用户名: 密码: 验证码:
半滑舌鳎MHC Ⅱ类基因的克隆、与抗病相关性及遗传连锁分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半滑舌鳎(Cynoglossus semilaevis)是一种重要的经济鱼类,在我国沿海的鱼类养殖中占有重要地位。养殖中的半滑舌鳎会面临很多病原的侵袭。因此,为了解其重要免疫基因,从根本上提高鱼体自身的抗病能力,我们克隆了主要组织相容性复合体(MHC)的Ⅱ类基因,并研究了A基因的开放阅读框(open reading frame, ORF)多态、基因结构及B基因在不同发育时期的表达;对200尾个体进行了鳗弧菌注射实验,以期找到与抗鳗弧菌感染相关的等位基因;同时利用3个家系研究了Ⅱ类基因的不同等位基因之间的连锁关系。主要结果如下:
     1.Ⅱ类的两个B基因在不同发育时期的表达
     之前的研究结果表明,在半滑舌鳎中B基因有两个,即Cyse-DAB和Cyse-DBB。用这两个B基因的特异引物分别对半滑舌鳎的19个发育时期进行扩增,结果发现两个B基因的表达不同。相同条件下,Cyse-DAB在受精后至胚环期未检测到表达,从尾牙期表达开始上升并持续到孵化后2d,而后在孵化后5d表达下降,在16d未检测到;在未变态时期表达量很高;Cyse-DBB在从未受精卵开始一直到孵化后2d均有持续表达,到孵化后5d表达未检测到,在孵化后16d表达量很大;两个B基因都随着变态的进行表达量下降,处于正在变态时期的表达量较小,而后随着变态的结束,表达量逐渐恢复,在56d和87d仔鱼时期表达量均较大。两个B基因在发育早期的不同表达情况说明在这些时期两个B基因可能发挥不同的功能或功能互补。
     2.Ⅱ类A基因的克隆、ORF多态和基因结构
     利用同源克隆技术,从半滑舌鳎的脾脏中克隆得到了A基因的cDNA全长,为992bp,ORF长717bp,编码238个氨基酸。一级结构显示其有免疫球蛋白和主要组织相容性复合体蛋白标签和保守的半胱氨酸残基;二级结构显示其为混合型蛋白。序列比对和进化树分析显示,半滑舌鳎的该蛋白和大菱鲆、牙鲆、大西洋庸鲽的亲缘关系最近。
     对9个个体进行了A基因的ORF扩增,得到了25种多肽序列,序列比对和进化树分析显示这些多肽序列差异明显,分为两类,应为两个基因,将其分别命名为Cyse-DAA和Cyse-DBA,分别包含11个和14个等位基因;两个基因的特异氨基酸分别为Asn91、Ser92、Ser94、Gly95、Lys101、Lys103和Thr/Ala92、Glu/Gln94、Ala95、Leu101、Asn103。与其它有代表性的含有2个位点以上的鱼类A基因构建进化树发现,半滑舌鳎的这两个A基因的各等位基因分别聚在一起,形成两个分支;随后与其它物种的A基因聚在一起;提示这两个A基因是在半滑舌鳎与其它物种分离后才产生的。
     对两个A基因的基因全长扩增显示,两个A基因均由4个外显子和3个内含子组成,外显子的分布和长度一致,但内含子差异明显:Cyse-DAA的内含子2长为136bp,而Cyse-DBA的内含子2长为205bp,因而内含子2可以用来区分两个A基因;两个A基因的内含子1和3没有明显差别,且内含子3最为保守均为90bp;内含子1含有一个重复次数约为100次的(GTCA)微卫星序列。
     3.感染实验和抗病/易感等位基因的查找
     对200尾半滑舌鳎进行腹腔注射鳗弧菌实验,取最先死亡的20尾个体和活跃的20尾个体进行分析。每个个体每个基因各挑取5个克隆进行测序。共发现了B基因的多肽序列60个,其中属于Cyse-DAB的为32个,属于Cyse-DAB的为28个;两个B基因有各自特异的核苷酸和氨基酸;发现了13种CCyse-DAB的内含子1和11种Cyse-DAB的内含子1;Cyse-DAB的等位基因Cyse-DAB*0701和Cyse-DAB-1301与抗鳗弧菌感染的敏感性相关,且差异显著,P分别为0.001和0.01;虽然Cyse-DAB的等位基因Cyse-DAB*0601、Cyse-DAB*0706、Cyse-DBB的等位基因Cyse-DBB*0101和Cyse-DBB*1301与抗鳗弧菌感染的抗性相关性不显著,但是这四个等位基因很可能与抗鳗弧菌感染的抗性相关,因为它们仅在存活个体中被发现,且在多于一个个体中被发现。
     根据得到的外显子2、3的的氨基酸序列共发现了85种A基因的多肽序列,其中的41种属于Cyse-DAA,45种属于Cyse-DBA;两个A基因在特异位置的特异氨基酸保守;两个A基因的内含子2长度保守,本实验中得到了3种CCyse-DAA的内含子2和6种Cyse-DBA的内含子2,差异主要为单核苷酸变异;虽然没有显著性差异,但是Cyse-DAA的等位基因Cyse-DAA*0901、Cyse-DBA的等位基因Cyse-DBA*1101和Cyse-DBA*1401在死亡个体中比在存活个体中出现的频率高,可能与抗鳗弧菌感染的敏感性相关;而Cyse-DAA的等位基因Cyse-DAA*0201、Cyse-DAA*1101、Cyse-DBA等位基因Cyse-DBA*0401、 Cyse-DBA*1102、Cyse-DBA*1801以及Cyse-DBA*2201在存活个体中出现的频率比在死亡个体中出现的频率高,因而可能与抗鳗弧菌感染的抗性有关。
     4Ⅱ类基因的等位基因的连锁分析
     虽然用PstI酶切半滑舌鳎基因组后的Southern杂交结果显示B基因只有一条大于lOkb的条带出现,但是序列分析仍然支持半滑舌鳎中存在2个B基因的结论。采用多重PCR的方法对三个家系的子代进行B基因的不同等位基因间引物组合的扩增,结果显示:Cyse-DAB的等位基因Cyse-DAB*0403和Cyse-DAB*0601连锁,重组率8.00%;Cyse-DAB的等位基因Cyse-DAB*0601(?)口Cyse-DBB的等位基因Cyse-DBB*0101紧密连锁;(Cyse-DBB的等位基因Cyse-DBB*0101和Cyse-DBB*1601连锁,重组率4.17%;Cyse-DAB的等位基因Cyse-DAB*2401和Cyse-DBB的等位基因Cyse-DBB*2501紧密连锁;Cyse-DAB的等位基因CCyse-DAB*0403和Cyse-DBB的等位基因Cyse-DBB*0501连锁,重组率14.00%。这些信息表明B的两个基因以Cyse-DAB和CCyse-DBB紧密连锁在一起为一个单元,在染色体上至少串联重复一次。对三个家系的各约4个子代个体进行B基因测序发现了等位基因从亲本到子代的遗传。
     由于A基因的核苷酸水平的变异位点非常多,不能像B基因分析中用多重PCR的方法,因而设计单个等位基因的引物在子代中扩增,并与同亲本来源的B基因的等位基因进行连锁分析,结果显示2#家系母本的Cyse-DAA的等位基因Cyse-DAA*2201与Cyse-DAB的的等位基因Cyse-DAB*0601、Cyse-DBB的等位基因Cyse-DBB*0101及Cyse-DBB*1601的距离较远,属于自由组合;3#家系父本的Cyse-DBA的等位基因Cyse-DBA*3101与Cyse-DAB的的等位基因Cyse-DAB*0403及Cyse-DBB的等位基因Cyse-DBB*0501的距离较远,属于自由组合。同时发现亲本的A基因的等位基因在子代间得到很好的分离和遗传。
Half-smooth tongue sole (Cynoglossus semilaevis) is an important economic fish, and accounts for a high percentage in fish aquaculture in coastal area of China. Half-smooth tongue sole has to face many kinds of pathogens during its growth in aquiculture. Hence, in order to understand its main immune genes and improve its anti-disease ability, we cloned the major histocompatibility complex (MHC) class II genes from half-smooth tongue sole, and studied the open reading frame (ORF) polymorphism, genomic structure of A gene and also the developmental stages expression of B gene; moreover,200half-smooth tongue sole individuals were injected with Vibrio anguillarum in order to find the potential anti-bacterial or susceptible alleles; meanwhile, three families were used to analyze the linkage relationship of different alleles of class II genes. The main results are listed below:
     1. Expression study of two B genes in developmental stages
