用户名: 密码: 验证码:
湖南省国家级公益林生态效益监测与评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国家级公益林对国土生态安全、生物多样性保护和经济社会可持续发展具有重要作用。根据湖南省国家级公益林的分布格局与森林类型等基本特征,选取江河源头、江河两岸、大型水库、国家级自然保护区等四种生态区位的国家级公益林为研究对象,以生态学、林学、土壤学、生态经济学等多学科理论为指导,运用森林生态野外观测、试验分析、统计分析与基于层次分析法的综合评价等方法,对其水源涵养、固土保肥、固碳释氧、生物多样性及林木营养物质积累等主要生态效益进行了连续4年(2007~2010年)的定位监测,并运用实测数据对其进行计量,在此基础上对湖南省国家级公益林生态效益进行了综合评价,主要研究结果如下:
     (1)连续4年对国家级公益林生态效益监测结果表明:
     ①公益林土壤水源涵养效益:江河源头型为411.13~489.07t·hm-2,江河两岸型为423.68~460.51t·hm-2,大型水库型为311.06~436.38t·hm-2,国家级自然保护区型为273.70~354.53t.hm2。
     ②公益林固土保肥效益:土壤肥力指标含量表现为有机质>全K>全N>全P,且有机质含量占到80%以上,土壤有机质含量随土壤深度增加而减小,平均含量25.08-34.32g·kg~1,0~15cm范围含量为41.40~55.10g·kg-1,15~30cm范围含量为21.94~39.43g·kg-1,30-45cm范围含量为9.16~11.90g·kg-1;全K含量随土壤深度增加而增加,平均含量3.08~4.34g·kg-1;全N随土壤深度增加而减小,平均含量1.28~2.39g·kg-1,全P随土壤深度增加而减小,平均含量0.26~0.46g·kg-1。
     ③固碳释氧效益:阔叶混交林固碳效益为1.87~7.45t·hm-2,其中马尾松林固碳效益为3.09t·hm-2,杉木林固碳效益为0.99-3.16t·hm-2;植被释氧效益为2.62~20.11t·hm-2,其中阔叶混交林释氧效益为5.04~20.11t·hm-2,马尾松林释氧效益为2.62~4.98t·hm-2,杉木林释氧效益为2.68~8.52t·hm2。公益林生态系统固碳释氧效益由于植被类型的不同存在一定差异,土壤固碳效益明显大于非公益林植被固碳效益。
     ④林木营养物质积累效益:公益林乔木树种各器官中,树叶营养元素(N、P、K、Ca、Mg)含量最高,叶中5种元素平均含量为0.598%~0.923%,树干营养元素含量最低,树干中5种元素平均含量为0.079%~0.151%。营养元素总积累量为48.92~174.31kg·hm-2,阔叶混交林营养物质年平均积累量为75.08~174.31kg·hm-2马尾松林为48.92kg·hm-2,杉木林为55.77~89.36kg·hm-2。
     ⑤生物多样性保护效益:从Margalef指数、Simpson指数及Shannon-Wiener指数对公益林乔木及灌草多样性水平进行分析,由于样地森林类型差异较大,乔木多样性水平差异也较大。
     (2)四种生态区位类型国家级公益林2010年的生态效益物质量和价值量计量结果表明:
     ①林木营养物质积累量:大型水库型公益林为115.04kg·hm-2、国家级自然保护区型公益林为81.54kg·hm-2、江河源头型公益林为75.08kg·hm-2、江河两岸型公益林为64.14kg·hn-2。其对应的价值量分别为:1079.46元·hm-2、717.52元·hm-2、1262.40元·hm-2、561.56元·hm-2。
     ②水源涵养效益物质量:江河源头型为539.79t·hm-2、江河两岸型为515.45t·hm-2、大型水库型为411.28t·hm-2、国家级自然保护区型为379.55t·hm-2。其对应的价值量分别为:4156.38元·hm-2、3968.97元·hm-2、3166.86元·hm-2、2922.54元·hm-2。
     ③固土效益物质量:江河源头型为44.96t·hm-2、大型水库型为43.35t·hm-2、国家级自然保护区型为42.23t·hm-2、江河两岸型为42.10t·hm-2。保肥效益物质量表现为:国家级自然保护区为40.05g·kg-1、江河源头型为38.73g·kg-1、大型水库型为37.06g·kg-1、江河两岸型为33.97g·kg-1。固土保肥效益总价值为:大型水库型公益林为3063.46元·hm-2、江河源头型为2964.42元·hm-2、国家级自然保护区型为2902.80元·hm-2、江河两岸型为2859.40元·hm-2。
     ④固碳释氧量:大型水库型为56.59t·hm-2、江河源头型为50.22t·hm-2、国家级自然保护区型为43.78t·hm-2、江河两岸型公益林为42.18t·hm-2。其对应的价值量分别为:18918.05元·hm-2、13807.08元·hm-2、14555.95元·hm-2、12283.88元·hm-2。
     ⑤生物多样性保护效益价值表现为:江河源头型公益林10000元·hm-2、大型水库型公益林8000元·hm-2、国家级自然保护区型公益林7000元·hm-2、江河两岸型公益林5500元·hm-2。
     (3)国家级公益林2007~2010年生态效益的动态监测结果表明:
     ①水源涵养效益总体呈增大趋势,2007年水源涵养量为320.73~434.81t·hm-2,2010年为362.20~513.91t·hm-2,江河源头型和国家级自然保护区型公益林受冰雪灾害影响,其水源涵养效益2008年出现波动现象。
     ②固土保肥效益均表现出随年度增大趋势,江河源头型公益林固土保肥效益2007年为36.57g·kg-1,2010年为38.12g·kg-1;江河两岸型公益林2007年为32.43g·kg-1,2010年为34.28g·kg-1;大型水库型2007年为34.56g·kg-1,2010年为36.77g·kg-1;国家级自然保护区型2007年为37.86g·kg-1,2010年为39.65g·kg-1。
     ③林木生物量随时间均呈增加趋势,但由于各年林木生长快慢不同,生物量增加幅度存在一定差异,使固碳释氧效益动态变化规律不明显,江河源头型公益林固碳释氧效益随年度从10.79t·hm-2,增加到10.92t·hm-2,再减小到10.29t·hm-2;江河两岸型公益林固碳释氧效益随年度从7.36t·hm-2,先减小到5.25t.hm-2,随后又增加到7.63t·hm-2;大型水库型公益林固碳释氧效益随年度从11.31t·hm-2增大到16.54t·hm-2;国家级自然保护区型公益林固碳释氧效益随年度从6.35t·hm-2,一直增加到11.26t·hm-2。
     ④不同生态区位类型公益林Shannon-Wiener指数从2007年到2010年呈上升趋势,表明公益林建设的生物多样性保护效益在逐步增强。
     (4)国家级公益林与非公益林生态效益比较研究结果表明:
     四大生态区位国家级公益林土壤有机质平均为30.55%,略小于全省公益林土壤有机质平均值(31.22g·kg-1),而大于非公益林(27.86g·kg-1),全N、全P、全K含量均高于全省公益林与非公益林的平均值。四大生态区位国家级公益林年平均固碳释氧量为9.92t·hm-2,是全省森林生态系统年固碳释氧量6.69t·hm-2的1.48倍;林木营养元素N、P、K的年平均积累量分别为25.87kg·hm-2、3.24kg·hm-2、21.17kg·km-2,分别是全省森林林木营养元素N、P、K积累量(分别为14.68kg·hm-2、2.95kg·hm-2、9.13kg·hm-2)的1.76、0.90和2.32倍。湖南省四大生态区位国家级公益林单位面积水源涵养效益为1873.10t~hm-2,是全省主要森林类型水源涵养效益的0.54~0.59倍。
     (5)湖南省国家级公益林生态效益综合评价结果表明:
     不同生态区位公益林综合生态效益贡献度存在一定的差异性,表现为:江河源头型>国家级自然保护区型>江河两岸型>大型水库型。
     单项生态效益评价中:水源涵养效益在四种生态区位类型的排序依次是江河源头型>江河两岸型>大型水库型>国家自然保护区型;固土保肥效益在四种生态区位类型的排序依次是大型水库型>江河源头型>国家自然保护区型>江河两岸型;固碳释氧效益在四种生态区位类型的排序依次是大型水库型>国家自然保护区型>江河源头型>江河两岸型;林木营养物质积累效益在四种生态区位类型的排序依次是江河源头型>大型水库型>国家自然保护区型>江河两岸型;生物多样性保护效益在四种生态区位类型的排序依次是国家级自然保护区型>江河源头型>大型水库型>江河两岸型。
     该研究成果为进一步完善国家级公益林生态补偿制度建立补偿机制提供了基础数据,可以作为政府及相关部门制定公益林提质改造、充分发挥公益林多功能效益等决策的理论依据。
National non-commercial forest plays crucial role to the land ecological security, biodiversity protection and the sustainable development of the economy and society. According to the layout and forest types in Hunan Province, four types of national non-commercial forest are taken into consideration in this dissertation exemplified by the source of Li River, the banks of Xiang River, the Dongjiang Reservoir in Chen Zhou in combination with the important wetlands in Hunan, and lastly the National Nature Reserve. Based on the disciplines and theories of ecology, forestry, soil science, and ecological economics, the purposes of the paper are to explore the water conservation, soil fixing and fertilizer protecting, carbon fixing and oxygen releasing, ecological diversity and the nutrition matter accumulation in these areas mentioned above. The methods adopted in the study are the forest ecological field observation, test analysis, statistical analysis and analytic hierarchy process (ahp) based on the comprehensive evaluation. After4consecutive years (2007-2010) research by positioning monitoring, measurement and evaluation of the ecological benefit, the main results are as follows:
     (1) The ecological benefit monitoring and test results about Hunan national non-commercial forest are:
     ①Water conservation benefit:The river-source type is411.13~489.07t·hm-2, the river-bank type is423.68~460.51t·hm-2, important wetlands with large reservoir type is311.06~436.38t·hm-2, and National Nature Reserve type is273.70~354.53t·hm-2.
     ②Soil fixing and fertilizer protecting are as follows:organic matter> all K> all N> all P, organic content account for more than80%, with soil depth increases,the soil organic matter content decreases, and the average content of25.08~34.32g·kg-1,0~15cm range content is41.40~55.10g·kg-1, to30cm range content is21.94-39.43g·kg-1,30to45cm range content is9.16~11.90g·kg-1; All K content with soil depth increasing, it also increased, the average content of3.08~4.34g·kg-1; With soil depth increasing; All N decreases, and the average content of1.28~2.39g·kg-1, with soil depth increasing, all P decreases, and the average content of0.26~0.46g·kg-1.
     ②The carbon fixing and oxygen releasing benefit:solid carbon benefit about broadleaf mixed forest as6.76~10.19t·hm-2, horsetail pine solid carbon benefit as the3.09t·hm-2, fir LinGu carbon benefit as4.32~5.75t·hm-2; Non-commercial forest vegetation and releasing oxygen benefit as8.34~27.52t·hm-2, the broadleaf mixed forest and releasing oxygen benefit as18.25~27.52t·hm-2, horsetail pine forest and releasing oxygen benefit as the8.34t·hm-2, fir forest and releasing oxygen benefit as11.66~15.52t·hm-2. Because of different vegetation types of the non-commercial forest ecological system there are some differences in fixing carbon and oxygen releasing. Therefore the non-commercial forest has significantly better performance than the commercial.
     ④The nutrition matter accumulation benefit:of the non-commercial forest tree species, different organs have different nutrition element contents. Leaves get the highest content of the elements (N, P, K, Ca, Mg), and the average content is0.598%~0.923%; while the trunk gets the minimum nutrient element content, and the average content is0.079%~0.151%. The average annual accumulation about broadleaf mixed forest nutrients is127.69~170.95kg·hm-2, The average annual accumulation about horsetail pine forest nutrients is75.47kg·hm-2, The average annual accumulation about fir forest nutrients is124.82~140.07kg·hm-2.
     ⑤The ecological diversity protection:from the analysis of Margalef index, Simpson index and Shannon-Wiener index of forest tree and shrub and herb diversity level, it was found that diversity level of the arbor forest increases with the difference of the forest types.
     (2) The2010ecological benefit quality and the interest statistics of the four ecological niche types of the national non-commercial forest show the following:
     ①Nutrient accumulation:important wetland forest and large reservoir forest is115.04kg·hm-2, National Nature Reserve-forest is81.54kg·hm-2, the river-source type forest is75.08kg·hm-2, the river type forest for64.14kg·hm-2. The corresponding values are as follows:1079.46yuan·hm-2,717.52yuan·hm-2,1262.40yuan·hm-2,561.56yuan·hm-2.
     ②The water conservation benefit of quality:the river-source type is539.79t·hm-2,the river banks is515.45t·hm-2, important wetlands and large reservoir type is 411.28t·hm-2, and the National Nature Reserve is379.55t·hm-2. The corresponding values are as follows:4156.38yuan·hm-2,3968.97yuan·hm-2,3166.86yuan·hm-2,2922.54yuan·hm-2.
     ③The soil quality benefits:the river-source type is44.96t·hm-2, the river banks type is42.10t·hm-2, important wetlands and large reservoir type is43.35t·hm-2, and the National Nature Reserve for42.23t·hm-2. Quality performance and fertilizer benefit is:the National Nature Reserve is40.05g·kg-1, the river-source is type38.73g·kg-1, important wetlands and large reservoir type is37.06g·kg-1, and the river type is33.97g·kg-1. Soil conservation benefit the total value:important wetlands and large reservoir forest is3063.46yuan·hm-2, the river-source type is2964.42yuan·hm-2, the National Nature Reserve is2902.80yuan·hm-2, and the river type is2859.40yuan·hm-2.
