用户名: 密码: 验证码:
华北土石山区典型林分健康经营技术基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林是人类赖以生存的资源,是人类的摇篮,是陆地生态系统的主体,是人类和地球一切生物赖以生存和发展的物质基础。森林可持续经营成为世界林业发展的关键,如何科学合理的培育、经营和保护森林资源是当今林业的一大难题。全球现有的林分大多都是经过人类干扰下形成的,已经少有完全不受人类干扰的天然林分。天然林是经过漫长历史,结合各种实地情况所形成的最适合当地的最优林分。如何使次生林发挥其最大生态、经济效益和人工林实现近自然化成为世界林业研究的重点课题。本研究运用林分空间结构的一系列参数对华北地区几种典型林分的研究,判断各林分的生长状况,并对该林分进行经营诊断,提出林分优化经营设计的方案并对其经营效果进行评价。
     2009-2012年以河北省围场县木兰林管局为研究区,选择三种典型森林—油松人工林、华北落叶松人工林与天然次生林(山杨混交、白桦混交、杨桦混交、白杨混交)进行调查与实验,对该地区森林结构和经营管理进行分析和设计。主要研究结果如下:
     人工林不同于次生林,影响其生长发育的主要是林分的密度,对于人工林的经营设计主要以调整林分密度为主。以油松和落叶松人工林为例,结合林木实际生长状况和林分角尺度、大小比、混交度等参数,对两块样地进行经营设计,主要采取间伐的方式,兼顾林分直径结构的调整,伐除林分中不健康和受压林木,实现培育大径级林木和促进林下生物多样性发展的目的。
     (1)油松人工林直径分布呈正态分布,缺乏大径级林木,林下更新很少;林分胸径和树高呈现正比例关系,林分枝下高和树高有一定的关系,但是不明显;15号油松样地林分平均角尺度为0.4125,平均大小比为0.4931,平均混交度为0.3556。19号样地林分平均角尺度为0.3842,平均大小比为0.5079,平均混交度为0.0053,混交度很小,通过经营设计使其成为针阔混交林;
     (2)华北落叶松人工林直径分布呈正态分布,缺乏大径级林木,林分胸径和树高呈现正比例关系,林分枝下高和树高有一定的关系,但是不明显;2号落叶松样地林分平均角尺度为0.447,平均大小比为0.5076,平均混交度为0;3号落叶松样地林分平均角尺度为0.4458,平均大小比数为0.5,林中没有其他树种,混交度为0,说明两块样地为纯林;
     (3)枯落物在一定程度上可以反映森林的健康状况,油松、落叶松枯落物厚度分别为6.1cm和4.0cm,枯落物储量为33.93t·hm-2和43.16t·hm-2;浸泡24h后测定油松枯落物的含水量为268.10g,落叶松枯落物含水量为157.54g,它们的有效拦蓄量分别为30.07t·hm-2和57.56t·hm-2;
     (4)油松林的穿透降雨量、冠层截留量和树干径流量分别占大气降雨量的67.07%、29.79%和3.10%,落叶松分别为69.49%、28.82和1.1%;油松和落叶松林冠层穿透降雨量和树干径流量与林外降雨量呈明显的线性关系,林冠截留与降雨量成幂函数关系。
     天然次生林的经营主要通过林分角尺度、大小比、混交度和竞争指数为依据,以去除林中弯曲、受挤压、空间结构不合理(角尺度、大小比数、混交度和竞争指数)、无培养前途和成熟林木为主进行林分结构的调整,尽量保留除山杨、白桦以外的树种,以便提高林分混交度,抚育过后在林分中适当植入油松、落叶松和云杉等针叶树种,不仅可以提供一定的木材,而且可以实现林分向近自然方向发展的目的。
     (5)山杨林分直径分布基本呈倒“J”形,林分平均角尺度为0.517,说明林木处于随机分布,平均大小比为0.4922,平均混交度为0.3156,山杨林地种内竞争指数最大的是山杨,竞争指数为1306,山杨、白桦和落叶松在林分中占据着绝对优势地位;
     (6)白桦林分直径分布基本呈倒“J”形,林分平均角尺度为0.566,说明林木处于团状分布,平均大小比为0.4892,平均混交度为0.4176,白桦林地种内竞争指数最大的是白桦,竞争指数为3136,白桦和落叶松在林分中占据着绝对优势地位;
     (7)杨桦林分直径分布呈正态分布,林分平均角尺度为0.545,说明林木处于团状,平均大小比为0.488,平均混交度为0.5101,杨桦林地种内竞争指数最大的是落叶松,竞争指数为305,山杨、白桦和落叶松在林分中占据着绝对优势地位;
     (8)白杨林分直径分布呈正态分布,林分平均角尺度为0.5435,说明林木处于团状,平均大小比为0.4892,平均混交度为0.5089,白杨林地种内竞争指数最大的是落叶松,竞争指数为332,白桦、山杨和落叶松在林分中占据着绝对优势地位。
     运用物种多样性、林分组成、林分直径分布、角尺度、大小比数和竞争指数对研究区经营后的油松人工林、落叶松人工林和四块天然次生林进行评价。除落叶松林分以外,其他林分物种多样性和混交度均有所提高,各林分中顶级树种的比例也都有所提高;通过调整较低了人工林的密度,使天然次生林林分都处于随机分布状态,同时也降低了各林分种内竞争和种间竞争,提高了顶级树种的竞争优势,加速了天然林向顶级群落发展的进程。
Forest is resources for human survival and cradle of humanity. The forest is the main body of the terrestrial ecosystem, and the material basis for the survival and development of humans and all creatures on Earth. Forest sustainable management become the key of the development of the world forestry, how can scientific and rational cultivation, operation and protection the forest resources is a major problem in today's forestry. The world's existing forest were mostly formed after human disturbance and has rarely completely free from human interference. The natural forest had a long history, have combined with a variety of conditions on the ground to form best suited to local optimal forest stand. How to make secondary forest and plantation forest nearly naturaliz to become the focus of world forestry research subject. In this study, it used stand spatial structure to study the several typical forest stand in north China, judge the growth conditions and the forest stand management and operation diagnosing, and propose the design program of optimization operating.