     According to previous study, there are two B genes in half-smooth tongue sole, named as Cyse-DAB and Cyse-DBB. Diffferent expression patterns were found in19developmental stages using the two genes' specific primes. Cyse-DAB was undetectable from fertilized eggs to middle gastrula stage. Its expression was observed again from tail-bud stage and increased until2-d larvae, then it decreased in5-d larvae and could not be detected in16-d larvae, but the expression of Cyse-DAB was high just before metamorphosis. Cyse-DBB had a continuous expression from unfertilized eggs to2-d larva. The expression of Cyse-DBB was not detected in5-d larvae, but high expression was detected in16-d larvae. The expression of both genes decreased when metamorphosis began, and had low expression during metamorphosis; then the expression increased and high expression was found in56-d and87-d fingerlings. The different expression patterns in early developmental stages indicated that the two B genes might play different or complementary roles in those stages.
     2. Cloning, ORF polymorphism and genomic structure of class ⅡA gene
     A992bp cDNA encoding A gene was cloned from spleen of half-smooth tongue sole, and the ORF is717bp in length, encoding a pepetide of238amino acids. The immunoglobulins and major histocompatibility complex proteins signature and conserved cysteines were identified in the primary structure of the A protein. The secondary structure indicates that A protein is a complex protein. Sequence alignment and phylogenetic analysis indicate that half-smooth tongue sole A protein has a close relationship with that from turbot, Japanese flounder and Atlantic halibut.
     Nine individuals were used to study the ORF polymorphism and25peptides were identified. Sequence alignment and phylogenetic analysis indicate that those peptides had divergent sequences, clustered into two groups, so they should belong to two A genes and named as Cyse-DAA and Cyse-DBA accordingly. Cyse-DAA and Cyse-DBA has11and14alleles, respectively. The two A genes'specific amino acids in specific positions are Asn91, Ser92, Ser94, Gly95, Lys101and Lys103for Cyse-DAA, and Thr/Ala91, Val/Gly92, Glu/Gln94, Ala95, Leu101and Asn103for Cyse-DBA. Phylogenetic analysis with other teleosts who has at least two A loci indicates that the two A genes'alleles from half-smooth tongue sole clustered into two groups, then joined as a big branch, then with other A genes from other species, which suggests the originating time of two A genes should be after half-smooth tongue sole seperating from other species.
     The whole genomic sequences indicate that both of the two A genes are comprised of four exons and three introns, and the distribution and length of the exons are same, but the introns are quite different:Cyse-DAA's intron2is136bp in length, while Cyse-DBA's intron2is205bp long; but the two genes'intron1and intron3are not quite divergent. Intron3is well conserved, all are90bp long; while in intron1a (GTCA) repeat of about100times was discovered.
     3. Vibrio anguillarum infection and the search for anti-bacterial/susceptible alleles
     Two hundreds half-smooth tongue sole individuals were selected for the V. anguillarum intraperitoneal infection experiment. The first20died individuals and20active ones were screened for the class II genes'alleles. Five clones of each gene were sequenced from each individual. Then60peptides of B genes'were identified, including32Cyse-DAB alleles and28Cyse-DBB alleles. The two B genes have specific nucleotides and amino acids in specific positions. And13Cyse-DAB intron1and11Cyse-DBB intron1sequences were found. Cyse-DAB's allele Cyse-DAB*0701and Cyse-DAB*1301are potential susceptible alleles with significant difference (P value is0.001and0.01, respectively). Though the difference is not significant in Cyse-DAB's allele Cyse-DAB*0601, Cyse-DAB*0706, Cyse-DBB's allele Cyse-DBB*0101and Cyse-DBB*1301, these four alleles are potential anti-bacterial alleles for they were only detected in several surviving individuals.
     According to the amino acids in exon2and exon3,85peptides of A genes'were identified, including41Cyse-DAA alleles and45Cyse-DBA alleles. The two A genes' specific nucleotides and amino acids are well conserved. The length of intron2of the two A genes are also well conserved, and three Cyse-DAA intron2and six Cyse-DBA intron2sequences were found because of single nucleotide polymorphism. Though the difference is not significant, Cyse-DAA's allele Cyse-DAA*0901, Cyse-DBA's allele Cyse-DBA*1101and Cyse-DBA*1401are potential susceptible alleles with higher frequencies in dead individuals, and Cyse-DAA's allele Cyse-DAA*0201, Cyse-DAA*1101, Cyse-DBA's allele Cyse-DBA*0401, Cyse-DBA*1102, Cyse-DBA*1801and Cyse-DBA*2201are potential anti-bacterial alleles for they had higher frequencies in surviving individuals than dead ones.