     ④The carbon fixing and oxygen releasing:important wetlands and large reservoir type is58.64t·hm-2, the river-source type is54.00t·hm-2, the National Nature Reserve is52.82t·hm-2, and the river type forest is44.81t·hm-2. The corresponding values are as follows:16760.38yuan·hm-2,15968.95yuan·hm-2,15423.05yuan·hm-2,12610.87yuan·hm-2.
     ⑤The biodiversity protection benefit value shows:the river-source type forest10000is yuan·hm-2, important wetlands and large reservoir forest is8000yuan·hm-2, the National Nature Reserve forest is7000yuan·hm-2, and the river banks type Forest is5500yuan·hm-2.
     (3) The2007~2010dynamic monitoring results of the ecological benefit of the non-commercial forest show the following:
     ①Overall, the water conservation benefit showed an increasing tendency. In2007, the water conservation was320.73~434.81t·hm-2, in2010,362.20-513.91t·hm-2. Due to the ice and snow disasters, the2008water conservation benefits of the river-source and the National Nature Reserve appeared fluctuation phenomena.
     ②The soil conservation benefit all showed increasing trend with the year. The river-source type forest soil conservation benefits in2007was36.57g·kg-1, in2010was38.12g·kg-1; the river banks type forest in2007was32.43g·kg-1, in2010was34.28g·kg-1; important wetlands and large reservoir in2007was34.56g·kg-1, in 2010was36.77g·kg-1; and the National Nature Reserve type in2007was37.86g-kg"!, while in2010it was2007years for39.65g·kg-1.
     ③The tree biomass increased over time, while the biomass increased differently in amplitude because of the different speed of annual tree growth so that the carbon fixing and oxygen releasing variation of dynamic benefit is not obvious, the river-source type forest varies with the annual value of10.79t·hm-2, increased to10.92t·hm-2, and then decrease to10.29t·hm-2; the river banks type forest with the annual value from7.36t·hm-2, decreased to5.25t·hm-2, then increased to7.63t·hm-2; important wetlands and large reservoir forest with the annual value from11.31t·hm-2to16.54t·hm-2; and the National Nature Reserve type forest with the annual value increased from6.35t·hm-2to11.26t·hm-2.
     ④Different ecological type of non-commercial forests Shannon-Wiener index upward trend from2007to2010, shows that the construction of non-commercial forest biodiversity conservation benefits are increasing.
     (4) Comparison of the ecological benefits between the national non-commercial forests and the commercial forests show the following:
     The average soil organic matter of the selected four ecological location national non-commercial forest is30.55%, slightly less than the average values (31.22g, kg-1)organic matter in province-wide non-commercial forest, but larger than that of the commercial forest(27.86g·kg-1), the average value of total N, total P, total K content were higher than other non-commercial and commercial forests in Hunan Province. For the four selected ecological niches, the average annual carbon fixing and oxygen releasing is9.92t·hm-2, which is1.48times higher than that of the province's forest ecosystems with the value of6.69t·hm-2; forest nutrient elements N, P, K average annual accumulation were25.87kg·hm-2,3.24kg·hm-2,21.17kg·hm-2, respectively, which is3.20,1.77and4.12times higher than the respective province's forest nutrient elements N, P, K accumulation (14.68kg·hm-2,2.95kg·hm-29.13kg·hm-2). The water conservation benefit per unit the selected four ecological niches is1873.10t·hm-2, which is0.54-0.59times of the main forest types in Hunan Province.
     (5) The comprehensive evaluation of ecological benefits of national non-commercial forest in Hunan province:
     Different degrees of comprehensive ecological benefit of non-commercial forest in the region contribute certain differences, i.e. rivers-source type> National Nature Reserve type> river-bank type> important wetlands and large reservoirs type.
     In the individual ecological benefits evaluation:the sequence of water conservation benefits in four species ecological niches type is river-source type> river-bank type> important wetland type> National Nature Reserve type; The sequence of solid soil insurance fertilizer benefits in four species ecological location type is important wetland type> river-source type> National Nature Reserve type> river-bank type; The sequence of solid carbon fixing and oxygen releasing benefits in four species ecological location type is important wetland type> National Nature Reserve type> river-source type> river-bank type; The sequence of nutrients accumulated benefits ecological niches of in four types is the river-source type>important wetland type> National Nature Reserve type> river-bank type.
     The research results provide basic data to further improve the level of forest ecological compensation system of the state compensation mechanism, it also has attempted to establish theoretical basis for the government and relevant departments in multifunctional benefits forest decision-making, in forest reforming for the public welfare.
引文
[1]严会超.生态公益林质量评价与可持续经营研究[D].中国农业大学:2005.
    [2]周国逸,闰俊华.生态公益林补偿理论与实践[M].北京:气象出版社,2000.
    [3]李卫忠.公益林效益评价指标体系与评价方法的研究[D].北京:北京林业大学,2003:9.
    [4]王彬.重点公益林生态系统服务功能及价值研究——以鸡公山自然保护区为例[D].河南农业大学,2009:12.
    [5]李卫忠.公益林效益评价指标体系与评价方法的研究[D].北京:北京林业大学.2003:10~11.
    [6]Daily G. Nature's Services:Societal Dependence on Natural Ecosystems [M]. Washington, DC:Island Press,1997.
    [7]欧阳志云,王效科,苗鸿.中国陆地生态系统服务功能及其生态经济价值的初步研究[J].生态学报,1999,19(5):607~613.
    [8]Costanza R. The value of world ecosystem services and natural capital [J].Nature,1997, 389:253-260.
    [9]肖笃宁,胡远满,李秀珍,等.环渤海三角洲湿地的景观生态学研究[M].北京:科学出版社,2001:368~386.
    [10]孙刚.生态系统服务的功能分类与价值分类[J].环境科学动态,2000,(1):19~21.
    [11]李金昌.生态价值论[M].重庆:重庆人学出版社,1999.
    [12]赵同谦,欧阳志云,郑华,等.中国森林生态系统服务功能及其价值评价[J].自然资源学报,2004,19(4):480~491.
    [13]中国林学会,绿化委员会办公室.城市森林首届城市森林学术研讨会文集[C].北京:中国林业出版社.1993,1-8.
    [14]陶青,唐荣南,吴钰,等.城郊森林区对城区环境生态影响[J].城市环境与城市生态,1995,8(2):13~16.
    [15]朱文泉,何兴元,陈玮,等.城市森林结构的量化研究——以沈阳树木园森林群落为例[J].应用生态学报,2003,14(12):2090~2094.
    [16]米锋.森林生态效益评价的研究进展[J].北京林业大学学报.2003,25(6):77~83.
    [17]李少宁,王兵,赵广东,等.森林生态系统服务功能研究进展—理论与方法[J].世界林业研究,2004,17(4):14~18.
    [18]马国青,宋春姬.森林效益评价与公益林生态补偿问题的思考[J].防护林利技,2002,(1)41~44.
