protein gene. Biochemical and biophysical research communications 222. 178-180.
    Martin, G.G., Simco,x. R., Nguyen, A., and Chilingaryan, A. (2006). Peritrophic membrane of the penaeid shrimp Sicyonia ingentis: structure, formation, and permeability. The Biological bulletin 211,275-285.
    Marusic, M.B., Mencin, N., Licen, M., Banks, L., and Gnn, H.S. (2010). Modification of human papillomavirus minor capsid protein L2 by sumoylation. Journal of virology 84, 11585-11589.
    Mauri, F., McNamee, L.M., Lunardi, A., Chiacchiera F., Del Sal, G, Brodsky, M.H., and Collavin, L. (2008). Modification of Drosophila p53 by SUMO modulates its transactivation and pro-apoptotic functions. The Journal of biological chemistry 283, 20848-20856.
    Melchior, F., and Hengst, L. (2002). SUMO-1 and p53. Cell Cycle 1, 245-249.
    Michelle, C. Vourc'h, P., Mignoru L., and Andres, C.R. (2009). What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor? Journal of molecular evolution 68. 616-628.
    Molina-Garza. Z.J., Galaviz-Silva. L., Rosales-Encinas. J.L., and Alcocer-Gonzalez, J.M. (2008). Nucleotide sequence variations of the major structural proteins (VP15. VP19, VP26 and VP28) of white spot syndrome virus (WSSV), a pathogen of cultured Litopenaeus vannainei in Mexico. JFishDis31, 197-203.
    Molitoris. E., Joseph. S.W., Krichevsky. M.I., Sindhuhardja, W., and Colwell. R.R. (1985). Cliaracterization and distribution of Vibrio alginolyticus and Vibrio parahaemolyticus isolated in Indonesia. Applied and environmental microbiology 50, 1388-1394.
    Muller. S., Hoege. C, Pyrowolakis, G. and Jentsch, S. (2001). SUMO, ubiquitin's mysterious cousin. Nature reviews 2. 202-210.
    Muro. I., Means. J.C., and Clem. R.J. (2005). Cleavage of the apoptosis inliibitor DIAP1 by the apical caspase DRONC in both normal and apoptotic Drosophila cells. The Journal of biological chemistry 280. 18683-18688.
    Nupan. B., Phongdara. A., Saengsakda. M. Leu. J.H., and Lo. C.F. (2011). Shrimp Pm-fortilin inhibits the expression of early and late genes of white spot syndrome virus (WSSV) in an insect cell model. Developmental and comparative immunology 35. 469-475.
    Ohsako. S., and Takamatsu. Y. (1999). Identification and characterization of a Drosophila homologuc of the yeast UBC9 and hus5 genes. Journal of biochemistry 125. 230-235
    Palacios. S., Perez. L.H., Welscli. S., Schleich. S., Chmiclarska. K., Mclchior. F. and Locker. J.K. (2005). Quantitative SLJMO-1 modification of a vaccinia vims protein is required for its specific localization and prevents its self-association. Molecular biology of the cell 16. 2822-2835.
    Pantqja. C.R., and Lightncr, D.V (2000). A non-dcslnictivc method based on the polyinerasc chain reaction for detection of hcpatopancrcatic parvovinis (HPV) of penacid shrimp. Diseases of aquatic organisms 39. 177-182.
    Park. J.H., Lee. Y.S., Lee. S., and Lee. Y. (1998). An infectious viral disease of penacid shrimp newly found in Korea. Diseases of aquatic organisms 34. 71-75.
    Parkinson. J., and Everett. R.D. (2000). Alphahcrpcsvirus proteins related to herpes simplex virus type 1 ICPO affect cellular slniclures and proteins. Journal of virology 74. 10006-10017.
    Parkinson, J., and Everett. R.D. (2001). Alphahcrpcsvirus proteins related to herpes simplex vims type 1 ICPO induce the formation of colocali/.ing. conjugated ubiquitin. Journal of virology 75. 5357-5362.