     4. Linkage analysis of alleles from class II genes
     Though only one fragment was detected by Southern blot analysis after PstI digestion using B genes'probe, the different sequences of B genes support the conclusion that two B genes exist in half-smooth tongue sole. Three families were used for linkage analysis. Using poly-PCR and different primer combination, the linkage relationships are as follows:Cyse-DAB's allele Cyse-DAB*0403and Cyse-DAB*0601are linked with a recombination fraction of8.00%; Cyse-DAB's allele Cyse-DAB*0601and Cyse-DBB's allele Cyse-DBB*0101are tightly linked; Cyse-DBB's allele Cyse-DBB*0101and Cyse-DBB*1601are linked with a recombination fraction of4.17%; Cyse-DAB's allele Cyse-DAB*2401and Cyse-DBB's allele Cyse-DBB*2501are tightly linked; Cyse-DAB's allele Cyse-DAB*0403and Cyse-DBB's allele Cyse-DBB*0501are linked with a recombination fraction of14.00%. These information indicates that the two B genes repeat at least twice in one chromosome with the unit of a tightly linked Cyse-DAB and Cyse-DBB. Sequencing of B genes from about four offsprings from each family indicates allele's inheritance from parents to the offsprings.
     For the nucleotide variations in A genes are quite high, so poly-PCR is not suitable here and only one allele's specific primer could be used in each PCR. Compared with the B genes'alleles from the same parent indicated that Cyse-DAA's allele Cyse-DAA*2201are not linked with three of B's sequences (Cyse-DAB*0601, Cyse-DBB*0101and Cyse-DBB*1601) in family2, and Cyse-DBA's allele Cyse-DBA*3101are not linked with two of B's sequences (Cyse-DAB*0403and Cyse-DBB*0501) in family3for the high recombination fraction near50%. Sequencing of A genes in the offsprings indicates alleles have good inheritance and separation from parents to the offsprings.
引文
[I]Antao A.B., Chinchar V.G., McConnell T.J., Miller N.W., Clem L.W., Wilson M.R. MHC class I genes of the channel catfish:sequence analysis and expression. Immunogenetics,1999, 49:303-311.
    [2]Apanius V., Penn D., Slev P.R., Ruff L.R., Potts W.K. The nature of selection on the major histocompatibility complex. Critical Reviews in Immunology,1997,17:179-224.
    [3]Bernatchez L., Landry C. MHC studies in nonmodel vertebrates:what have we learned about natural selection in 15 years? Journal of Evolution Biology,2003,16:363-377.
    [4]Bingulac-Popovic J., Figueroa F., Sato A., Talbot W.S., Johnson S.L., Gates M., Postlethwait J.H., Klein J. Mapping of MHC class Ⅰ and class Ⅱ regions to different linkage groups in the zebrafish, Danio rerio. Immunogenetics,1997,46:129-134.
    [5]Bird S., Zou J., Kono T., Sakai M., Dijkstra J.M., Secombes C. Characterisation and expression analysis of interleukin 2 (IL-2) and IL-21 homologues in the Japanese pufferfish, Fugu rubripes, following their discovery by synteny. Immunogenetics,2005(a),56:909-923.
    [6]Bird S., Zou J., Savan R., Sakai M., Dijkstra J., Secombes C. Characterisation and expression analysis of an interleukin 6 homologue in the Japanese pufferfish, Fugu rubripes. Developmental and Comparative Immunology,2005(b),29:775-789.
    [7]Birkemo G.A., Luders T., Andersen 0., Nes I.F., Nissen-Meyer J. Hipposin, a histone-derived antimicrobial peptide in Atlantic halibut(Hippoglossus hippoglossus L.). Biochimica et Biophysica Acta,2003,1646:207-215.
    [8]Blais J., Rico C., van Oosterhout C., Cable J., Turner G.F., Bernatchez L. MHC adaptive divergence between closely related and sympatric African cichlids. PLoS ONE,2007,2:e734.
    [9]Borza T., Stone C., Rise M.L., Bowman S., Johnson SC. Atlantic cod (Gadus morhua) CC chemokines:diversity and expression analysis. Developmental and Comparative Immunology, 2010,34:904-913.
    [10]Bridle A.R., Morrison R.N., Nowak B.F. The expression of immune-regulatory genes in rainbow trout, Oncorhynchus mykiss, during amoebic gill disease (AGD). Fish & Shellfish Immunology,2006,20:346-364.
    [11]Brown J.H., Jardetzky T.S., Gorga J.C., Stern L.J., Urban R.G., Strominger J.L., Wiley D.C. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature,1993,364:33-39.
    [12]Buonocore F., Randelli E., Casani D., Costantini S., Facchiano A., Scapigliati G., Stet R.J.M. Molecular cloning, differential expression and 3D structural analysis of the MHC class-Ⅱ beta chain from sea bass(Dicentrarchus labrax L.). Fish & Shellfish Immunology,2007, 23:853-866.
    [13]Cardwell T.N., Sheffer R.J., Hedrick P.W. MHC variation and tissue transplantation in fish. Journal of Heredity,2001,92:305-308.
    [14]Chen C.F., Wen H.S., Wang Z.P., He F., Zhang J.R., Chen X.Y., Jin G.X., Shi B., Shi D., Yang Y.P., Li J.F., Qi B.X., Li N. Cloning and expression of P450c17-I (17a-hydroxylase/17, 20-lyase) in brain and ovary during gonad development in Cynoglossus semilaevis. Fish Physiology and Biochemistry, DOI 10.1007/s 10695-009-9378-7.
    [15]Chen S.L., Tian Y.S., Yang J.F., Shao C.W., Ji X.S., Zhai J.M., Liao X.L., Zhuang Z.M., Su P.Z., Xu J.Y., Sha Z.X., Wu P.F., Wang N. Artificial gynogenesis and sex determination in half-smooth tongue sole (Cynoglossus semilaevis). Marine Biotechnology,2009,11:243-251.
    [16]Chen S.L., Zhang Y.X., Xu M.Y., Ji X.S., Yu G.C., Dong C.F. Molecular polymorphism and expression analysis of MHC class Ⅱ B gene from red sea bream (Chrysophrys major). Developmental and Comparative Immunololy,2006,30:407-418.
    [17]Chou P.Y., Fasman G.D. Prediction of the secondary structure of proteins from their amino acid sequence. Advances in Enzymology & Related Areas of Molecular Biology,1978, 47:45-148.
    [18]Consuegra S., Megens H.J., Leon K., Stet R.J.M., Jordan W.C. Patterns of variability at the major histocompatibility class Ⅱ alpha locus in Atlantic salmon contrast with those at the class I locus. Immunogenetics,2005,57:16-24.
    [19]Cosson P., Bonifacino J.S. Role of transmembrane domain interactions in the assembly of class II MHC molecules. Science,1992,258:659-662.
    [20]Crespo D., Bonnet E., Roher N., MacKenzie S.A, Krasnov A., Goetz F.W., Bobe J., Planas J.V. Cellular and molecular evidence for a role of tumor necrosis factor alpha in the ovulatory mechanism of trout. Reproductive Biology and Endocrinology,2010,8:34.
    [21]Croisetie're S., Tarte P.D., Bernatchez L., Belhumeur P. Identification of MHC class Ⅱβ resistance/susceptibility alleles to Aeromonas salmonicida in brook charr(Salvelinus fontinalis). Molecular Immunology,2008,45:3107-3116.
