用户名: 密码: 验证码:
NDVI协同下森林生物量定量估算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现森林生物量的定量估计。本文以2010年7-8月北京首钢松林公园树木的测量数据,北京市2010年夏季SPOT5遥感影像为模型研究的数据。以北京首钢松林公园为研究区,区内105个采样点的(地上)森林生物量为研究对象,以ArcGis9.3为平台,应用Geostatistical analyst、空间分析工具的Features to Raster模块和SPSS多元统计软件,借助外挂式分析工具Hawth Tools,基于空间统计学的协同克里格法,找出了实测生物量与NDVI之间的协同变异函数,利用NDVI和地面实测森林生物量建立协同克里格模型进行生物量空间插值,形成生物量空间分布图,对森林生物量进行估量。结果为:该研究区的森林生物量估计值是96.6Mg/hm2,标准误差在小于1.422379~1.426711的范围。也就是当可信度P=0.95,真实的生物量值在93.75Mg/hm2—99.45Mg/hm2之间。说明NDVI协同下森林生物量定量估计的方法具有一定的实际价值。
     创新点:
     研究建立较为精确的森林生物量估测模型属于森林经理学、生态学和林业遥感技术相结合的较为有开创性的研究内容。协同克里格模型要比其他传统模型更精确、也更符合实际。论文结合地面实测蓄积量转换成的生物量和SPOT遥感影像提取的NDVI,找出了实测生物量与NDVI之间的协同变异函数,利用NDVI和地面实测森林生物量建立协同克里格模型进行生物量空间插值,形成生物量空间分布图,对森林生物量进行估量,在估算生物量的方法上有一定的创新性。
     该文在研究地面森林生物量的采样方式、插值方法方面有新的思路和见解。在利用高分辨率卫星数据对森林蓄积即生物量估计尤其对其分布与变动的分析方面有自己独到的见解与新意。
     充分利用遥感数据的丰富、易测的优点,在进一步提高对地面数据的的估测精度的同时,提高森林生物量定量估计的快捷、完整、有效性是林学、生态学等学科研究的重点,属于学科前沿领域,对于大尺度开展森林生物量估算有理论意义和实用价值。该文的研究对进一步开展遥感估测地面生物量的研究,扩大空间统计方法的应用与借鉴有较好的意义。
To estimate the forest biomass, the105plots were selected for individual measurement, which were located in Shougang Pinewood Park of Beijing and acquired in July to Aug,2010. After combination with simultaneous SPOT5RS images, the data were used for modeling. With applying the Geostatistical Analyst model in ArcGIS9.3and SPSS18.0. Using the RS data or not, kriging prediction model was applied to analyze the above-biomass. Although two methods also carried out the prediction value and standard error, the Kriging covariance model (KCM) using remote sensing data was a better remote sensing inversion model for forest biomass, which improving prediction accuracy because of synergy between KCM and NDVI. The later method was more rapid, effective, comprehensive and precise for forest biomass prediction. The results showed:in this study field, the biomass was96.6mg/hm2which standard error was below1.426711. Innovation:
     (1) The research established more accurate forest biomass estimation model, which combined forest management, forestry ecology and remote sensing technology. Covariance Kriging model was more accuracy and practical than traditional methods. With identifying the relationship between VDV1and forest biomass, the method confirmed that the collaborative variation function existed between the field data (forest biomass) and NDVI. So, it was possible to use this method for forest biomass prediction. With this reliable model, the forest biomass distribution map can be draw. Above-mentioned method was used to estimate biomass by best linear minimum bias estimator, which may effectively reduce evaluated error. Although neither of two methods achieve implemented requirement, the research idea was novel.
     (2) This method was the base for special sampling and predicting the forest biomass. The variation of NDVI was analyzed in the study area. The spatial statistics sampling was better than random sampling, systematic sampling methods and comprehensive sampling especially. The method has its own unique insights in this study area.
     (3) By making full use of the features of abundant and easy to measure, remote sensing data improved the availability prediction, precision and effectiveness of forest biomass. This is very important for forest, ecology and environment science. Further research of using remote sensing to estimate biomass and statistical method has application and reference significance.