    Peng. S.E., Lo. C.F., Lin. S.C., Chen. L.L., Chang. Y.S., Liu. K.F., Su. M.S., and Ko. G.H. (2001). Performance of WSSV-infectcd and WSSV-negative Pcnacus monodon postlarvac in culture ponds. Diseases of aquatic organisms 46. 165-172.
    Raboy. B., Marom. A., Dor, Y. and Kulka. R.G. (1999). Heat-induced cell cycle arrest of Saccharomyccs ccrcvisiac: involvement of the RAD6/UBC2 and WSC2 genes in its reversal. Molecular microbiology 32. 729-739.
    Rangasamy. D., Woylck, K., Khan. S.A., and Wilson. VG. (2000) SUMO-1 modification of bovine papillomavinis El protein is required for intranuclear accumulation. The Journal of biological chemistry 275. 37999-38004.
    Ren. J., Gao. X., Jin. C . Zlui. M., Wang. X., Shaw. A., Wen. L.., Yao. X., and Xuc, Y. (2009). Systematic study of protein sunioylation: Development of a site-specific predictor of SUMOsp 2.0. Protcomics 9. 3409-3412.
    Robalino. J., Payne. C. Parncll. P., Shcpard. E., Grimes. A.C., Mctz. A., Prior. S., Wittcveldt. J., Vlak. J.M., Gross. PS., el al (2006). Inactivation or White Spot Syndrome Virus (WSSV) by normal rabbit scrum: implications for the role of the envelope protein VP28 in WSSV infection of shrimp. Virus research 118. 55-61.
    Roisin. A., Robin. J.P., Dcreuddrc-Bosquct. N., Viltc. A.L., Donnonl. D., Clayette. P. and Jalinot. P. (2004), Inhibition of HIV-1 replication by cell-pcnctrating peptides binding Rev. The Journal of biological chemistry 279. 9208-9214.
    Rose. I.A., and Warms. J.V (1987). A specific cndpoinl assay for ubiquitin. Proceedings of the National Academy of Sciences of the United States of America 84. 1477-1481
    Rui. H.L., Fan. E., Zhou. H.M., Xu. Z., Zhang. Y. and Lin. S.C. (2002). SUMO-I modification of the C-lcrniiiial KVEKVD of Axin is required for JNK activation but has no effect on Wnl signaling. The Journal of biological chemistry 277. 42981-42986.
    Schcffncr. M., Huibrcgtsc. J.M., Vicrstra. R.D., and How ley. P.M. (1993). The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protcin ligasc in the ubiqiiitinalioii of p53 Cell 75. 495-505.
    Schmidt. D., and Mullcr. S. (2003). PIAS/SUMO: new partners in lianscriptional regulation. Cell Mol Life Sci 60, 2561-2574.
    Schulman. B.A., and Harper, J.W. (2009). Ubiquitin-like protein activation by E1 enzymes:the apex for downstream signalling pathways. Nature reviews 10,319-331.
    Schwessinger. B., and Zipfel, C. (2008). News from the frontline:recent insights into PAMP-triggered immunity in plants. Current opinion in plant biology 11.389-395.
    Scok. S.H., Park. J.H., Cho. S.A., Back. M.W.. Lee. H.Y.. and Kim. D.J. (2004). Cloning and sequencing of envelope proteins (VP19. VP28) and nuclcocapsid proteins (VP15. VP35) of a white spot syndrome virus isolate from Korean shrimp. Diseases of aquatic organisms 60,85-88.
    Seufert. W., and Jentsch, S. (1990). Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. The EMBO journal 9,543-550.
    Shen. B., Zhang. Z., Wang. Y., Wang. G, Chen, Y., Lin. P., Wang. S., and Zou. Z. (2009). Differential expression of ubiquitin-conjugating enzyme E2r in the developing ovary and testis of penaeid shrimp Marsupenaeus japonicus. Molecular biology reports 36,1149-1157.