    [22]Cuesta A., Esteban M.A'., Meseguer J. Cloning, distribution and up-regulation of the teleost fish MHC class Ⅱ alpha suggests a role for granulocytes as antigen-presenting cells. Molecular Immunology,2006,43:1275-1285.
    [23]Cuesta A., Tafalla C. Transcription of immune genes upon challenge with viral hemorrhagic septicemia virus (VHSV) in DNA vaccinated rainbow trout(Oncorhynchus mykiss). Vaccine, 2009,27:280-289.
    [24]Davies C.J., Andersson L., Ellis S.A., Hensen E.J., Lewin H.A., Mikko S., Muggli-Cockett N.E., van der Poel J.J., Russell G.C. Nomenclature for factors of the BoLA system,1996: report of the ISAG BoLA Nomenclature Committee. Animal Genetics,1997,28:159-168.
    [25]Dionne M., Miller K.M., Dodson J.J., Bernatchez L. MHC standing genetic variation and pathogen resistance in wild Atlantic salmon. Philosophical Transactions of the Royal Society B:Biological Sciences,2009,364:1555-1565.
    [26]Dixon B., Stet R.J. The relationship between major histocompatibility receptors and innate immunity in teleost fish. Developmental Comparative Immunology,2001,25:683-699.
    [27]Edwards S., Hedrick P.W. Evolution and ecology of MHC molecules:from genomics to sexual selection. Trends in Ecology and Evolution,1998,13:305-311.
    [28]Evans M.L, Neff B.D. Major histocompatibility complex heterozygote advantage and widespread bacterial infections in populations of Chinook salmon(Oncorhynchus tshawytscha). Molecular Ecology,2009,18:4716-4729.
    [29]Fischer U., Dijkstra J.M., Kollner B., Kiryu I., Koppang E.O., Hordvik I., Sawamoto Y., Ototake M. The ontogeny of MHC class I expression in rainbow trout(Oncorhynchus mykiss). Fish & Shellfish Immunololy,2005,18:49-60.
    [30]Flajnik M.F., Kasahara M. Comparative genomics of the MHC:glimpse into the evolution of the adaptive immune system. Immunity,2001,15:351-362.
    [31]Fugmann S.D., Lee A.I., Shockett P.E., Villey I.J., Schatz D.G. The rag proteins and V (D) J recombination:Complexes, ends, and transposition. Annual Review of Immunology,2000, 18:495-527.
    [32]G-Castillo J., Pelegrin P., Mulero V., Meseguer J. Molecular cloning and expression analysis of tumor necrosis factor a from a marine fish reveal its constitutive expression and ubiquitous nature. Immunogenetics,2002,54:200-207.
    [33]Godwin U.B., Flores M., Quiniou S., Wilson M.R., Miller N.W., Clem L.W., McConnell T.J. MHC class Ⅱ A genes in the channel catfish (Ictalurus punctatus). Developmental and Comparative Immunology,2000,24:609-622.
    [34]Grimholt U., Drablos F., Jorgensen S.M., Hoyheim B., Stet R.J.M. The major histocompatibility class I locus in Atlantic salmon (Salmo salar L.):polymorphism, linkage analysis and protein modeling. Immunogenetics,2002,54:570-581.
    [35]Grimholt U., Getahun A., Hermsen T., Stet R.J.M. The major histocompatibility class II alpha chain in salmonid fishes. Developmental and Comparative Immunology,2000, 24:751-63.
    [36]Grimholt U., Larsen S., Nordmo R., Midtlyng P., Kjoeglum S., Storset A., Saebo S., Stet R.J.M. MHC polymorphism and disease resistance in Atlantic salmon(Salmo salar); facing pathogens with single expressed major histocompatibility class Ⅰ and class Ⅱ loci. Immunogenetics,2003,55:210-219.
    [37]Hardee J.J., Godwin U., Benedetto R., McConnell T.J. Major histocompatibility complex class II A gene polymorphism in the striped bass. Immunogenetics,1995,41:229-38.
    [38]Hashimoto K., Nakanishi T., Kurosawa Y. Isolation of carp genes encoding major histocompatibility complex antigens. Proceedings of the National Academy of Sciences of the United States of America,1990,87:6863-6867.
    [39]Harstad H., Lukacs M.F., Bakke H. G., Grimholt U. Multiple expressed MHC class II loci in salmonids; details of one non-classical region in Atlantic salmon(Salmo salar). BMC Genomics,2008,9:193
    [40]Hedrick P.W. Pathogen resistance and genetic variation at MHC loci. Evolution,2002, 56:1902-1908.
    [41]Hirono I., Nam B-H., Kurobe T., Aoki T. Molecular cloning, characterization, and expression of TNF cDNA and gene from Japanese Flounder Paralychthys olivaceus. The Journal of Immunology,2000,165:4423-4427.
    [42]Hofmann K., Stoffel W. TMbase-A database of membrane spanning proteins segments. Biological Chemistry Hoppe-Seyler,1993,374:166.
    [43]Hordvik I., Grimholt U., M.Fosse V., Lie O., Endresen C. Cloning and sequence analysis of cDNAs encoding the MHC class II b chain in Atlantic salmon (Salmo salar). Immunogenetics, 1993,37:437-441.
    [44]Huang R., Gao L.Y., Wang Y.P., Hu W., Guo Q.L. Structure, organization and expression of common carp (Cyprinus carpio L.) NKEF-B gene. Fish & Shellfish Immunology,2009, 26:220-229.
    [45]Hughes A.L., Hughes M.L., Watkins D.I. Constrasting roles of interallelic recombination at the HLA-A and HLA-B loci. Genetics,1993,133:669-680.
    [46]Hughes A.L., Nei M. Nucleotide substitution at major histocompatibility complex class Ⅱ loci:evidence for overdominant selection. Proceedings of the National Academy of Sciences of the United States of America,1989,86:958-962.
    [47]Huising M.O., Kruiswijk C.P., van Schijndel J.E., Savelkoul H.F., Flik G., Verburg-van Kemenade B.M. Multiple and highly divergent IL-11 genes in teleost fish. Immunogenetics, 2005,57:432-443.
    [48]Huising M.O., Stet R.J.M., Savelkoul H.F.J. The molecular evolution of the interleukin-1 family of cytokines; IL-18 in teleost fish. Developmental and Comparative Immunology,2004, 28:395-413.
    [49]Hwang S.D., Asahi T., Kondo H., Hirono I., Aoki T. Molecular cloning and expression study on Toll-like receptor 5 paralogs in Japanese flounder, Paralichthys olivaceus. Fish & Shellfish Immunology,2010,29:630-638.