引文
1.张慧芳,张晓丽,黄瑜.遥感技术支持下的森林生物量研究进展[J].世界林业研究,2007,20(4):30-34.
    2.陈春祥.基于FoxPro及ArcView GIS布设调查样地的方法[J].林业调查规划,2008,33(5):17-20.
    3.李明阳,刘敏,刘米兰.丛于GIS的林业调查因子地统计学分析[J].南京林业大学学报(自然科学报),2010,34(6):66-70
    4.邓宝忠,王素玲,李庆君..红松阔叶人工天然混交林主要树种胸径与冠幅的相关分析[J].防护林科技,2003,4:19-21
    5.范磊,程永政,郑国清,王来刚,刘婷.基于Cokriging插值修正冬小麦面积遥感监测[J].农业工程学报.2010,26(10):206-211
    6.方精云,刘国华,徐高岭.中国森林植被生物量和净生产力[J].生态学报.1996,16(4):497-508
    7.方精云,陈安平,赵淑清,等.中国森林生物量的估计:对Fang等Science一文(Science,2001,291:23202322)的若干说明[J],植物生态学报,2002,26(2):243-249
    8.冯晓明.多角度MISR数据用于区域生态环境定量遥感研究[D].北京:中国科学院研究生院,2006.
    9.冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999
    10.冯士明.松材线虫在云南发生的可能性及预防对策[J].植物检疫.2000,14(5):289~290
    11.冯益明,李增元,邓广.不同密度林分冠幅的遥感定量估计[J].林业科学.2007,43(1):90-94
    12.冯益明,李增元,张旭.丛于高空间分辨率影像的林分冠幅估计[J].林业科学.2006,42(5):110~114
    13.冯益明,雷相东,陆元昌.应用空间统计学译遥感影像信息“缺失”区[J].遥感学报,2004,8(4):317-322
    14.冯益明,李增元,张旭.林业空间统计学软件设计[J].林业科学.2006,42(增):10-15
    15.冯益明,唐守正,李增元.空间统计学在林业中应用[J].林业科学.2004,40(3):76-83
    16.冯益明,唐守正,李增元.序列指示条件模拟算法在森林类型的空间分布模拟中应用[J].生态学报.2004,24(5):80-86
    17.冯益明.空间统计学及其在森林图形与图像处理中应用的研究[D].中国林业科学研究院博士论文,2004.
    18.冯仲科,罗旭,石丽萍.森林生物量研究的若十问题及完善途径[J].世界林业研究,2005,25-28
    19.傅伯杰,陈利顶,等.景观生态学原理及其应用[M].北京,科学出版社,2002,16—41
    20.薛立杨鹏.森林生物量研究综述[J].福建林学院学报,2004,24(3):283-288.
    21.胥辉,张会儒,林木生物量模型的研究[M].昆明:云南科技出版社.2000
    22.冯宗炜,陈楚莹,张家武.湖南全国地区马尾松林生物量的研究[J],林业科学.1982,18(2):127 134
    23.国庆喜,张锋.基于遥遥感信息估测森林的生物量[J].东北林业大学学报.2003,31(2):16
    24.韩爱惠.森林生物量及碳储量遥感监测方法研究[D].北京:北京林业大学.2009.
    25.何祺胜,陈尔学,曹春香,等.基于LiDAR数据的森林参数反演方法研究[J].地球科学进展,2009,24(7):748-754.
    26.何红艳,郭志华,肖文发.遥感在森林地上生物量估算中的应用[J].生态学杂志.2007,26(8):1317-1322.
    27.侯长谋,杨燕琼,黄平:等.丛于RS,GIS的马尾松林分蓄积量判读模型的研究[J].林业资源管理.2000.5:55-58
    28.侯景儒,尹镇南等.实用地质统计学(空间信息统计学)[M].北京.地质出版社,1998.
    29.胡长效,苏新林,张艳秋.我国松墨天牛研究进展[J].河北林果研究,2003.18(3):293-299
    30.黄德双.神经网络模式识别系统理论[M].北京.电子工业出版社,1996.