     Investigation and experiment in three kinds of forests including planted Pinus tabulaeformis, planted larch forest and natural secondary forest were completed at Beigou forest farm in Mulan forestry administration in Weichang county of Hebei province during2009-2012, to analysis and design of forest structure and management. The main findings are as follows:
     The plantation forest are different from the secondary forest, forest stand density of plantation forest affect the growth and development, the operations designed of plantation forest adjust primarily to the stand density. For example Pinus tabulaeformis and Larix principis plantation, based on the actual forest growth conditions and stand uniform angle, neighborhood comparis, mingling and so on, four typical plots were operated design. It was took into account the adjustment of the stand diameter structure, and removed the forest which were in unhealthy and pressurized, cultivated the large diameter trees and promoted the development of the understory biodiversity.
     (1) The diameter distribution of Pinus tabulaeformis plantation was normal distribution, there were rarely update tree species and no larger diameter at breast height of trees; Forest stand DBH and tree height presented a positive relationship, forest branches under high and tree height have a relationship, but it is not obvious; The average uniform angle of Pinus tabulaeformis was0.4125in the15th plot, the average neighborhood comparis was0.4931, and average mingling was0.3556; In the19th plot, stand average uniform angle was0.3842, the average neighborhood comparis was0.5079, and the average mingling was0.0053;
     (2) The diameter distribution of Larix principis plantation was normal distribution, there was no larger diameter at breast height of trees; The stand DBH of Larix principis forest and tree height presented a positive relationship, forest branches under high and tree height have the relationship, but it was not obvious; The average uniform angle of Larix principis plantations was0.447in the2th plot, the average neighborhood comparis was0.5076, and average mingling was0; In the3th plot, stand average uniform angle was0.4458, the average neighborhood comparis was0.5, and the average mingling was0;
     (3) The litters thickness of Pinus tabulaeformis and Larix principis were6.1cm and4.0cm, the litters volume were33.93t·hm-2and43.16t·hm-2; The water content of Pinus tabulaeformis litters soaked was268.10g after24h, Larix principis litters water content was157.54g, and the effective interception amount were30.07t·hm-2and57.56t·hm-2;
     (4) The throughfall of Pinus tabulaeformis, canopy interception and stemfall accounted for67.07%,29.79%and3.10%of gross rainfall. The Larix principis were69.49%,28.82and1.1%; Throughfall, stemflow had a significant relationship with the total rainfall, the canopy interception and rainfall was into the power function relationship.