    [50]Igawa D., Sakai M., Savan R. An unexpected discovery of two interferon gamma-like genes along with interleukin (IL)-22 and -26 from teleost:IL-22 and -26 genes have been described for the first time outside mammals. Molecular Immunology,2006,43:999-1009.
    [51]Jeffery K.J., Bangham C.R. Do infectious diseases drive MHC diversity? Micorbes and Infection,2000,2:1355-1341.
    [52]Jime'nez-Cantizano R.M., Infante C., Martin-Antonio B., Ponce M., Hachero I., Navas J.I., Manchado M. Molecular characterization, phylogeny, and expression of c-type and g-type lysozymes in brill (Scophthalmus rhombus). Fish & Shellfish Immunology,2008,25,57-65.
    [53]Jorgensen S.M., Hetland D.L., Press C.M., Grimholt U., Gjoen T. Effect of early infectious salmon anaemia virus (1SAV) infection on expression of MHC pathway genes and type I and Ⅱ interferon in Atlantic salmon(Salmo salar L.) tissues. Fish & Shellfish Immunology,2007, 23:576-588.
    [54]Kasahara M., Vazquez M., Sato K., McKinney E.C., Flajnik M.F. Evolution of the major histocompatibility complex:Isolation of class II A cDNA clones from the cartilaginous fish. Proceedings of the National Academy of Sciences of the United States of America,1992, 89:6688-6692.
    [55]Klein D., Ono H., O'hUigin C., Vincek V., Goldschmidt T., Klein J. Extensive MHC variability in cichlid fishes of Lake Malawi. Nature,1993,364:330-334.
    [56]Klein J., Figueroa F. Evolution of the major histocompatibility complex. Critical Reviews in Immunology,1986,6:295-386.
    [57]Kjoglum, S., Larsen, S., Bakke, H. G., and Grimholt, U. How specific MHC class I and class II combinations affect disease resistance against infectious salmon anaemia in Atlantic salmon (Salmo salar). Fish & Shellfish Immunology,2006,21:431-441.
    [58]Kjoglum, S., Larsen, S., Bakke, H. G., and Grimholt, U. The Effect of Specific MHC Class I and Class Ⅱ Combinations on Resistance to Furunculosis in Atlantic Salmon (Salmo salar). Scandinavian Journal of Immunology,2007,67:160-168.
    [59]Kruiswijk C.P., Hermsen T., Fujiki K., Dixon B., Savelkoul H.F., Stet R.J. Analysis of genomic and expressed major histocompatibility class la and class Ⅱ genes in a hexaploid Lake Tana African 'large' barb individual (Barbus intermedius). Immunogenetics,2004, 55:770-781.
    [60]Kumar S., Tamura K., Nei M. MEGA3:integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics,2004,5:150-163.
    [61]Lee E.Y., Park H.H., Kim Y.T., Choi T.J. Cloning and sequence analysis of the interleukin-8 gene from flounder (Paralichthys olivaceous). Gene,2001,274:237-243.
    [62]Li C., Yu Y., Sun Y., Li S., Zhong Q., Wang X., Wang Z., Qi J., Zhang Q. Isolation, polymorphism and expression study of two distinct major histocompatibility complex class II B genes from half-smooth tongue sole (Cynoglossus semilaevis). International Journal of Immunogenetics,2010 (a),37:185-197.
    [63]Li Z.J., Yang L.J., Wang J., Shi W.C., Pawar R.A., Liu Y.M., Xu C.G., Cong W.H., Hua Q.R., Lu T.Y., Xia F., Guo W., Zhao M., Zhang Y.Y. β-Actin is a useful internal control for tissue-specific gene expression studies using quantitative real-time PCR in the half-smooth tongue sole Cynoglossus semilaevis challenged with LPS or Vibrio anguillarum. Fish & Shellfish Immunology,2010 (b),29:89-93.
    [64]Liao X., Ma H., Xu G., Shao C., Tian Y., Ji X., Yang J., Chen S. Construction of a genetic linkage map and mapping of a female-specific DNA marker in half-smooth tongue sole (Cynoglossus semilaevis). Marine Biotechnology,2009,11:699-709.
    [65]Liu Y., Chen S.L., Meng L., Zhang Y.X. Cloning, characterization and expression analysis of a novel CXC chemokine from turbot (Scophthalmus maximus). Fish & Shellfish Immunology, 2007,23:711-720.
    [66]Milinski M., Griffiths S., Wegner K.M., Reusch T.B.H, H-Assenbaum A., Boehm T. Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proceedings of the National Academy of Sciences of the United States of America,2005, 102:4414-4418.
    [67]Ma'laga-Trillo E., Zaleska-Rutczynska Z., McAndrew B., Vincek V., Figueroa F., Sultmann H., Klein J. Linkage relationships and haplotype polymorphism among cichlid Mhc class Ⅱ B loci. Genetics,1998,149:1527-1537.
    [68]Madden D.R. The three-dimensional structure of peptide-MHC complexes. Annual Review of Immunology,1995,13:587-622.
    [69]Mulero I., Sepulcre M.P., Fuentes I., Garc'ia-Alc'azar A., Meseguer J., Garc'ia-Ayala A., Mulero V. Vaccination of larvae of the bony fish gilthead seabream reveals a lack of correlation between lymphocyte development and adaptive immunocompetence. Molecular Immunology,2008,45:2981-2989.
    [70]Murray B.W., Shintani S., Sultmann H., Klein J. Major histocompatibility complex class Ⅱ A genes in cichlid fishes:identification, expression, linkage relationships, and haplotype variation. Immunogenetics,2000,7:576-586.
    [71]Naruse K., Fukamachi S., Mitani H., Kondoa M., Matsuokaa T., Kondoa S., et al. A detailed linkage map of medaka, Oryzias latipes. Comparative genomics and genome evolution. Genetics,2000,154:1773-1784.
    [72]Nei M., Gojobori T. Simple methods for estimating the number of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution,1986,3:418-426.
    [73]Nikolich-Zugich J., Fremont D.H., Miley M.J., Messaoudi I. The role of mhc polymorphism in anti-microbial resistance. Microbes and Infection,2004,6:501-512.
    [74]Nielsen, H., Engelbrecht, J., Brunak, S. & von, H.G. A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. International Journal of Neural Systems,1997,8:581.
    [75]Niranjan S.K., Deb S.M., Kumar S., Mitra A., Sharma A., Sakaram D., Naskar S., Sharma D., Sharma S.R. Allelic diversity at MHC class 11 DQ loci in buffalo(Bubalus bubalis):Evidence for duplication. Veterinary Immunology and Immunopathology,2010, doi:10.1016/j.vetimm.2010.07.014.
    [76]Niu H., Chang J., Ma S., Wang L. The biology and cultural ecology of Cynoglossus semilaevis Gunther. Fisheries Science,2007,26:425-426.
    [77]Nonaka M., Matsuo M., Naruse K., Shima A. Comparative genomics of medaka:the major histocompatibility complex (MHC). Marine Biotechnology,2001,3:141-144.