    [19]钟全林,谢利玉,邱水文,等.生态公益林类型及效益评价指标体系研究[J].江西农业大学学报,1999,21(1):103~106.
    [20]钟全林,曹建华,王红英,等.生态公益林价值核算研究[J].自然资源学报,2001,16(6):537~542.
    [21]李卫忠,郑小贤,张秋良.生态公益林建设效益评价指标体系初探[J].内蒙古农业大学学报,2001,22(2):12~15.
    [22]唐泽华.吕宁县生态公益林效益计量评价[J].林业调查规划,2004,29(增刊):55~57.
    [23]葛亲红.福建省生态公益林效益评价及补偿标准初探[J].华东森林经理,2005,19(1):11~14.
    [24]周毅,甘先华,王明怀,等.广东省生态公益林生态环境价值计量及评估[J].,中南林学院学报,2005,25(1):9-14.
    [25]王志强,龙云英,冯献敏,等.景德镇市生态公益林效益的经济评价[J].江西林业科技,2007(10):28~30.
    [26]张理宏,李昌哲,杨立文.北京九龙山不同植被水源涵养作用的研究[J].西北林学院报,1994,9(1):18~21.
    [27]毕晓丽,葛剑平.基于IGBP土地覆盖类型的中国陆地生态系统服务功能价值评估[J].山地学报,2004,22(1):48~53.
    [28]何浩,潘耀忠,朱文泉,等.中国陆地生态系统服务价值测量[J].应用生态学报,2005,16(6):1122~1127.
    [29]蒋延玲,周广胜.中国主要森林生态系统公益的评估[J].植物生态学报,1999,23(5):426~432.
    [30]欧阳志云,王效科,苗鸿.中国陆地生态系统服务功能及其生态经济价值的初步研究[J].生态学报,1999,19(5):607~613.
    [31]靳芳,鲁绍伟,余新晓,等.中国森林生态系统服务功能及其价值评价[J].应用生态学报,2005,16(8):1531~153.
    [32]王满堂,段长胜.抱犊崮国家森林公园生态系统服务功能价值评估[J].安徽农业科学,2010,38(16):8830~8832.
    [33]刘承江.辽宁仙人洞国家级自然保护区森林生态系统服务功能价值评估[D].辽宁:辽宁师范大学,2009:3~36.
    [34]关文斌,王自力,陈建成,等.贡嘎山地区森林生态系统服务功能价值评估[J].生态学报,2002,24(4):80~84.
    [35]谢高地,鲁春霞,冷允法,等.青藏高原生态资产的价值评估[J].自然资源学报,2003,18(2):189~196.
    [36]马履一,王希群,贾忠奎,等.提高北京市山区生态公益林质量的对策研究[J].西南林学院学报,2005,(4):17~22.
    [37]廖小英.福建三明市区生态公益林质量分析[J].中南林业调查规划,2008,(3):37~41.
    [38]尹峰,张贵,朱玉雯.生态公益林质量评价指标体系及综合指数研究[J].浙江林业科技,2008,28(3):29~33.
    [39]温伟庆.基于GIS的漳平市生态公益林建设监测与评价[J].福建林学院学报,2010,(2):187~192.
    [40]朱洪坤,历锦华.对建立重点生态公益林监测地理信息系统的探讨[J].林业勘查设计,2009,(3):107~108.
    [41]赵宝东,王会玲,马华文.3S技术在林业经营管理中的应用[J].林业勘察设计,2000,(3):81~82.
    [42]程子卿.黑龙江省重点生态公益林工程监测结果的分析及对策的研究[J].黑龙江科技信息,2008,(22):119.
    [43]余坤勇,刘健,洪桢华,等.基于RS技术闽江流域生态公益林森林资源专题信息动态监测研究[J].福建林业科技,2007,(2):66~71.
    [44]高兆蔚.福建省生态公益林动态监测与建设成效评价方法研究[J].林业勘察设计,2007,(2):5-9.
    [45]余坤勇,刘健,黄维友,等.基于RS技术闽江流域生态公益林林分蓄积量的动态监测[J].福建农林大学学报(自然科学版),2007,(5):481~485.
    [46]董士恒,李玉荣,王绍林.林业有害生物监测预警在生态公益林有害生物防治中的作用和措施[J].山东林业科技,2006,(2):93~94.
    [47]李宝银.福建生态公益林监测技术研究[J].林业资源管理,2005,(6):47~50.
    [48]张志华.生态公益林效益评价研究综述[J].林业调查规划,2009,34(3):72~75.
    [49]张守攻,朱春全,肖文发.森林可持续经营导论[M].北京:中国林业出版社,2001:216~235.
    [50]高瑞馨,王凤友.林业可持续发展指标体系和综合评价研究概述[J].防护林科技,2004,4(67):38-40.
    [51]张丽霞,顾凯平.森林资源可持续发展综合评价研究[J].江西农业大学学报,2005,27(1):52~58.
    [52]Marsh,G.P. Man and Nature. NewYork:Charles Scribner.1864(1965).
    [53]Vogt,W. Road to Survival. New York:William Sloan.1948.
    [54]Leopold A.1949,A Sandy County Almanac and Sketches from Here and There. NewYork:Cambridge University Press.
    [55]欧阳志云,王如松,赵景柱.生态系统服务功能及其生态经济价值评价[J].应用生态学报,1999,10(5):635~640.
    [56]Holdren J P,Ehrlich P R.1974,Human population and the global environment [J]. American Scientist,1999,62:282-292.
    [57]Fergal M.Forestry and the environment-a sustainable prospect [J].Irish For. 1977,2:33-41.
    [58]Lawrece HW.The neoclassical origins of Modem urban forests[J].For Conser History,1993,37(1):26-36.
    [59]Gordoon AB.Urban Forest Landscapes:Integrating Multidisciplinary Perspectives[M]. Seattle:University of Washington Press,1995:22-100.
    [60]Gene WGThe Urban Forest:Comprehensive Management[M].NewYork:Wiley, 1996,18-23.
    [61]Hildebrandt.A review of urban forestry education in the 1990s[J]J.For., 1993,91 (3):40-42.
    [62]Mark J.The development of urban forestry in Britain-part[J].Arboricult.J.,1997, 4:317-330.
    [63]Mark J.The development of urban forestry in the Republic of Ireland[J].Irish For.,1997,2:14-32.
    [64]McNeil J.Sustainable development in the urban forest[J],J.Arboricult.1991,17(4): 94-97.
    [65]梁美霞.福建戴云山自然保护区生态系统服务价值评估及景观生态建设[D].福建师范大学,2006:13~5.
    [66]Kontogianni A,Skourtos M.S.,Georgiou S.,eta 1.Integrating stakeholder analysis in non-market valuation of environmental assets.Ecol-Hcon,2001,37:123-138.
    [67]Pimental D,Wilson C,McCollum C,etal. Economic and environmental benefits of Biodiversity. Bio-Science,1997,47(11):747-757.