    Shin. D.Y., Lee, H., Park, E.S., and Yoo, Y.J. (2011). Assembly of different length of polyubiquitins on the catalytic cysteine of E2 enzymes without E3 ligase; a novel application of non-reduced/reduced 2-dimensional electrophoresis. FEBS letters 585,3959-3963.
    Smet-Nocca, C. Wieruszeski, J.M., Leger, H, Eilebrecht, S., and Benecke, A. (2011). SUMO-1 regulates the conformational dynamics of thymine-DNA Glycosylase regulatory domain and competes with its DNA binding activity. BMC biochemistry 12,4.
    Spengler, M.L., Kurapatwinski. K., Black, A.R., and Azizkhan-Clifford, J. (2002). SUMO-1 modification of human cytomegalovirus IE1/IE72. Journal of virology 76,2990-2996.
    Steffan. J.S., Agrawal, N., Pallos. J., Rockabrand. E., Trotman, L.C., Slepko, N., Illes, K., Lukacsovich, T., Zhu. Y.Z., Cattaneo. E., et al. (2004). SUMO modification of Huntingtin and Huntington's disease pathology. Science (New York, N.Y 304,100-104.
    Stephen. A.G., Trausch-Azar, J.S., Ciechanover, A., and Schwartz, A.L. (1996). The ubiquitin-activating enzyme E1 is phosphorylated and localized to the nucleus in a cell cycle-dependent manner. The Journal of biological chemistry 271.15608-15614.
    Sun, L., Deng. L., Ea. C.K.. Xia. Z.P., and Chen, Z.J. (2004). The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Molecular cell 14, 289-301.
    Sweet, C.R., Conldon, J., Golenbock, D.T., Goguen, J., and Silverman, N. (2007). YopJ targets TRAF proteins to inhibit TLR-mediated NF-kappaB, MAPK and IRF3 signal transduction. Cellular microbiology 9,2700-2715.
    Takahashi, Y. (2004). [Identification and function of ubiquitin-like protein SUMO E3 (PIAS family and RanBp2, Pc2)]. Seikagaku. The Journal of Japanese Biochemical Society 76,381-384.
    Takai, R., Matsuda, N.. Nakano, A., Hasegawa, K., Akimoto, C, Shibuya, N., and Minaini, E. (2002). EL5, a rice N-acetyichitooligosaccharide elicitor-responsive RING-H2 finger protein, is a ubiquitin ligase which functions in vitro in co-operation with an elicitor-responsive ubiquitin-conjugating enzyme, OsUBC5b. The Plant journal:for cell and molecular biology 30, 447-455.
    Takizawa, M., Goto, A., and Watanabe, Y. (2005). The tobacco ubiquitin-activating enzymes NtE1A and NtE1B are induced by tobacco mosaic virus, wounding and stress hormones. Molecules and cells 19,228-231.
    Tamura, K., Dudley, J., Nei. M., and Kumar, S. (2007) MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular biology and evolution 24,1596-1599.
    Tat ham. M.H., Jiiffray. E., Vaughaa O.A., Dcstcrro, J.M., Botting. C.H., Naismith. J.H., and Hay. R.T. (2001). Polymeric chains of SUMO-2 and SUMO-3 arc conjugated to protein substrates by SAE1/SAE2 and Ubc9. The Journal of biological chemistry 276. 35368-35374.
    Tomoiu. A., Gravel. A., Tanguay. R.M., and Flamand. L. (2006). Functional interaction between human herpesvims 6 immediatc-carly 2 protein and ubiquitin-conjugaling enzyme 9 in the absence of suinoylation. Journal of virology 80. 10218-10228.
    Tmjillo. M., Ichimura. K., Casais. C. and Shirasu. K. (2008). Negative regulation of PAMP-lriggercd immunity by an E3 ubiquitin ligasc triplet in Arabidopsis. Current biology : CB 18. 1396-1401.