    [78]Ono H., Klein D., Vincek V., Figueroa F., O'Huigin C. Major histocompatibility complex class Ⅱ genes of zebrafish. Proceedings of the National Academy of Sciences of the United States of America,1992,89:11886-11890.
    [79]Ono H., O'hUigin C., Tichy H., Klein J. Major histocompatibility complex variation in two species of cichlid fishes from Lake Malawi. Molecular Biology and Evolution,1993, 10:1060-1072.
    [80]Ottova'E., Simkova A., Martin J-F., de Bellocp J.G., Gelnar M., Allienne J-F., Morand S. Evolution and trans-species polymorphism of MHC class Ⅱβ genes in cyprinid fish. Fish & Shellfish Immunology,2005,18:199-222.
    [81]Parham P., Ohta T. Population biology of antigen presentation by MHC class! molecules. Science,1996,272:67-74.
    [82]Quiniou, S.M.., Wilson, M., Bengten, E., Waldbieser, G.C., Clem, L.W., and Miller, N.W. MHC RFLP analysis in channel catfish full-sibling families:identification of the role of MHC molecules in spontaneous allogeneic cytotoxic responses. Developmental and Comparative Immunology,2005,29:457-467.
    [83]Rakus K.L., Wiegertjes G.F., Adamek M., Bekh V., Stet R.J.M., Irnazarow I. Application of PCR-RF-SSCP to study major histocompatibitity class Ⅱ B polymorphism in common carp (Cyprinus carpio L.) Fish & Shellfish Immunology,2008,24:734-744.
    [84]Rakus K.L., Wiegertjes G.F., Jurecka P., Walker P.D., Pilarczyk A., Irnazarow 1. Major histocompatibitity (MH) class II B gene polymorphism influences disease resistance of common carp (Cyprinus carpio L.) Aquaculture,2009,288:44-50.
    [85]Reusch T.B., Schaschl H., Wegner K.M. Recent duplication and inter-locus gene conversion in major histocompatibility class Ⅱ genes in a teleost, the three-spined stickleback. Immunogenetics,2004,56:427-437.
    [86]Rice W.R. Analysis tables of statistical tests. Evolution,1989,43:223-225.
    [87]Ristow S.S., Grabowski L.D., Thompson S.M., Warr G.W., Kaattari S.L., de Avila J.M., Thorgaard G.H. Coding sequences of the MHC b chain of homozygous rainbow trout (Oncorhynchus mykiss). Developmental and Comparative Immunology,1999,23:51-60.
    [88]Robinson J., Waller M.J., Parham P., de Groot N., Bontrop R., Kennedy L.J., Stoehr P., Marsh S.G.E. IMGT/HLA and IMGT/MHC:sequence databases for the study of the major histocompatibility complex. Nucleic Acids Research,2003,31:311-314.
    [89]Rodrigues P.N., Hermsen T.T., Rombout J.H., Egberts E., Stet R.J. Detection of MHC class II transcripts in lymphoid tissues of the common carp(Cyprinus carpio L.). Developmental and Comparative Immunology,1995,19:483-496.
    [90]Rost B. PHD:predicting one-dimensional protein structure by profile-based neural networks. Methods in Enzymology,1996,266:525-539.
    [91]Saitou N., Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution,1987,4:406-425.
    [92]Sato A., Figueroa F., O'hUigin C., Reznick D.N., Klein J. Identification of major histocompatibility complex genes in the guppy, Poecilia reticulata. Immunogenetics,1996, 43:38-49.
    [93]Savan R., Igawa D., Sakai M. Cloning, characterization and expression analysis of interleukin-10 from the common carp, Cyprinus carpio L. European Journal of Biochemistry, 2003,270:4647-4654.
    [94]Savan R., Kono T., Igawa D., Sakai M. A novel tumor necrosis factor (TNF) gene present in tandem with the TNF-a gene on the same chromosome in teleosts. Immunogenetics,2005, 57:140-150.
    [95]Schaschl S., Wegner K.M. Contrasting mode of evolution between the MHC class Ⅰ genomic region and class Ⅱ region in the three-spined stickleback(Gasterosteus aculeatus L.;Gasterosteidae:Teleostei). Immunogenetics,2007,59:295-304.
    [96]Sha Z., Wang S., Zhuang Z., Wang Q., Wang Q., Li P., Ding H., Wang N., Liu Z., Chen S.Generation and analysis of 10 000 ESTs from the half-smooth tongue sole Cynoglossus semilaevis and identification of microsatellite and SNP markers. Journal of Fish Biology,2010, 76:1190-1204.
    [97]Shao C.W., Chen S.L., Scheuring C.F., Xu J.Y., Sha Z.X., Dong X.L., Zhang H.B. Construction of two BAC libraries from half-smooth tongue sole Cynoglossus semilaevis and identification of clones containing candidate sex-determination genes. Marine Biotechnology, DOI 10.1007/s10126-009-9242-x.
    [98]Shao C.W., Wu P.F., Wang X.L., Tian Y.S., Chen S.L. Comparison of chromosome preparation methods for the different developmental stages of the half-smooth tongue sole, Cynoglossus semilaevis. Micron,2010,41:47-50.
    [99]Sigh J., Lindenstrom T., Buchmann K. Expression of pro-inflammatory cytokines in rainbow trout (Oncorhynchus mykiss) during an infection with Ichthyophthirius multifiliis. Fish & Shellfish Immunology,2004,17:75-86.
    [100]Srisapoome P., Ohira T., Hirono I., Aoki T. Cloning, characterization and expression of cDNA containing major histocompatibility complex class Ⅰ, Ⅱ α and Ⅱβ genes of Japanese flounder Paralichthys olivaceus. Fisheries Science,2004,70:264-276.
    [101]Stet R.J., de Vries B., Mudde K., Hermsen T., van Heerwaarden J., Shum B.P., Grimholt U. Unique haplotypes of co-segregating major histocompatibility class Ⅱ A and class Ⅱ B alleles in Atlantic salmon (Salmo salar) give rise to diverse class Ⅱ genotypes. Immunogenetics,2002, 54:320-331.
    [102]Sultmann H., Mayer W.E., Figueroa F., O'hUigin C., Klein J. Zebrafish Mhc class Ⅱ α chain-encoding genes:polymorphism, expression, and function. Immunogenetics,1993, 38:408-420.
    [103]Sun B.J., Wang G.L., Xie H.X., Gao Q., Nie P. Gene structure of goose-type lysozyme in the mandarin fish Siniperca chuatsi with analysis on the lytic activity of its recombinant in Escherichia coli. Aquaculture,2006,252:106-113.
    [104]Sun Y., Yu Y., Zhang Q., Qi J., Zhong Q., Chen Y, Li C. Molecular characterization and expression pattern of two zona pellucida genes in half-smooth tongue sole(Cynoglossus semilaevis). Comparative Biochemistry and Physiology, Part B.2010(b),155:316-321.