    31.李小文,Strahler A H,朱启疆,等.基本颗粒构成的粗糙表面二向扫射一相互遮蔽效应的几何光学模型[J].科学通报.1993,38:86-89.
    32.李海滨,等Kriging方法在区域土壤水分估值中的应用[J].地理研究,2001,20(4);446—379
    33.李丽娟,等.永定河流域降雨量空间变异性研究[J].地理研究,2002,21(4),434—440
    34.李仁东,刘纪远.应用LANDSAT ETM数据估算鄱阳湖湿生植被生物量[J].地理学报,2001,56(5): 533.
    35.李文华,邓坤枚,李飞.长白山主要生态系统生物量产量的研究[C]//中国科学院长白山森林生态系统定位站主编.森林生态系统研究(第二卷).北京.中国林业出版社,1981:34-50
    36.林辉,吕勇,宁晓波.基于高分辨率卫星图像的立木材积表的编制[J].林业科学,2004.40(4):33~39
    37.刘清旺.机载激光雷达森林参数估测方法研究[D].北京:中国林业科学研究院,2009.
    38.刘兴良,刘世荣,宿以明,等.巴郎山川滇高山栎灌从地上生物量及其对海拔梯度的响应[J].林业科学,2006,24(2):17
    39.刘湘南,周占鳌,赵云升.Kriging算子及其在遥感影像空间分析中的应用[J].东北师大学报自然科学版,1995,4:98-101
    40.吕传海,濮厚平,韩兵等.松墨天牛生物学特性研究[J].安徽农业大学学报,2000,27(3):243-246
    41.吕全,王卫东,梁军.松材线虫在我国的潜在适生性评价[J].林业科学研究,2005,18(4):460~464
    42.吕晓涛,唐建维,何有才,等.西双版纳热带季节雨林的生物量及其分配特征[J].植物生态学报.2007.31(1):11 22
    43.马钦彦.中国油松生物量的研究[J].北京林业大学学报1989,11(4):1-10.
    44.孟宪宇.测树学[M].北京:中国森林出版社,1995.
    45.孟宪宇.测树学[M].北京:中国林业出版,1999.
    46.聂凯轩,李承楚,王宏琳.地震测井资料综合预测方法——随机顺序指示条件模拟研究与应用[J].石油地球物理勘探.1997,32(6):842~851
    47.彭少麟,张桂莲,柳新伟.生态系统模拟模型的研究进展[J].热带亚热带植物学报,2005,13(1):85-94.
    48.彭少麟,郭志华,王伯荪.利用GIS和RS估算广东植被光利用率[J].生态学报,2000,20(6):903-909.
    49.朴世龙,方精云,郭庆华.利用CASA模型估算我国植被净第一性生产力[J].植物生态学报,2001,25(5):603-608.
    50.唐守正,张会儒,胥辉,相容性生物量模型的建立及其估计方法研究[J].林业科学,2000.36(1)19-27.
    51.桑卫国,马克平,陈灵芝,等.森林动态模型概论[J].植物学通报,1999,16(3):193-200.
    52.桑卫国,陈灵芝,王喜武.东灵山地区落叶阔叶林长期动态的模拟[J].植物生态学报.2000,24(2): 180-185.
    53.石淑芹.陈佑启.李正国.杨鹏.吴文斌.姚艳敏基于土壤类型和微量元素辅助信息的十壤属性空间模拟[J]农业工程学报2010(12):206-211
    54.田庆久,闵祥军.植被指数研究[J].地球科学进展,1998,13(4):327-332.
    55.王军,等.黄土高原小流域土壤养分的空间分布格局—Kriging插值分析,地理研究。2003,10:373—379
    56.王立海,刑艳秋,基于人工神经网络的天然林生物量遥感估测[J].应用生态学报,2008,19(2):261-266.
    57.王淑君,管东生.神经网络模型森林生物量遥感估测方法的研究[J].生态环境,2007,16(1):108-111.