     Natural secondary forest management through the stand uniform angle, neighborhood comparis, minglingand competition index as the basis, to remove the bent forest, squeezed forest, the irrational space structure, no culture of the future and mature trees for the stand structure adjustment, keeping species other than populus davidiana and Betula platyphyllas, in order to improve forest mingling. After appropriately tending, implanted the Pinus tabulaeformis, Larix principis, spruce and other conifer species in stands, it can not only provide a certain timber, and achieve the purpose of the development of the stand to near natural direction.
     (5) The diameter distribution of populus davidiana stand was substantially down "J" shape, stand average uniform angle was0.517, trees were in a random distribution, the average neighborhood comparis was0.4922, average mingling was0.3156. The intraspecific competition index was the largest of populus davidiana, the competition Index was1306, the populus davidiana, Betula platyphylla and Larix principis occupied the absolute dominance in stands;
     (6) The diameter distribution of Betula platyphylla stand was substantially down "J" shape, the stand average uniform angle was0.566, forest stands belonged to the reunion distribution, the average neighborhood comparis was0.4892, the average mingling was0.4176. The intraspecific competition index was the largest of Betula platyphylla, the competition Index was3136. The Betula platyphylla and Larix principis occupied the absolute dominance in stands;
     (7) The diameter distribution of mixed Populus davidiana and Betula platyphylla stand was a normal distribution, average angular uniform angle was0.545, forest stands belonged to the reunion distribution, the average neighborhood comparis was0.488, and the average mingling was0.5101.The intraspecific competition index was the largest of Larix principis, the competition index was305, the Betula platyphylla and Larix principis occupied the absolute dominance in stands;
     (8) The diameter distribution of mixed Betula platyphylla and Populus davidiana stand was a normal distribution, the average angular uniform angle was0.5435, forest stands belonged to the reunion distribution, the average neighborhood comparis was0.4892, and the average mingling was0.5089. The intraspecific competition index was the largest of Larix principis, the competition index was332, the Betula platyphylla and Larix principis occupied the absolute dominance in stands.
     The species diversity, stand composition, stand diameter distribution, uniform angle, neighborhood comparis and competitiveness index were used to evaluate for Pinus tabulaeformis plantation, Larix principis plantation and natural secondary forest. The other stand species diversity and mingling were improved except Larix principis plantation, the proportion of top species were improved; the density of the plantation were low by adjusting, natural secondary forest are randomly distributed, while it was reduced the intraspecific competition and interspecific competition, and improved the competitive advantage of the top species.
引文
[1]安云,丁国栋,梁文俊,等.抚育间伐对华北土石山区汕松林群落稳定性的影响[J].四川农业大学学报,2012,19(1):12-17.
    [2]班勇,徐化成,李湛东.兴安落叶松老龄林落叶松林木死亡格局以及倒木对更新的影响[J].应用生态学报,1997,8(5):449-454.
    [3]毕刚蕊,殷鸣放,谭希斌,等.基于近自然度评价的柞树天然次生林近自然经营的探讨[J].造林与经营.2011,(5):18-20.
    [4]常静,潘存德,师瑞锋.梭梭一白梭梭群落优势种种群分布格局及其种间关系分析[J].新疆农业大学学报,2006,29(2):26-29.
    [5]陈丽华,杨新兵,鲁绍伟,等.华北土石山区油松人工林耗水分配规律[J].北京林业大学学报,2008,30(S2):182-187.
    [6]陈亮,王绪高.生物多样性与森林生态系统健康的几个关键问题[J].生态学杂志,2008,27(5):816-820..
    [7]陈世品,马祥庆,林开梅.武夷山风景区主要植被类型群落结构特征的研究[J].江西农业大学学报,2004,26(1):37-41.
    [8]陈祥伟,嫩江上游流域生态系统水量平衡的研究[J].应用生态学报,2001,12(6):903-907.
    [9]程金花,张洪江,余新晓,等.贡嘎山冷杉纯林地被物及土壤持水特性[J].北京林业大学学报,2002,24(3):46-48.
    [10]党宏忠,董铁狮,赵雨森.水曲柳林冠的降水截留特征[J].林业科学研究,2008,21(5):657-661.