    [105]Sun Y., Zhang Q., Qi J., Chen Y., Zhong Q., Li C., Yu Y., Li S., Wang Z. Identification of differential genes in the ovary relative to the testis and their expression patterns in half-smooth tongue sole (Cynoglossus semilaevis). Journal of Genetics and Genomics,2010(a), 37:137-145.
    [106]Takahata N., Nei M. Allelic genealogy under overdominant and frequency dependent selection and polymorphism of major histocompatibility complex loci. Genetics,1990, 124:967-978.
    [107]Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research,1997,25:4876-4882.
    [108]Walker R.B., McConnell T.J., Walker R.A. Variability in an MHCMosa class Ⅱ beta chain-encoding gene in striped bass (Morone saxatilis). Developmental and Comparative Immunology,1994,18:325-342.
    [109]Wang X., Zhang Q., Sun X., Chen Y., Zhai T., Zhuang W., Qi J., Wang Z. Fosmid library construction and initial analysis of end sequences in female half-smooth tongue sole (Cynoglossus semilaevis). Marine Biotechnology,2009 (a),11:236-242.
    [110]Wang X.L., Wang N., Sha Z.X., Chen S.L. Establishment, characterization of a new cell line from heart of half smooth tongue sole (Cynoglossus semilaevis). Fish Physiology and Biochemistry,2009 (b), DOI 10.1007/s 10695-010-9396-5.
    [111]Wang Y., Han Y., Li Y., Chen J.X., Zhang X.H. Isolation of Photobacterium damselae subsp. piscicida from diseased tongue sole (Cynoglossus semilaevis Gunther) in China. Acta Microbiologica Sinica,2007,47:763-768.
    [112]Wedekind C., Walker M., Portmann J., Cenni B., Muller R., Binz T. MHC-linked susceptibility to a bacterial infection, but no MHC-linked cryptic female choice in whitefish. Journal of Evolution Biology,2004,17:11-18.
    [113]Xu T., Chen S., Ji X., Tian Y. MHC polymorphism and disease resistance to Vibrio anguillarum in 12 selective Japanese flounder (Paralichthys olivaceus) families. Fish & Shellfish Immunology,2008,25:213-221.
    [114]Yu Y., Zhong Q., Li C., Jiang L., Yan F., Wang Z., Zhang Q. Isolation and characterization of Toll-like receptor 9 in half-smooth tongue sole Cynoglossus semilaevis. Fish & Shellfish Immunology,2009 (a),26:492-499.
    [115]Yu Y., Zhong Q., Zhang Q., Wang Z., Li C., Yan F. Full-length sequence and expression analysis of a myeloid differentiation factor 88 (MyD88) in half-smooth tongue sole Cynoglossus semilaevis. International Journal of Immunogenetics,2009 (b),36:173-182.
    [116]Zhang Y.B., Gui J.F. Cloning, identification and characterization of interferon system genes in crucian carp (Carassius auratus L.). Journal of the Graduate School of the Chinese Academy of Sciences,2004,21:418-426.
    [117]Zhang Y.X., Chen S.L. Molecular identification, polymorphism, and expression analysis of major histocompatibility complex class IIA and B genes of turbot (Scophthalmus maximus). Marine Biotechnology,2006,8:611-623.
    [118]Zhang Y.X., Chen S.L., Liu Y.G., Sha Z.X., Liu Z.J. Major histocompatibility complex class Ⅱ B allele polymorphism and its association with resistance/susceptibility to Vibrio anguillarum in Japanese flounder(Paralichthys olivaceus). Marine Biotechnology,2006, 8:600-610.
    [119]Zhong Q., Zhang Q., Wang Z., Qi J., Chen Y., Li S., Sun Y., Li C., Lan X. Expression profiling and validation of potential reference genes during Paralichthys olivaceus embryogenesis. Marine Biotechnology,2008b,10:310-318.
    [120]Zinkernagel R.M., Doherty P.C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature,1974, 248:701-702.
    [121]Zou J., Bird S., Truckle J., Bols N., Home M., Secombes C. Identification and expression analysis of an IL-18 homologue and its alternatively spliced form in rainbow trout (Oncorhynchus mykiss). European Journal of Biochemistry,2004,271:1913-1923.
    [122]Zou J., Carrington A., Collet B., Dijkstra J.M., Yoshiura Y., Bols N., Secombes C. Identification and bioactivities of IFN-y in rainbow trout Oncorhynchus mykiss:the first Thl-type cytokine characterized functionally in fish. The Journal of Immunology,2005, 175:2484-2494.
    [123]Zou J., Secombes C.J., Long S., Miller N., Clem L.W., Chinchar V.G. Molecular identification and expression analysis of tumor necrosis factor in channel catfish(Ictalurus punctatus). Developmental and Comparative Immunology,2003,27:845-858.