    58.王玉辉,周广胜,蒋延玲,等,丛于森林资源清查资料的落叶松生物量和净生产力估计模式[J],植物生态学报,2001,25(4)420-425
    59.王志杰,梅盛龙,李美琴,等.丛于TS/PDA森林植物多样性监测方法研究[J].森林资源管理,2009(2):118-122.
    60.吴展波.基于3S的湖北鹿门寺林场马尾松林生物量估测模型研究[D].武汉:华中师范大学,2008.
    61.武红敢,乔彦友,陈林洪,等.马尾松林叶面积指数动态的遥感监测研究[J].植物生态学报,1997,21(5):485-488.
    62徐希孺.遥感物理[M].北京:北京大学出版社,2005.
    63.胥辉.一种生物量模型构建的新方法[J].西北农林科技大学学报[J]:自然科学版,2001,29(3):35-40
    64.于贵瑞.全球化与陆地生态系统碳循环和碳累积[M].北京:气象出版社2003.
    65.许景伟,王卫东,王月海,等.沿海沙质岸黑松人工林生物量的估测数学模型[J].山东林业科技,2004(5):47-49.
    66.余青兰,李军乔.蕨麻生物量变化与气候因子关系数学模型的建立[J].中国野生植物资源,2008,27(5): 53-55.
    67.十振良,赵士洞,董立荣,等.长白落叶松林林分动态研究[J].吉林林学院学报,1996,12(2):73-75.
    68.杨洪晓,吴波,张金屯,等,森林生态系统的固碳功能和碳储量研究进展[J].北京师范大学学报(自然科学版),2005,41(2):172-177.
    69.阮成江,李代琼.黄土丘陵区沙束地上部生物量估测模型[J].陕西林业科技,1999(2):5-9.
    70.阮伟利,牛铮.利用统计和物理模型反演植物生化组分的比较[J].中国科学院研究生院学报,2004,121[11]:78-83.
    71.张宏斌.基于多源遥感数据的高原植被状况变化研究[D].北京:中国农业科学院,2007.
    72.张小全,徐德应,赵茂盛.林冠结构、辐射传输与冠层光合作用研究综述[J].林业科学研究,1999,12(4):411-421.
    73.赵敏,周广胜,基于森林生物量清查资源的生物量估计模型及其发展趋势[J].应用生态学报,2004,15(8):1468-1472.
    74.赵宪文,李崇贵.基于“3S”技术的森林资源定量估测[M].北京:中国科学出版社.2001.
    75周丹卉,贺红士,孙国臣,等.林窗模型及其在全球气候变化研究中的应用[J].生态学杂志,2007,26(8):1303-1310.
    76.周国法、徐汝梅,生物地理统计学—生物种群时空分析方法及其应用[M]。北京,科学出版社,1998.42—65
    77.周磊,辛晓平,李刚,等.高光谱遥感在草原监测中的应用研究[J].草业科学,2009,26(4):20-27
    78.朱会文,刘述林,等,自然地理要素空间插值的几个问题[J],地理研究,2004,23(4)425—433
    79.朱锦茹,柴希民,何志华.温度和光照对松褐天牛生长的影响[M].浙江林业科学出版社.2001.
    80.朱文泉,潘耀忠,张锦水.中国陆地植被净初级生产力遥感估算[J].植物生态学报,2007,31(3):413-424.
    81.Adamsa B, While A, Mlenton T. An Analysis of Some Diverse Ap-proaches to Modelling Terrestrial Net Primary Productivity[J].Ec-ological Modelling,2004 (177):353-391.
    82.Andres Kuusk, Mait Lang, Tiit Nilson, Simulation of the Reflec-tance of Ground Vegetation in Sub-Boreal Forests[J].Agricultur-al and Forest Melerology,2004,126:33-46.
    83.Atkinson P. M.:Emery D. R(1999).Exploring the relation between spatial structure and wavelength: implications for sampling reflectance in the field[J].International Journal of Remote Sensing. Volume 20. Number 13,1999, pp.2663-2678(16).