    Trujillo. M. and Shirasu. K. (2010). Ubiquitination in plant immunity. Current opinion in plant biology 1.3.402-408.
    Tsai. M.F., Yu. H.T., Tzeng. H.F., Leu. J.H., Chou. CM., Huang. C.J., Wang. C.H . Lin. J.Y., Kou. G.H., and Lo. C.F. (2000). Identification and characterization of a shrimp white spot syndrome vims (WSSV) gene that encodes a novel chimcric polypcplidc of cellular-type thymidinc kinasc and thymidylatc kinasc. Virology 277, 100-110.
    Tsuda. M., Langmann. C. Harden. N., and Aigaki. T. (2005). The RING-fingcr scaffold protein Plenty of SH3s targets TAK.1 to control immunity signalling in Drosophila. EMBO reports 6. 1082-1087.
    van Hulten. M.C., Willcvcldl. J., Peters. S., Klooslcrbocr. N., Tarchini. R., Ficrs. M., Sandbrink. H., Lankhorst. R.K., and Vlak. J.M. (2001). The white spot syndrome virus DNA genome sequence. Virology 286. 7-22.
    van Kastcrcn. P.B., Bcugcling. C. Ninabcr. D.K., Frias-Stahcli. N . van Bohecmcn. S., Garcia-Sastre. A., Snijdcr. E.J., and Kikkcrt. M. (2012). Artcrivims and nairovirus ovarian tumor domain-containing Dcubiquilinascs target activated RIG-I to control innate immune signaling. Journal of virology 86. 773-785.
    van Wijk. S.J., and Timmers. H.T. (2010). The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 24. 981-993.
    Vandcnbcrghc, J., Vcrdonck, L., Roblcs-Arozarcna. R., Rivera, G, Bolland, A., Balladarcs. M., Gomez-Gil. B., Caldcron. J., Sorgcloos. P., and Swings. J. (1999). Vibrios associated with Litopcnacus vannamci larvae, postlarvac. broodstock. and hatchery probionts. Applied and environmental microbiology 65, 2592-2597.
    Vcrtcgaal. AC. (2007). Small ubiquitin-rclalcd modifiers in chains Biochemical Society transactions 35. 1422-1423.
    Vogl. G. (19%). Cytopalhology of Bay of Piran shrimp virus (BPSV). a new crustacean vims from the Mediterranean Sea. Journal of invertebrate pathology 68. 239-245.
    Vogl. G. (1997). Coiled bodies in hepatopancrcas cells of shrimp infected with viruses and bacteria. Die Natunvisscnschaftcn 84. 315-317
    Wang. J., Tahcrbhoy. A.M., Hunt. H.W., Scycdin. S.N., Miller. D.W., Miller. D.J., Huang. D.T., and Sclmlman. B.A (2010) Crystal structure of UBA2(ufd)-Ubc9: insights into E1-E2 interactions in Sumo pathways. PloS one 5. el5805.
    Wang. S., Liu. N., Chen. A.J., Zhao. X.F., and Wang. J.X (2009a). TRBP homolog interacts with cukaryolic initiation factor6 (clF6) in Fcnneropcnaeus chinensis. J Immunol 182. 5250-5258.
    Wang. S., Zhao. X.F., and Wang. J.X. (2009b) Molecular cloning and characterization of the translationally controlled tumor protein from Fcnneropcnaeus chinensis Molecular biology reports 36, 1683-1693.
    Wang, X.W., and Wang, J.X. (2013). Pattern recognition receptors acting in innate immune system of shrimp against pathogen infections. Fish & shellfish immunology 34. 981-989.
    Wang, Z., Chua, H.K., Gusti, A.A., He. F., Fcnner. B., Manopo. I., Wang. H., and Kwang. J. (2005). RING-H2 protein WSSV249 from white spot syndrome virus sequesters a shrimp ubiquitin-conjugating enzyme. PvUbc. for viral pathogenesis. Journal of virology 79, 8764-8772.