    [124]蔡文超,柳学周,马学坤,徐永江,战文斌。半滑舌鳎早期发育阶段鳔和冠状幼鳍的生长发育规律研究。海洋水产研究,2006,27:94-98。
    [125]蔡中华,宋林生,高春萍等。真鲷肿瘤坏死因子a (TNFa) cDNA的克隆与表达。生物化学与生物物理学报,2003,35:1111-1116。
    [126]丁少雄,张之文,杜佳莹,王军,曾华嵩,王颖,陈晓峰。赤点石斑鱼(Epinephelus akaara) MHC Ⅱβ基因的克隆与表达多态性分析。海洋学报,2009,31:129-138。
    [127]杜伟,蒙子宁,薛志勇,姜言伟,庄志猛,万瑞景。半滑舌鳎胚胎发育及其与水温的关系。中国水产科学,2004,11:48-53。
    [128]杜伟。半滑舌鳎的胚胎发育光镜观察与核型研究:[硕士学位论文]。青岛:中国海洋大学,2003。
    [129]范嗣刚,张琼宇,罗琛。鲫鱼Rag基因的克隆及表达分析。水生生物学报,2009,33:603-612。
    [130]高春萍,蔡中华,宋林生,吴龙涛,池振明。黑鲷(Acanthopagrus schlegeli)肿瘤坏死因子αcDNA的克隆及特征分析。海洋与湖沼,2005,36:326-334。
    [131]高明,王海平,王全立。Ⅱ类抗原提呈的分子机制及分子伴侣Ii研究进展。微生物学免疫学进展,2004,4:70-72。
    [132]宫春光。半滑舌鳎工厂化养殖中的病害防治研究。中国水产,2005,12:54-55。
    [133]韩进刚,付小哲,石存斌,李凯彬,潘厚军,吴淑勤。剑尾鱼IgM基因的克隆及免疫对其组织表达的影响。广东海洋大学学报,2007,27:1-6。
    [134]韩志强,庄志猛,高天翔,刘进贤,李玉晖,王志勇,唐启升。半滑舌鳎DNA的群体遗传变异。中国水产科学,2007,14:192-200。
    [135]赫崇波,木云雷,王志松,周遵春,刘卫东。鱼类CC趋化因子基因及其系统进化分析。中国水产科学,2006,13:119-127。
    [136]李凌。栉孔扇贝抗鳗弧菌感染性状候选基因的多态性研究:[博士学位论文]。青岛:中国科学院海洋研究所,2009。
    [137]酒井正博,鱼类的MHC基因。1998,20:80-87。
    [138]雷霁霖。海水鱼类养殖理论与技术。北京:中国农业出版社,2005。
    [139]李思忠,王惠民。中国动物志,硬骨鱼纲、鲽形目。北京:科学出版社,1995。
    [140]柳学周,徐永江,马爱军,姜言伟,翟介明。温度、盐度、光照对半滑舌鳎胚胎发育的影响及孵化条件调控技术研究。海洋水产研究,2004,25:1-6。
    [141]马学坤,柳学周,温海深,孙中之,徐永江。半滑舌鳎早期发育过程中体表色素变化的研究。海洋水产研究,2006,27:62-58。
    [142]牛化欣,常杰,马甡,王莉。半滑舌鳎生物学及养殖生态学研究进展。水产科学,2007,26:425-426。
    [143]潘学霞,邵健忠,项黎新,孟真。鱼类中几种新型免疫因子的进展。水产学报,2005,29:264-269。
    [144]孙业盈,张全启,齐洁,陈妍婕,李春梅,钟其旺,王志刚。半滑舌鳎的一种细胞凋亡抑制因子的克隆、鉴定与分析。中国海洋大学学报,2008(b),38.927-931。
    [145]孙业盈,张全启,齐洁,王志刚,陈妍婕,李春梅,钟其旺。半滑舌鳎DMRT1基因的克隆与表达分析。武汉大学学报(理学版),2008(a),54:221-226。
    [146]孙业盈,张全启,齐洁,于燕,李朔,李春梅,钟其旺。半滑舌鳎两种Aquaporin1同源基因的克隆与表达分析。武汉大学学报(理学版),2009,55:335-339。
    [147]万瑞景,姜言伟,庄志猛。半滑舌鳎早期形态及发育特征。动物学报,2004,50:91-10。
    [148]王长伟,黄晓航,陈魁,林学政,刘晨临。花鲈Syntaxin 4基因及其在免疫应答反应中的表达特征。海洋科学进展,2009,27.509-515
    [149]王传娟,张晓华,贾爱荣。抑制性消减杂交技术在养殖鱼类免疫基因克隆中的应用。中国水产科学,2007,14:504-512。
    [150]王海静,王福生,边艳青,赵宝华。水产动物基因工程抗菌肽及其应用前景的研究。水生态学杂志,2009,2:100-104。
    [151]王海燕,刘勇,张甲,张冰。青石斑鱼MHC classI基因的克隆与分析。中国比较医学杂志,2008,18:14-20。
    [152]王红权,章怀云,张学文,肖调义,苏建明,唐湘北。转Hu-IFN-α基因草鱼F1代人α-干扰素表达水平的研究。湖南农业大学学报,2006,32.60-52。
    [153]王欣欣,孙宝剑,吕鸣先。草鱼免疫球蛋自M重链基因的克隆及表达。水产学报,2008,32:13-20
    [154]王旭波。半滑舌鲥(Cynoglossus semilaevis)雌鱼分子细胞遗传学分析:[博十学位论文]。青岛:中国海洋大学,2008。
    [155]王颖,张之文,丁少雄,杜佳莹,施晓峰,陈晓峰。赤点石斑鱼ICLP基因的克隆和序列分析。厦门大学学报,2009,48:428-434。
    [156]王志坚。牙鲆自然杀伤细胞增强因子(NKEE)基因的克隆及其表达分析:[硕十学位论文]。青岛:中国海洋大学,2005。
    [157]魏泉德,余新炳,Lim Ho Sung, Cha Hyung Joon。金鱼H1组蛋白基因及其N端片段的克隆、表达及抗菌活性。生物医学工程学杂志,2006,23:609-614。
    [158]吴铁军,梁万文。罗非鱼免疫球蛋白(IgM)重链基因全长cDNA序列分析。广西农业科学,2009,40:1084-1087。
    [159]吴莹莹,柳学周,马爱军,徐永江,王清印。饥饿对半滑舌鳎仔鱼生长和发育的影响。海洋水产研究,2006,27:87-93。
    [160]夏春,徐广贤,林常有,胡团军,阎若潜,高福。草鱼MHC class Ⅰ等位基因克隆及其多态性分析。自然科学进展,2004,14:51-58。
    [161]徐建勇,陈松林,毕金贞。野生抗病牙鲆MHC Ⅱ B内含子1和外显子2序列多态性。中国水产科学,2008,15:593-599。
    [162]徐田军,陈松林。牙鲆MHC-DAA结构及其等位基因多态性。遗传,2009,31:1020-1028。
    [163]徐永江,柳学周,马爱军,孙中之,庄志猛。半滑舌鳎胚胎发育及仔鱼生长与盐度的关系。海洋科学,2005,29:39-43。
    [164]许文静,张振奎。半滑舌鳎的半人工养殖技术。天津水产,2006,4:38-39。
    [165]于燕。半滑舌鳎(Cynoglossus semilaevis) TLR9及其信号传导相关基因的克隆与表达:[博十学位论文]。青岛:中国海洋大学,2009。
    [166]张守本,张志任,任玉水。半滑舌蹋的研究现状和发展前景。齐鲁渔业,2006,23:1-3。
    [167]张玉喜,陈松林。大菱鲆Scophthalmus maximus) MHC Ⅱ A基因全长cDNA的克隆与组织表达分析。海洋与湖沼,2007,38:1020-1028。
    [168]张玉喜。重要海水养殖鱼类MHC Ⅱ基因克隆、表达及多态性分析:[博士学位论文]。青岛:中国海洋大学,2006。
    [169]郑法新,程璐,李侠,宋维彦,徐宗军,F锋。云南红豆杉内生放线菌对半滑舌鳎病原弧菌的拮抗作用研究。科学养鱼,2009,7:48-50。
    [170]周丽青,杨爱国,柳学周,杜伟,庄志猛。半滑舌鳎染色体核型分析。水产学报,2005,29:417--419。
    [171]庄志猛,韩志强,马爱军,柳学周,高天翔。黄、渤海半滑舌鳎种群遗传结构的同工酶分析。海洋水产研究,2006,27:10-16。
    [172]左振华,唐建州,张钊,唐春华,陈韬,张东裔。草鱼细胞凋亡抑制蛋白基因cDNA的克隆与表达分析。湖南农业大学学报,2009,35:299-313。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700