    [11]党宏忠,周泽福,赵雨森.青海云杉林冠截留特征研究[J].水土保持学报,2005,19(4):61-64.
    [12]方国景,汤孟平,章雪莲.天日山常绿阔叶林的混交度研究[J].浙江林学院学报,2008,25(2):216-220.
    [13]傅伯杰,刘国华,陈利顶,等.中国生态区划方案.生态学报,2001,21(1):1-6
    [14]高广磊,丁国栋,任丽娜,等.空间竞争指数在华北土石山区天然次生林的应用[J].干旱区资源与环境,2012,26(6):134-138.
    [15]高均凯.中国森林健康的主要干扰研究[J].林业调查规划,2008,33(6):34-38.
    [16]葛宏立,周元中,汤孟平,等Ripley's指数的一个新变形—G(d)[J].生态学报,2008,28(4):1491-1497.
    [17]龚直文,顾丽,亢新刚,等.长白山森林次生演替过程中林木空间格局研究[J].北京林业大学学报,2010,32(2):92-99.
    [18]巩合德,张一平,刘玉洪,等.哀牢山常绿阔叶林林冠的截留特征[J].浙江林学院学报,2008,25(4):469-474.
    [19]巩合德,王开运,杨万勤,等.川西亚高山白桦林穿透雨和茎流特征观测研究[J].生态学杂志,2004,23(4):17-20.
    [20]国红,陆元昌,雷相东,等.海南省白沙县加勒比松林森林发展类型设计及虚拟实现[J].林业科学,2006,(S1):163-166.
    [21]郝月兰,张会儒,唐守正.基于空间结构优化的采伐木确定方法研究[J].西北林学院学报,2012,27(5):163-168.
    [22]何常清,薛建辉,吴永波,等.岷江上游亚高山川滇高山栎林的降雨再分配[J].应用生态学报,2008,19(9):1871-1876.
    [23]贺金生,陈伟烈,李凌浩.中国中亚热带东部常绿阔叶林主要类型的群落多样性特征[J].植物生态学报,1998,22(4):303-311.
    [24]贺宇,丁国栋,梁文俊,等.林分密度对枯落物层持水特性的影响[J].西北农林科技大学学报(自然科学版),2012,40(4):68-72.
    [25]侯向阳,韩进轩.长白山红松林主要树种空间格局的模拟分析[J].植物生态学报,1997,21(3):242-249.
    [26]胡珊珊,于静洁,胡堑,等.华北石质山区油松林对降水再分配过程的影响[J].生态学报,2010,30(7):1751-1757.
    [27]胡艳波,惠刚盈,戚继忠,等.吉林蛟河天然红松阔叶林的空间结构分析[J].林业科学研究,2003,16(5):523-530.
    [28]胡艳波,惠刚盈.优化林分空间结构的森林经营方法探讨[J].林业科学研究,2006,19(1):1-8.
    [29]胡艳波,惠刚盈,戚继忠,等.吉林蛟河天然红松阔叶林的空间结构分析[J].林业科学研究,2003,16(5):523-530.
    [30]黄选瑞,张玉珍,周怀钧,等.对中国林业可持续发展问题的基本认识[J].林业科学,2000,36(14):85-91.
    [31]惠刚盈,胡艳波,徐海.森林空间结构的量化分析方法.2005年中国科协学术年会,中国新疆,2005.
    [32]惠刚盈,胡艳波,赵中华.再论“结构化森林经营”[J].世界林业研究,2009,22(1):14-19.
    [33]惠刚盈,胡艳波.角尺度在林分空间结构调整中的应用[J].林业资源管理,2006,(2):31-35.
    [34]惠刚盈,李丽,赵中华,等.林木空间分布格局分析方法[J].生态学报,2007,27(11):4717-4728.
    [35]惠刚盈,赵中华,袁士云.森林经营模式评价方法——以甘肃小陇山林区为例[J].林业科学,2011,47(11):114-120.
    [36]惠刚盈,赵中华.森林可持续经营的方法与现状.第十届中国科协年会,中国河南郑州,2008.
    [37]惠刚盈,K. v. Gadow,胡艳波,等.林木分布格局类型的角尺度均值分析方法[J].生态学报,2004,24(6):1226-1229.