    84.Armstrong M, Dowd PA. Theory and pratice of sequential simulation. Geostatistical simulation[J]s. Kluwer Academic Publishers.1993,10,111-124
    85.Atkinson, P.M. On estimating measurement error in remotelysensed images the semiVariogram[J]. International Journal of Remote Sensing,.1997,18:3075-3084.
    86.Atkinson, P.M., and D. Emery, Exploring the relation between spatial structure and wavelength: Implications for sampling reflectance in the field[J], International Journal of Remote Sensing. 1999,20:2663-2678.
    87.Atkinson. P.M..I.M.J. Sargent. G.M. Foody, and J. Williams,2005. Interpreting image-based methods for estimating the signal-tonoise ratio[J]. International Journal of Remote Sensing. 26(22/20):5099-5115.
    88.Boardman, J.W., and A.F.H. Goetz. Sedimentary facies analysis using AVIRIS data:A geophysical inverse problem[J], Proceedings of the Third AVIRIS Workshop.1991.JPL Publication 91 28, Jet Propulsion Laboratory. Pasadena, California, pp.413.
    89.Burgess T M, Webster R. Optimal interpolation and isarthmic mapping of soil properties I:The semisemiVariogram and punctual kriging[J]. Journal of Soil Science.1980.31:315-331
    90.Carr, J.R.,.Spectral and textural classification of single and multiple band digital images, Computers and Geosciences[J].1996; 22:849-865.
    91.Chappell, A., J.W. Seaquist, and L. Eklundh,2001. Improving the estimation of noise from NOAA AVHRR NDV1 for Africa using geostatistics, International Journal of Remote Sensing.22:1067-1080.
    92.Chavez. P.S. Comparison of spatial variability in visible and near-infrared spectral images[J]. Photogrammetric Engineering & Remote Sensing.1992,58(8):957-964.
    93.Corner. B.R., R.M. Narayanan, and S.E. Reichenbach.Noise estimation in remote sensing imagery using data masking[J].International Journal of Remote Sensing.2003,24:689-702.
    94.Cressie. N.A.C. Fitting semiVariogram models by weighted least squares[J].Mathematical Geology. 1985,17:563-586.
    95.Cressie, N.A.C. The Statistics for Spatial Data[M]. New York,John Wiley andSons,1991.
    96.Curran, P.J. The semi-semiVariogram in remote sensing:anintroduction[J].Remote Sensing of Environment.1988,3:493-507.
    97.Curran, P.J. Imaging spectrometry[J]. Progress in Physical Geography.1994.18:247-266.
    98.Curran. P.J., and J.L. Dungan Estimation of signal-to-noise:Anew procedure applied to 1989. (12):1427-1434.
    99.Deutsch, C V, Journel G A. GSLIB, Geostatistical Software Library and User's Guide. New York[J].Oxford University Press 1992.123-252
    100.Dielinska K, Gruszcaynska M. Lewinski S,et al Ap-plication of Remote and Insitu Information to the Management of Wetlands in Poland [J].Journal of Environmental Management,2009(90):2261-2269.
    101.Duggin, M.J., H. Sakhavat, and J. Lindsay. Sytematic and random variations in Thematic Mapper digital radiance data[J]. Photogrammetric Engineering & Remote Sensing,1985,51(12):1427-1434.
    102.Feng Yiming, Lei Xiangdong, Lu Yuanchang. Interpretation of Real Information-missing Patch of Remote Sensing Image with Kriging Interpolation of Spatial Statistics[J]. ACRS 2003 ISRS (Asian Conference on Remote Sening & International Symposium on Remote Sensing):2003.979-981
    103.Feng Yiming, Tang Shuozheng, Li Zengyuan. Application of Improved Sequential Indi-cator Simulation to Spatial Distribution Simulation of Forest Types[J]. Forest Ecology and Management, 2006.222:391-398.
    104.Foody, G.M., I.M. Sargent, P.M. Atkinson, and J. Williams.Land-cover classification from hyperspectral remotely sensed data:An investigation of spectral, spatial and noise issues[J]. International Journal of Remote Sensing,.2004.25:2337-2363.