    Weake. V.M., and Workman. J.L. (2008). Hislone ubiquitination: triggering gene activity. Molecular cell 29. 653-663.
    Weisshaar. S.R., Keusekottcn. K.., Krause. A., Horst. C. Springer, H.M., Gottsche. K. Dohmen. R.J., and Praefcke. GJ. (2008). Arsenic trioxide stimulates SUMO-2/3 modification leading to RNF4-dependent proteolytic targeting of PML. FEBS letters 582, 3174-3178.
    Werner. A., Moutty. M.C., Moller, LL and Melcliior. F. (2009). Performing in vitro sumoylation reactions using rccombinant enzymes. Methods in molecular biology (Clifton. N.J 497. 187-199.
    Whitby, F.G., Xia. G, Pickart, CM., and Hill. C.P. (1998). Crystal structure of die human ubiquitin-like protein NEDD8 and interactions with ubiquitin pathway enzymes. The Journal of biological chemistry 273, 34983-34991.
    Wimmer. P., Schreiner. S., and Dobner. T. (2012). Human pathogens and the host cell SUMOylation system. Journal of virology 86. 642-654.
    Winberg. G, Matskova. L., Chen. F., Plant. P., Rotin. D., Gish. G. Ingham. R., Ernberg, I., and Pawson. T. (2000). Latent membrane protein 2A of Epstein-Barr virus binds WW domain E3 protein-ubiquitin ligases that ubiquitinate B-cell tyrosine kinases. Molecular and cellular biology 20, 8526-8535.
    Witteveldt. J., Vlak, J.M., and van Hulten. M.C. (2006). Increased tolerance of Litopenaeus vannamei to white spot syndrome virus (WSSV) infection after oral application of the viral envelope protein VP28. Diseases of aquatic organisms 70. 167-170.
    Wu, P.Y., Hanlon, M., Eddins, M., Tsui. C, Rogers, R.S., Jensen. J.P., Matunis, M.J., Weissman, A.M., Wolberger. C, and Pickart, CM. (2003). A conserved catalytic residue in the ubiquitin-conjugating enzyme family. The EMBO journal 22, 5241-5250.
    Xie, W., Li. X., Li. C, Zhu. W., Jankovic, J., and Le, W. (2010). Proteasome inliibition modeling nigral neuron degeneration in Parkinson's disease. Journal of neurochemistry 115, 188-199.
    Xie, X., and Yang. F. (2005). Interaction of white spot syndrome virus VP26 protein with actin. Virology 336, 93-99.
    Xu. K., Klenk, C, Liu. B., Keiner. B., Cheng. J., Zheng. B.J., Li. L., Han, Q., Wang, C. Li, T., et al. (2011). Modification of nonstructural protein 1 of influenza A vims by SUMO1. Journal of virology 85. 1086-1098.
    Xu. Y, Aim. J.H., Cheng. M., apRhys. CM., Chiou, C.J., Zong. J., Matunis. M.J., and Hayward, GS. (2001). Proteasome-independent disruption of PML oncogenic domains (PODs), but not covalcnl modification by SUMO-1, is required for human cytomegalovirus immediate-early protein IE1 to inhibit PML-mcdiated transcriptional repression. Journal of virology 75, 10683-10695.
    Yan. D., Tang. K.F., and Lightner, D.V. (2009). Development of a real-time PCR assay for detection of monodon baculovirus (MBV) in penaeid shrimp. Journal of invertebrate pathology 102, 97-100.
    Yan. J., Yang. X.P., Kim. Y.S., Joo. J.H., and Jeltcn. A.M. (2007). RAP80 interacts with the SUMO-conjugating engine UBC9 and is a novel target for sumoylation. Biochemical and biophysical research cominunications 362. 132-138.