    [68]Peter C A,Gentry A H,Mendelssohn R 0.Valuation of an Amazonian rainforest. Nature,1989,339:655-656.
    [69]和爱军.浅析日本的森林公益机能经济价值评价[J].中南林业调查规划,2002,21(2):48~54.
    [70]刘霞,张光灿,江廷水.国内外公益林效益计量评价研究进展[J].水土保持学报,2000,14(2):95~100.
    [71]M. Proan,史玉玲(译).城郊社会效益的评价.国外森林公益效能计量研究[Z].1983:22~24.
    [72]孔繁文,戴广翠.瑞典、芬兰森林资源与环境核算考察报告[J].学术动态,1994(10):76~80.
    [73]李会芳,苏喜友.森林资源评价的发展及研究[J].西部林业科学,2005,34(2):102~107.
    [74]Sampson R N. Forestry opportunities in the United States to mitigate the effects of global warming [J].Water, Air and Soil Pollution,1992,64:83-120.
    [75]陈幸刚,寇晓东.论美国、加拿大森林可持续经营[J].防护林科技,2003,3(2):55~56.
    [76]日本林野厅,杨惠民(译).森林公益效能计量调查——绿色效益调查[M].北京:中国林业出版社,1982.
    [77]张蕾.中国林业分类经营改革研究[D].北京:北京林业大学.2007:43~44.
    [78]Anderson, Roger C. Forest Management issues [J]. Bio-science,1995,46(9):697-699.
    [79]Kittrege J. Forest Influence [M]. Graw-Hill Book Co,1948:838.
    [80]刘世荣,温远光,王兵,等.中国森林生态系统水文生态功能规律[M].中国林业出版社,1996:47~51.
    [81]于志民,王礼先.水源涵养林效益研究[M].中国林业出版社,北京:1999:10~17.
    [82]Burt T.P,Swank WT. Flow frequency responses to grass conversion and subsequent succession[J].1992,6(2):189-216.
    [83]McCulloch J.G.,Robison M. History of forest hydrology [J].Journal of Hydrology,1993,150 (2-4):189-212.
    [84]K.A.Bubb,P.F. Frayne,T.R.Witter. Impacts on stream and ground water quality during the inter-rotation phase of a Plantation in the coastal lowlands of south-east Queensland[J].Australian Forestry,2001,65(1):38-46.
    [85]Plamondon,A.P. Prevost,M. Naud, R.C. Rainfall interception in a fir/white birch stand in The Montmorency forest [J].Canadian Journal of Foerst.Researeh. 1984,14(5):38-46.
    [86]Smith R.E.,Parlange J.Y.A parameter-efficient hydrologic infiltration model. Water Resources Research,1978,14 (3):533-538.
    [87]Wischmeir W H. Predicting rainfall erosion losses. U S Dept Agri. Handbook,1978: 537.
    [88]Moiseev B N. Stream flow and forest coverage in watershed in northwest USSR and along Upper Volga River. Forestry (RV),1984,5:34-38.
    [89]陈祥伟.嫩江上游流域生态系统水量平衡的研究[J].应用生态学报,2001,12(6):903~907.
    [90]周光益,陈步峰,曾庆波,等.海南岛热带山地雨林短期水量平衡及主要养分的地球化学循环研究[J].生态学报,1996,16(1):28~32.
    [91]万师强,陈灵芝.东灵山地区大气降水特征及森林树干茎流[J].生态学报,2000,20(1):61~67.
    [92]周国逸,余作岳,彭少麟.广东小良试验站降雨径流关系的一个黑箱模型[J].生态学杂志,1995,14(4):67~72.
    [93]王安志,裴铁播.森林蒸散测算方法研究进展与展望[J].应用生态学报,2001,12(6):933~937.
    [94]郑远长,裴铁瑶.林冠分配降雨过程模拟与模型Ⅱ—模型扩展与参数确定[J].林业科学,1996,3(2):97~102.
    [95]侯月松,杨兆良,李郁,等.森林涵养水源生态效益的研究方法[J].林业勘查设计,2000,114(2):49~116.
    [96]巩合德,王开运.森林水文生态效应及在川西亚高山针叶林群落中的研究[J].世界科技研究与发展,2003,25(5):41-46.
    [97]高成德,余新晓.水源涵养林研究综述[J].J匕京林业大学学报,2000,22(5):78~82.
    [98]Zinke. Forest interception studies in the United States [M]//Sopper W E,Lull H W. International symposium on Forest Hydrology. Oxford:Pergamon Press, 1967:137-161.
    [99]范世香,高雁,程银才,等.林冠对降雨截留能力的研究[J].地理科学,2007,27(2):200~204.
    [100]Horton R E. Rainfall interception [J]. Monthly Weather Rev,1919,47:603-623.
    [101]Aston A R. Rainfall inter ception by eight small trees [J]. J. Hydrol.,1979,42: 383-396.
    [102]Merriam R A. A note on interception loss equation [J].Journal o f Geo physics Resources,1960,65:3850-3851.
    [103]Rutter A J, Kershaw K A,Robins P C,etal. A predictive model of rainfall inters caption in forests,1.Derivation of the model from observations in a plantation of Corsican pine [J]. Agric. Meteorol,1971,9:367-384.
    [104]张光灿,刘霞,赵玫.树冠截留降雨模型研究进展及其述评[J].南京林业大学学报,2000,24(1):64~68.
    [105]Motohisa F,Tetsya K, Valdir C, etal. Hydrological processes at two subtropical forest catchments:the Serra do Mar, Sao Paulo, Brazil. Journal of Hydrology,1997, 196:26-46.
    [106]SatoY, Kumagat T, Atsushi K,etal. Experimental analysis of moisture dynamics of litter layers-the effects of rainfall conditions and leaf shapes. Hydrological Processes,2004,18:3007-3018.
    [107]赵鸿雁,吴钦孝,刘国彬.黄土高原人工油松林枯枝落叶层的水土保持功能研究[J].林业科学,2003,39(1):168~172.
    [108]Helvey J D,Patric J H. Canopy and litter interception of rainfall by hardwoods of eastern United States. Water Resources Research,1965,1:193-206.
    [109]William M P, Cordery I. Estimation of interception capacity of the forest floor. Journal of Hydrology,1996,180:283-299
    [110]吴钦孝,赵鸿雁.黄土高原森林水温生态效应和林草适宜覆盖指标[J].水土保持通报,2000,20(5):32~34.
    [111]Tino B, Mark G J, Paul T R, etal. Two-probe method for measuring water content of thin forest floor litter layers using time domain reflectometry. Soil Technology,1996, 9:199-207.
    [112]Schaap M G, Bouten W, Verstraten J M. Forest floor water content dynamics in a Douglas fir stand. Journal of Hydrology,1997,201:367-383.
    [113]Marin C T, Bouten I W, Dekker S. Forest floor water dynamics and root water uptake in four forest ecosystems in northwest Amazonia. Journal of Hydrology,2000, 237:169-183.