    105.Friend A D, Stivents A K, Knox R G, et al.A Process-Based, Ter-restrial Biosphere Model of Ecosystem Dynamics (Hybrid V3.0) [J].Ecological Modeling,1997, (95):247-287.
    106.Gao, B-C. An operational method for estimating signal to noise ratios from data acquired with imaging spectrometers[J].International Journal of Remote Sensing, 1993.11:1669-1694.
    107.GAstellu-Etchegorry J P, Bruinquel-Pinel V.A Modeling Ap-proach to Assess the Robustness of Spectrometric Predictive Equa-tionas for canopy Chemistry[J].Remote Sensing of Environment,2001 (76):1-15
    108.Goovaerts, P. Geostatistics for Natural Resources Evaluation[M] New York, Oxford University Press,1997.
    109.Goovaerts P. Stochasstic Simulation of Categorical Variables Using a Calssification Algo-rithm and Simulated Annealing[J]. Mathematical Geology.1996.28 (7):909-921
    110.Goyer R A, Wagner M R, Schowaher T D. Current and Proposed Technologies for Bark BeetleManagements[M].Journal of Forestry.1998.
    111.Halik S, Bergdahi D R. Development of Bursaphelenchus xylophilus population in wood chips with different moisture contents[J]. Journal of Nematology.1990.22 (1):113-118
    112.Holmgren J, Nilsson M. Olsson H. Estimation of Tree Height and Stem Volume on Plots Using Airborne Laser Scannig [J].Forest Scienc3e,2003,49(3):19-428
    113.1saaks, E.H., and R.M. Srivastava, Applied Geostatistics[M], Oxford, Oxford University Press, 1989.
    114.Jacquemoud S, Vehoef W, Baret F, et al. PROSPECT-SALL Mod-els; A Review of Use for Vegetation Characterization[J]. Remote Sensing of Environment,2009,113:56-66.
    115.Journel. A.G.. and C.J. Huijbregts. Mining Geostatistics[M].London.Academic Press.1978.
    116.Journel G A, Zhu H. Indicator conditioned estimator[J]. Trans.Soc. Mining Engineering. 1989.286:1880-1886
    117.Koetz B, Sun G, Morsdorf F, et al..Fusion of Imaging Spectrometer and LiDAR Data Over Combined Radiative Transfer Models for Forest Canpoy Characterization!J].Remote Sensing of Environ-ment,2007,106:449-459.
    118.Lillesand T M, Kiefer R W. Remote Sensing and Image Interpretation[M]. (2nd Ed.) NewYork, John Wiley,1987,87-150
    119.Lillesand. T.M.. and R.W. Keifer. Remote Sensing and Image Interpretation[M],4th edition. New York., John Wiley and Sons,2000.
    120.Lieth H F H.Patterns of Primary Production in the Biosphere[Z].Dowden&Ross, Inc. Pennsylvania.1978.
    121.Li X, Strahler A H.A Geometic-Optical Bi-Directional Reflec-tion Modeling of a Conifer Forest Canopy[J].IEEE Transact Ceo-sciences Remote Sensing,1985 (GE-22):906-919.
    122.Lo. C.P., Applied Remote Sensing[M]. Harlow.Longman,1986.
    123.Lucht, W.. and P. Lewis. Theoretical noise sensitivity of BRDF and albedo retrieval from the EOS-MODIS and MISR sensors with respect to angular sampling[J].International Journal of Remote Sensing.2000,21:81-98.
    124.Mather. P.M., Computer Processing of Remotely-Sensed Images:An Introduction[M],3rd edition. John Wiley and Sons, Chichester.2004.
    125.Mamiya Y. Pathology of the pine wilt disease caused by Bursaphelenchus xylophilus[J]. Ann Rev Phytopathol.1983,21:201-220
    126.Mark C, Moisen G G, Sua L, et al.Large Area Mapping of South-western Forest Crown Cover, Canopy Height, and Biomass Using the NASA Multiangle Imaging Spectro-Radiomenter[J].Remote Sensing of Environment,2008,112 (5):2005-2063.