    Yang. C.W., Gonzalez-Lamothc. R., Ewan. R.A., Rowland. O., Yoshioka, H., Slicnton. M., Ye. H., O'Donncll. E., Jones. J.D., and Sadanandom. A. (2006). The E3 ubiquitin ligasc activity of arabidopsis PLANT U-BOX17 and its functional tobacco homolog ACRE276 arc required for cell death and defense. The Plant cell 18. 1084-1098.
    Yang. F., He. J., Lin. X., Li. Q., Pan. D., Zhang. X., and Xu. X. (2001) Complete genome sequence of the shrimp while spot bacillifonn virus. Journal of virology 75. 11811-11820.
    Yang. F.M., Pan. C.T., Tsai. H.M., Cliiu. T.W., Wu. ML. and Hu. M.C. (2009) Liver receptor liomolog-1 localization in the nuclear body is regulated by sumoylalion and cAMP signaling in rat granulosa cells. The FEBS journal 276. 425-436.
    Yang. Y. Tse. A.K., Li. P., Ma. Q., Xiang. S., Nicosia. S.V. Scto. E., Zhang. X., and Bai. W. (2011). Inhibition of androgen receptor activity by histonc dcacctylasc 4 through receptor SUMOylalion. Oncogcnc 30. 2207-2218.
    Yaun. S.S., and Lin. L.P. (1993). Isolation and characterization of Acromonas from seafoods in Taipei. Zhonghua Minguo wei sheng wu ji mian yi xuc za zhi=Chinese journal of microbiology and immunology 26. 78-85.
    You. Z., Nadala. EC., Jr., Yang. J., and Loh, PC. (2004). Conservation of the DNA sequences encoding the major structural viral proteins of WSSV. Diseases of aquatic organisms 61. 159-163.
    Yu. X.Q., Tracy. ME., Ling. E., Scholz, F.R., and Trcnczck. T. (2005) A novel C-typc inimulcctin-3 from Manduca scxla is translocated from hcmolvmph into the cytoplasm of hemocytcs. Insect biochemistry and molecular biology 35. 285-295
    Zhang. X., Huang. C., Tang. X., Zhuang. Y. and Hew. C.L. (2004). Identification of structural proteins from shrimp white spot syndrome virus (WSSV) by 2DE-MS. Proteins 55. 229-235.
    Zhang. X.W., Xu. W.T., Wang. X.W., Mu. Y. Zhao. X.F., Yu. X.Q., and Wang. J.X. (2009). A novel C-typc Icctin with two CRD domains from Chinese shrimp Fcnneropenaeus chinensis functions as a pattern recognition protein. Molecular immunology 46. 1626-1637.
    Zheng. N., Wang. P., Jeffrey. P.D., and Pavletich. N.P. (2000). Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligascs. Cell 102. 533-539.
    Zhou. Q., Xu. L., Li. H . Qi. Y.P., and Yang. F. (2009). Four major envelope proteins of white spot syndrome virus bind to form a complex. Journal of virology 83. 4709-4712.
    Zhou. R., Silvcrman. N., Hong. M., Liao. D.S., Chung. Y. Chen. Z.J., and Maniatis. T (2005). The role of ubiquitination in Drosophila innate immunity. The Journal of biological chemistry 280. 34048-34055.
    Zhu. S., Zhang. H., and Matunis. M.J. (2006). SUMO modification through rapainycin-incdialcd hetcrodimcrization reveals a dual role for Ubc9 in targeting RanGAPI to nuclear pore complexes. Experimental cell research 312. 1042-1049.
    Zuo. X., Li. S., Hall. J., Matlcrn. M.R., Trail. H . Shoo. J., Tan. R., Weiss. S.R., and Bull. T.R. (2005). Enhanced expression and purification of membrane proteins by SUMO fusion in Escherichia coli. Journal of structural and functional genomics 6. 103-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700