    [114]Dunne T. Field studies of hill slope flow processes[A].In:Kirkby (editor).Hill slope hydrology [C]. John Wiley & Sons,1978,227-294.
    [115]Garry D H, Megahan W F. Forest vegetation removal and slope stability in the Idaho Batholiths[R].Forest Service, U. S. Dept. of Agriculture, Research Paper INT-271, 1981,23.
    [116]Garry D H, Ohashi H. Mechanics of Fiber Reinforcement in Sand[J]. Journal of Geotechnical Engineering.1983,109(3):335-353.
    [117]Waldron L J, Dakessian S. Soil reinforcement by roots:calculation of increased soil shear resistance from root property [J].Soil Science,1981,132:427-435.
    [118]Waldron L J, Dakessian S.. Effect of grass, legume, and tree roots and soil shearing resistance[J].Soil Science Society of America Journal,1982(46):894-899.
    [119]W H Wischmeier, D D Smith. Predicting rainfall erosion losses. USDA Agricultural Handbook,1978:537.
    [120]Renard K G, Foster G R, Weesies G A, etal.RUSLE a guide to conservation planning with the revised universal soil loss equation. USDA Agricultural Handbook, 1997:703.
    [121]Laflen J M,Lwonard J L,Foster G R.WEPP a new generation of erosion prediction technology. Journal of Soil and Water Conservation,1991,46(1):34-38.
    [122]Morgan R P C,Quinton J N,Smith R E,etal.The European soil erosion model (EUROSEM):a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms,1998(23):527-544.
    [123]De Roo A P J.The LISEM project:an introduction. Hydrological Processes, 1996(10):1021-1025.
    [124]Rapport DJ. Defining the practice of clinical ecology. In:Costanza R,Norton B, Haskell B. Ecosystem Health-New Goals for Environmental Management[M]. Washington DC:Island Press,1992.
    [125]Dixon R K,Brown S,Houghton R A, etal. Carbon Pool and flux of global forest ecosystems[J].Science,1994,263:185.
    [126]宋维峰,工希群.林木根系研究综述[J].西南林学院学报,2007,27(5):8~13.
    [127]解明曙.林木根系固坡力学机制研究[J].水土保持学报,1990,4(3):7-14.
    [128]王可钧,李焯芬.植物固坡的力学简析[J].岩石力学与工程学报,1998,17(6):687~691.
    [129]周跃,陈晓平,李玉辉,等.云南松侧根对浅层土体的水平牵引效应的初步研究[J].植物生态学报,1999,23(5):458~465.
    [130]周跃,李宏伟,徐强.云南松幼树垂直根的土壤增强作用[J].水土保持学报,2000,14(5):110~113.
    [131]朱清科,陈丽华,张东升,等.贡嘎山森林生态系统根系固土力学机制研究[J].北京林业大学学报,2002,24(4):64~67.
    [132]张颖.绿色GDP核算的理论与方法[M].北京:中国林业出版社,2004.
    [133]陈玉琪.甘肃省三北防护林森林资源资产评价[J].甘肃林业科技,1997(2):37~41.
    [134]肖寒,欧阳志云,赵景柱,等.森林生态系统服务功能及其生态经济价值评估初探:以海南岛尖峰岭热带森林为例[J].应用生态学报,2000,11(4):481-484.
    [135]蒋延玲,周广胜.中国主要森林生态系统公益的评估[J].植物生态学报,1999,23(5):426~432.
    [136]管东生,陈玉娟,黄芬芳.广州城市绿地系统碳的贮存、分布及其在碳氧平衡中的作用[J].中国环境科学,1998,18(5):437.
    [137]李辉,赵卫智,古润泽,等.居住区不同类型绿地释氧固碳及降温增湿作用[J].环境科学,1999,20(6):41-44.
    [138]柴一新,祝宁,李敏.哈尔滨市绿地系统生态功能分析[J].应用生态学报,2002,13(9):1117~1120.
    [139]曾曙才,苏志尧,谢正生,等.广州白云山主要林分的生产力及吸碳放氧研究[J].华南农业大学学报(自然科学版),2003,24(1):17~19.
    [140]梁立军,李昂,王贻谷.居住区园林绿化生态效益初探——以杭州丹桂公寓为例[J].西北林学院学报,2004,19(3):146~148.
    [141]韩焕金.哈尔滨市主要植物生理生态功能研究[J].江苏林业科技,2005,32(4):5~10.
    [142]Ebermeryer, E. Die gesamte lehre der Waldstreu mit Rucksicht auf die chemische static des Waldbaues. Berlin:Julius Springer,l 876:116.
    [143]Boysen Jensen P. Studier over skovtraernes forhold til lyset Tidsskr [J].F.Skorvaessen,1910,22:11-16.
    [144]Burger H. Holz, Blattmenge, Zuwachs.12 Fichten im Plenterwald Mitteil, Schweiz, Anst.Forttl [J].Versuchsw,1952,28:109-156.
    [145]Kitterge, J. Estimation of amount of foliage of trees and shrubs [J].J.Forest,1944, 42:905-912.
    [146]D.E. Reichle, J.F. Franelinand, D.E. Goodwell(ed). Productivity of world Ecosystem,National Academy of science, Washington D.C.1975.
    [147]潘维俦,李利村,高正衡.2个不同地域类型杉木林的生物产量和营养元索分布[J].中南林业科技,1979(4):1-14.
    [148]冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127~134.
    [149]张希彪,上官周平.黄土丘陵区油松人工林与天然林养分分布和生物循环比较[J].生态学报,2006,26(2):373~382.
    [150]田大伦,项文化,康文星.马尾松人工林微量元素生物循环的研究[J].林业科学,2003,39(4):1-8.
    [151]Cole D W, Gessel S P, Dice S F. Distribution and cycling of nitrogen, phosphorus, potassium and Calcium in a second-growth Douglas-fir ecosystem. In:Young H E. Symposium on Primary Productivity and Mineral Cycling in Natural Ecosystem. New York:University of Marne Press,1967.197-232.
    [152]Bazilevich N I, Rodin L E. The biological cycle of nitrogen and ash elements in plants communities of the tropical and sub-tropical zones. In:Golley P M, Golley F B. Papers from a Symposium on Tropical Ecology with an Emphasis on Organic Productivity. Athens, For. Abst.,1972:229-293.
    [153]Young H E. Symposium on Primary Productivity and Mineral Cycling in Natural Ecosystems. New York:University of Marne Press,1967.
    [154]Allen H Lee. Book Reviews:Forest Nutrition Management. Forest Science, 1987,33(4):1105-1106.
    [154]沈善敏,宇成太,张璐,等.杨树主要营养元索内循环及外循环研究[J].应用生态学报,1993,4(1):27~31.
    [155]Chapin F Stuart. The mineral nutrition of wild plants. Annual Review of Ecology and Systematic,1980,11:233-260.
    [156]De Angelis D L. Energy flow, nutrient cycling, and ecosystem resilience. Ecology,1980,61(4):764-771.