    127.Mark C, Nolin A, Moisen G G, et al. Forest Canopy Height from the Multiangle Imaging Spectroradiometer (MISR) Assessed with High Ressolution Discrete Return LiDAR[J].Remote Sensing of Envi-ronment,2009 (113):2172-2185.
    128.Matheron, G.. Les Variables Regionalisees et Leur Estimation[M]. Paris. Masson.1965.
    129.Matheron, G. The Theory of Regionalized Variables and its Applications[M] Fontainebleau.Centre de Morphologie Mathematique de Fontainebleau,1971.
    130.McBratney, A.B., and R. Webster. Choosing functions for semi-semiVariograms of soil properties and fitting them to sampling estimates[J]. Journal of Soil Science.1986,37:617-639.
    131.Mirco B, Stefano B,Pietro A B. Assessment of Pasture Production in the Italian Alps Using Spectrometric and Renote Sensing lnfor-mation[J]. Agriculture. Ecosystems and Envinronment,2007(118):267-272.
    132. Myers, D.E. To be or not to be stationary?[J]. That is the question. Mathematical Geology. 1989,21:347362
    133.Necibi Semi, Linit Marc J. The role of wood moisture content and Moisture content and
    134.Monochamus caro-linensis life stages on pinewood nematode development[M]. Beijing, Internatitonal Symposium on Pine Wilt Disease Caused by Pine Wood Nematode,1995.103-107
    135.Nichol, J.E.. and V. Vohora. Noise over water surfaces in Landsat TM images[J] International Journal of Remote Sensing.2004,25:2087-2094.
    136.Pebesma, E.J., and C.G. Wesseling. Gstat, a program for geostatistical modelling, prediction and simulation[J] Computers and Geosciences.1998,24:17-31.
    137.Peter M, Cliftom, Shlomo P, et al. Effects of Kriging and inverse modeling on condi-tional simulation of the Avra valley aquifer in southern Arizona[J]. W. R. R.1982.8 (4):813-833
    138.Robertson G P. Interpolation with known variance. Ecology[J]Geostatistics in ecology.1987.68 (3): 744-748
    139.Rossi R E, Mulla D J, Journel G A et al. Geostatistics tools for modeling and inter-preting ecological spatial dependence. Ecol[J]. Monogr.1992.62:277-314
    140.Roger, R.E. Principal Components transform with simple, automatic noise adjustment[J] International Journal of Remote Sensing.1996,17:2719-2727.
    141.Roger, R.E., and J.F. Arnold. Reliably estimating the noise in AVIRIS hyperspectral images[J] International Journal of Remote Sensing.1996,17:1951-1962.
    142.Schott, J.R.,1997, Remote Sensing:The Image Chain Approach, Oxford University Press, New York.
    143.Schowengerdt. R.A. Remote Sensing:Models and Methods forlmage Processing[M]. London,Academic Press,1997.
    144.Sellers P. Los S, Tucker C.A Revised Lan Surface Paramterization.(SiB2)for Atmosheric Gems Part Ⅱ:The Generation of Global Fields of Terrestrial Bioplysical Parameters from Satellite Data[J].Climate,1996 (9):706-737.
    145.Smith, G.M., and P.J. Curran. The signal-to-noise ratio (SNR) required for the estimation of foliar biochemical concentrations[J]. International Journal of Remote Sensing.1996,17:1031-1058.
    146.Smith B, Knorr W, Widlowski J L. Combining Remote Sensing Data with Process Modelling to Monitor Boreal Conifer Forest Carbon Balances[J].Foest Ecology and Management,2008(255): 3985-3994.
    147.Smith. G.M.. and P.J. Curran. Methods for estimating image signal-to-noise ratio (SNR), Advances in Remote Sensing and GIS Analysis (P.M. Atkinson and N.J. Tate, editors)[J] John Wiley and Sons. Chichester. pp..1999,61-74.
    148.Uchijima Z, Seino H.Agroclimatic Evaluation of Net Primary Pro-ductivity of Natural Vegetation I. Chikugo Model for Evaluating Productivity [J].J Agric Meteor,1985 (40):343-353.
    149.Valor, E.. V. Casselles, C. Coll, E. Rubio, and F. Sospedra,2002. NEDT influence in the thermal band selection of satellite-borne instruments. International Journal of Remote Sensing,23:3493-3504.
    150.Van Der Meer, F., and W. Bakker. CCSM:Cross-correlogram spectral matching[J].International Journal of Remote Sensing.1997,18:1197-1201.
    151.Verhoef W.Light Scattering by Leaf Layers with Applications to Canopy Reflectance Modeling:the SALL Model[J].Remodte Sensing of Environment,1984(16):125-141.
    152. Warren B C, Thomas A S, Gay A B.SemisemiVariogram of Digital Imagery for Analysis of Conifer Canopy Structure[J]. Remote Sens. Environ.1990,34:167-178
    153.Woodcock C E, Strahler A H, Jupp D L. The use of semiVariogram in remote sensing:Ⅱ Real digital images[J]. Remote Sens. Environ.1998.25:349-379
    154.Webster. R.. and M.A. Oliver. Statistical Methods for Soil and Land Resources Survey[M], Oxford. Oxford University Press,1990
    155.Wrigley, R.C., D.H. Card, C.A. Hlavka, J.R. Hall, F.C. Mertz, C. Archwamety, and R.A. Schowengerdt,1984. Thematic
    156.Mapper image quality:Registration, noise and resolution, IEEE Transactions on Geoscience and Remote Sensing.22:263-271.
    157.P.M. Atkinson,R. Webster, P.J. Curran (1994);Cokriging with airborne MSS imagery. Remote Sensing of Environment Volume 50. Issue 3. December 1994. Pages 335-345.
    158.Prieto-Blanco A, North P R J, Barnsley M J. et al. Satellite-Driven Modelling of Net Primary Productivity (NPP):Theoretical Analysis[J].Remote Sensing of Environment,2009(113):137-147.
    159.Prince S, Goward S. Global Primary Production:A Remote Sensing Apporoach [J].Biogeography,1995(22):815-835.
    160.Running SW.Mapping Regional Forest Evapotranspiration and Photosynthesis by Coupling Satellite Data with Ecosystem Simula-tion[J].Ecology,1989-70(4):1090-1101.
    161.Urban D L.A Versatile Model to Simulate Forest Pattern:A User Guide to ZELIG[M].Version 1.0. Environmental Sciences Dept, University of Virginia, Charlottesville, VA,1990.
    162.Y. Nishimura. K. Saito, S. Hayakawa. K. Narigasawa(1992) Comparison of satellite and airborne sensor data on sea surface temperature and suspended solid distribution Advances in Space Research. Volume 12. Issue 7. July 1992. Pages 373-377.
    163.H. Ochiai, K. Tsuchiya(1981)Application of multispectral data to the detection of sea surface phenomena Advances in Space Research. Volume 1, Issue 10,1981, Pages 165-176. 43.J.R. Belanger, A.N. Rencz(1983)
    164.Prospecting in glaciated terrain-integrating airborne and Landsat MSS Advances in Space Research, Volume 3. Issue 2.1983. Pages 187-191.
    165.Warren B. Cohen. Thomas A. Spies, Gay A. Bradshaw(1990) SemisemiVariograms of digital imagery for analysis of conifer canopy structure Remote Sensing of Environment. Volume 34. Issue 3. December 1990, Pages 167-178.
    166.Zeng Y, Schaepman M, Wu B F, et al. Quantitative Forest Canopy Structure Assessment Using an Inverted Geometric-optical Model and Upscaling[J].International Journal of Remodte Sensing,2009, 30 (6):1385-1406.
    167.Zeng Y, Schaepmant M, WuBF, et al. Scaling-based Forest Structure Change Detection Using an Inverted Geometric-optical Model in the Three Gorges Region of China [J].Remote Sensing of Environment,2008,112 (12):4261-4271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700