    [157]沈作奎,杨新光,徐伟声.中国主要森林群落营养歹元素循环的区域分异[J].湖北民族 学院学报(自然科学版),1999,17(2):44~46.
    [158]李俊清,宫伟光.东北主要造林树种的营养元素含量特征分析[J].植物生态学与地植物学学报,1991,15(4):380~385.
    [159]卢俊培,吴仲民.尖峰岭热带林的植物化学特征[J].林业科学研究,1991,4(1):1~9.
    [160]陶其骧.有机肥和化肥配比研究[J].土壤通报,1986,17(2):57~61.
    [161]张璐.施肥对作物养分浓度及分布的影响[J].应用生态学报,2000,11(增刊):8-12.
    [162]聂道平.森林生态系统营养元素的生物循环[J].林业科学研究,1993,30(1):34~42.
    [163]邹春静,徐文铎,侯凤莲.长白松人工林生态系统营养元素的分配格局和积累规律[J].应用生态学报,1996,7(1):6~10.
    [164]莫江明,Sandra Brown,孔国辉,等.鼎湖山马尾松林营养元素的分布和生物循环特征[J].生态学报,1999,19(5):635~640.
    [165]曾曙才,苏志尧,古炎坤,等.广州白云山风景名胜区主要林分类型凋落物的研究[J].应用生态学报,2003,14(1):154~156.
    [166]彭耀强等.三种阔叶林凋落物的持水特性[J].水土保持学报,2006,20(5):190~191.
    [167]郭明春.六盘山叠叠沟小流域森林植被坡面水文影响的研究[D].中国林业科学院博士论文.2005:8~11.
    [168]张万儒,许本彤.森林土壤定位研究方法[M].北京:中国林业出版社,1986.30~45.
    [169]文仕知,何炳飞.杉木人工林生态系统不同干扰条件下径流规律的研究[A].见:刘煊章主编.森林生态系统定位研究[C].北京:中国林业出版社,1993:221-227.
    [170]田大伦.杉木林生态系统定位研究方法[M].北京:科学出版社,2004.201~226.
    [171]郎奎建,李长胜,殷有,etal林业生态工程10中森林生态效益计量理论和力法[J].东北林业大学学报,2000,28(1):1-7
    [172]张建国,余建辉.生态林业的效益观——林业综合效益初步[J].林业经济问题,1991,(3):1-8
    [173]周晓峰,蒋敏元.黑龙江省森林效益的计量、评价及补偿[J].林业科学,1999,35(3):97~102.
    [174]康文星,田大伦.湖南省森林公益效能的经济评价Ⅱ森林的固土保肥、改良土壤和净化大气效益[J].中南林学院学报,2001,21(4):1-4.
    [175]欧阳志云,王如松.生态系统服务功能及其生态经济价值评价[J].应用生态学报,1999,10(5):635~640.
    [176]Pearce D. Auditing the Earth [J].Environment,1998,40 (2):2:3-28.
    [177]中华人民共和国国家林业局.森林生态系统服务功能评估规范[S].2008
    [178]慕长龙,龚固堂.长江中上游防护林体系综合效益的计量与评价[J].四川林业科技,2001,22(1):15~23.
    [179]成晨,王玉杰,潘玉娟,等.长江三峡库区不同森林类型涵养水源能力比较研究[J].水土保持研究,2007,14(2):215~217.
    [180]温远光,刘世荣.我国主要森林生态系统类型降水截留规律的数量分析[J].林业科学,1995,31(4):289~298.
    [181]陈东立,余新晓,廖邦洪.中国森林生态系统水源涵养功能分析[J].世界林业研究,2005,18(1):49~54.
    [182]鲁绍伟,毛富玲,靳芳,等.中国森林生态系统水源涵养功能[J].水土保持研究,2005,12(4):223~226.
    [183]刘向东,吴钦孝,赵鸿雁.森林植被垂直截留作用与水土保持[J].水土保持研究,1994,1(3):8-13.
    [184]郝向春.灵空山主要森林类型枯落物生物量及持水性能[J].山西林来科技,2000,12(4):1-3.
    [185]刘世荣,温远光,工兵,等.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,1996:710.
    [186]沃飞,蔡彦明,方堃,等.天津市不同种植年限蔬菜地土壤水分特征对比研究[J].水土保持学报,2009,23(3):236-240.
    [187]潘春翔,李裕元,彭亿,等.湖南乌云界白然保护区典型生态系统的土壤持水性能[J].生态学报,2012,32(2):538~547.
    [188]范世香,蒋德明,阿拉木萨,等.论森林在水源涵养中的作用[J].辽宁林业科技,2001(5):22~25.
    [189]李少宁.江西省暨大岗山森林生态系统服务功能研究[D].北京:中国林业科学研究院,2007.
    [190]Amezaga I,Arias A G,Domingo M,et al.Atmospheric deposition and canopy interactions for conifer and deciduous forests in norchern Spain[J].Water Air Soil Pollution.1997,97:303-313.
    [191]刘煊章,田大伦,周志华.杉木林生态系统净化水质功能的研究[J].林业科学,1995,31(2):193~199.
    [192]鲍文,包维楷,何丙辉,等.森林生态系统对降水的分配与拦截效应[J].山地学 报,2004,22(4):483~491.
    [193]王波,张洪江,徐丽君,等.四周边山地不同人工林枯落物储量及其持水特性研究[J].水土保持学报,2008,22(4):90~94.
    [194]廖容,邓丽瑶,石薇.川西低山区天然林转巨桉林后枯落物的持水特性[J].湖北农业科学,2012,51(13):2749~2751.
    [195]黄金玲,李晓明,王永安,等.湖南省主要森林植被类型涵养水源能力的研究[J].中南林业调查规划,1997,16(4):37~42.
    [196]陈波,杨新兵,赵心苗,等.冀北山地6种天然纯林枯落物及土壤水文效应[J].山地学报,2012,26(2):196~202.
    [197]罗歆,代数,何丙辉,等.缙云山不同植被类型林下土壤养分含量及物理性质研究[J].水土保持学报,2011,25(1):64~69.
    [198]王燕,王兵,赵广东,等.江西大岗山3种林型土壤水分物理性质研究[J].水士保持学报,2008,20(1):151~153.
    [199]Cleone Arfstrom, Andrew W. Macfarlane. Distributions of Mercury and Phosphorous in Everglades Soil From Water Conservation Area 3A, Florida, U.S.A.2000,121 (4):133-159.
    [200]贺淑霞,李叙勇,莫菲,等.中国东部森林样带典型森林水源涵养功能[J].生态学报,2011,31(12):3285~3295.
    [201]李灵,张玉,孔丽娜,等.武夷山风景区不同林地类型土壤水分物理性质及土壤水库特性[J].水土保持通报,2011,31(3):60~65.
    [202]马书国,杨玉盛,谢锦升,等.亚热带6种老龄天然林及杉木人工林的枯落物持水性能[J].亚热带资源与环境学报,2010,5(2):31~38.
    [203]沈晶玉,周心澄,张伟华,等.祁连山南麓植物根系改善土壤抗冲性研究[J].中国水土保持科学,2004,2(4):87~91.
    [204]田育新,赵辉,李显文.林地土壤侵蚀程度分类及判别研究[J].湖南林业科,1998,25(2):41-44.
    [205]周以良主编.中国的森林[M].北京:科学出版社,1990.
    [206]李景文主编.森林生态学[M].北京:中国林业出版社,1992.
    [207]余新晓,鲁绍伟,靳芳,等.中国森林生态系统服务功能价值评估[J].生态学报,2005,25(8):2096~2102.
    [208]胡海胜.庐山自然保护区森林生态系统服务价值评价[J].资源科 学,2007,29(5):28~36.
    [209]张治军,唐芳林,朱丽艳,等.轿子山自然保护区森林生态系统服务功能价值评估[J].中国农学通报,2010,26(11):107~112.
    [210]康冰,刘世荣,蔡道雄,等.马尾松人工林林分密度对林下植被及土壤性质的影响[J].应用生态学报,2009,20(10):2323~2331.
    [211]孙书存,高贤明,包维楷,等.岷江上游油松造林密度对油松生长和群落结构的影响[J].应用与环境生物学报,2005,11(1):8-13.
    [212]方乐金,张运斌.杉木幼林地土壤肥力变化研究[J].土壤学报,2003,40(2):316~319.
    [213]罗瑞坤.用探坑法确定土壤侵蚀模数[J].东北水利水电,2003,21(6):52.
    [214]杜学礼,高国胜.依据库区泥沙淤积资料预测土壤侵蚀模数[J].水土保持应用技术,2006,(6):1-2.
    [215]杨雨行,曾平江,雷孝章.四川省西充县土壤侵蚀模数数学模型和侵蚀强度分级的研究[J].北京林业大学学报,1990,12(2):48~54.
    [216]叶炜.广东阳江核电站工程土壤侵蚀模数的选取[J].电力环境保护,2004,20(2):45~46.
    [217]李青云,张一云,王汉湘.铯-137同位索示踪法测算小流域土壤侵蚀量的研究[J].长江科学院院报,1993,10(4):56~63.
    [218]陈燕红,潘文斌,蔡芫镔.基于RS/GIS和RUSLE的流域土壤侵蚀定量研究——以福建省吉溪流域为例[J].地质灾害与环境保护,2007,18(3):5~10.
    [219]关文斌,王自力,陈建成,等.贡嘎山地区森林生态系统服务功能价值评估[J].生态学报,2002,24(4):80~84.
    [220]康文星,田大伦.湖南省森林公益效能的经济评价Ⅱ森林的固土保肥、改良土壤和净化大气效益[J].中南林学院学报,2001,21(4):3-6.
    [221]Rodhe H.A.Comparison of the contribution of various gases to the greenhouse effect. Scienee,1990,248:1217-1219.
    [222]Piao S H,Fang J Y,Philippe Ciais,etal. The carbon balance of terrestrial ecosystems in China. Nature,2009,458(7944):1009-1014.
    [223]Kramer P J. Carbon dioxide concentration, photosynthesis,and dry matter production. Bioscience,1981,31:29-33.
    [224]Waring R H,Schlesinger W H. Forest Ecosystems:Concepts and Management. Orlando,FL,USA:Academic Press Inc,1985:313-335.
    [225]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518~512.
    [226]Dixon R.K.,Brown S.,Houghton R.A.,etal. Carbon pools and flux of global forest ecosystems. Science,1994,263:185-190.
    [227]尉海东,马祥庆,刘爱琴,等.森林生态系统碳循环研究进展[J].中国生态农业学报.2007,15(2):188~192.
    [228]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和破密度研究[J].应用生态学报.2001,12(1):13~16.
    [229]IPCC.Land Use,Land Use Change and Forestry.Special Report, Inter-Governmental Panel on Climate Change.Cambridge:Cambridge University Press,2000.
    [230]Sedjo R A.The carbon cycle and global forest ecosystem[J].Water Air Soil Pollute.1993,70:295-307.
    [231]刘世荣,王晖,栾军伟.中国森林土壤碳储量与土壤碳过程研究进展[J].生态学报.2011,31(19):5438~5448.
    [232]潘根兴,曹建华,周运超.土壤碳及其在地球表层系统碳循环中的意义[J].第四纪研究.2000,20(4):325~334.
    [233]潘根兴.中国土壤有机碳和无机碳库量研究[J].科技通报,1999,15(5):330~332.
    [234]潘根兴.中国干旱性土壤中土壤发生性碳酸盐及其在陆地系统碳转移中的意义[J].南京农业大学学报,1999,22(1):51-57.
    [235]方精云,刘国华,徐高龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497~508.
    [236]陈仕栋.湖南省土壤有机碳密度、储量的空间分布格局及其影响因子分析[D].中南林业科技大学,2011:37.
    [237]Kouno K,Wu J,Brookes PC.Turnover of Biomass C and P in Soil Following Incorporation of Glucose or Ryegrass[J]. Soil Biology & Biochemistry,2002, 34(8):617-622.
    [238]罗天祥,石培礼,罗辑.青藏高原植被样带地上部分生物量的分布格局[J].植物生态学报,2002,26(6):668~676.
    [239]杜晓明,周志强,张悦.大兴安岭北部植被演替规律探讨[J].国土与自然资源研究,2002,14(2):67~68.
    [240]项文化,田大伦.不同年龄阶段马尾松人工林养分循环的研究[J].植物生态学 报,2002,26(1)89~95.
    [241]余新晓,秦永胜,陈丽华,等.北京山地森林生态系统服务功能及其价值初步研究[J].生态学报,2002,22(5):783~786.
    [242]张丽,解放.丽林试验林场水土保持林的生态效益分析[J].黑龙江生态工程职业学院学报.2011,24(2):3~5.
    [243]黄海伟.潭江流域森林生态系统服务功能及其价值研究[D].中山大学:2005.
    [244]张永利,杨锋伟,王兵,等.中国森林生态系统服务功能研究[M].北京:科学出版社,2010:87~88.
    [245]韩素芸.湖南省主要森林类型生态系统服务功能及价值评价[M].中南林业科技大学,2010:35.
    [246]康文星,郭清和,何介南,等.广州城市森林涵养水源、固土保肥的功能及价值分析[J].林业科学,2008,44(1):19~25.
    [247]张慧茹,郑粉莉.不同降雨强度下地面坡度对红壤坡面土壤侵蚀过程的影响[J].水土保持学报,2011,25(3):40~43.
    [248]梁波,农胜奇,蔡会德.广西重点公益林水土保持效能监测与评价[J].广西林业科学,2008,37(1):22~25.
    [249]陈燕红,潘文斌,蔡芫镔.基于RS/GIS和RUSLE的流域土壤侵蚀定量研究[J].地质灾害与环境保护,2007,18(3):5~10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700