    [38]惠刚盈,Klaus von Gadow, Matthias Albert一个新的林分空间结构参数——大小比数[J].林业科学研究,1999,12(1):1-6.
    [39]惠刚盈,胡艳波.混交树种空间隔离程度表达方式的研究[J].林业科学研究,2001,14(1):23-27.
    [40]惠刚盈,胡艳波.混交林树种空间隔离程度表达方式的研究[J].林业科学研究,2001,14(1):177-181.
    [41]惠刚盈,克劳斯·冯佳多.森林空间结构量化分析方法[M].北京:中国科学技术出版社.2003.
    [42]惠刚盈,李丽,赵中华,等.林木空间分布格局分析方法[J].生态学报,2007,27(11):4718-4727.
    [43]姜海燕,赵雨森,信小娟,等.大兴安岭几种典型林分林冠层降水分配研究[J].水土保持学报,2008,22(6):197-201.
    [44]姜汉侨,段昌群,杨树华.植物生态学[M].北京:高等教育出版社,2004:87-89.
    [45]康春国.承德避暑山庄木兰围场地理及植物分析[J].森林工程.2003,19(3):7-8.
    [46]亢新刚.林业资源管理.北京:中国林业出版社.2001
    [47]孔维健,周本智,安艳飞,等.庙山坞自然保护区次生常绿阔叶林水文生态特征[J].南京林业大学学报,2010,34(4):88-92.
    [48]雷瑞德.秦岭火地塘林区华山松林水源涵养功能的研究[J].西北林学院学报,1984,1(1):19-33.
    [49]雷相东,唐守正.林分结构多样性指标研究综述[J].林业科学.2002,38(3):146-141.
    [50]李海涛.华北暖温带山地落叶阔叶混交林的茎流研究[J].生态学报,1997,17(4):372-376.
    [51]李红云,杨吉华,鲍玉海,等.山东省石灰岩山区灌木林枯落物持水性能研究[J].水土保持学报,2005,19(1):44-46.
    [52]李金良,郑小贤.北京地区水源涵养林健康评价指标体系的探讨[J].林业资源管理,2004(1):31-34.
    [53]李进,胡喻华,刘凯昌.红花荷天然林群落结构特征研究[J].生态环境,2004,13(2):225-226.
    [54]李俊清,牛树奎等.森林生态学[M].北京:高等教育出版社,2006.
    [55]李丽,惠淑荣,惠刚盈,等.不同起测径对判定林木空间分布格局影响的研究[J].林业科学研究,2007,20(3):334-337.
    [56]李迈和,Norbert Kruchi,杨建.生态干扰度:一种评价植被天然性程度的方法[J].地理科学进展,2002,21(5):450-458.
    [57]李荣,何景峰,张文辉,等.近自然经营间伐对辽东栎林植物组成及林木更新的影响[J].2011,39(7):83-91.
    [58]李淑春,张伟,姚卫星,等.冀北山地不同林分类型林冠层降水分配研究[J].水土保持 研究,2011,18(5):124-131.
    [59]李文华,何永涛,杨丽韫.森林对径流影响研究的回顾与展望[J].自然资源学报,2001,16(5):398-406.
    [60]李霞,董新光,候平.水分限制型森林生态系统的结构动态及其模拟研究[D].新疆农业大学学报,2003,26(4):41-44.
    [61]李晓慧.塔里木河下游断流区胡杨密度调查与分析[J].中国林业科学研究院硕士学位论文,2006.
    [62]李毅.甘肃胡杨林分结构的研究[J].干旱区资源与环境.1994,8(3):88-95.
    [63]李远发,赵中华,胡艳波,等.天然林经营效果评价方法及其应用[J].林业科学研究,2012,25(2):123-129.
    [64]李振新,郑华,欧阳志云,等.岷江冷杉针叶林下穿透雨空间分布特征[J].生态学报,2004,24(5):1015-1021.
    [65]梁文俊,丁国栋,包岩峰,等.冀北山地山杨白桦混交林林分空间结构研究[J].甘肃农业大学学报,2012,47(3):85-89.
    [66]梁文俊,丁国栋,高广磊,等.华北落叶松人工林不同阶段经营密度研究[J].水土保持通报,2011,31(3):145-148.
    [67]梁文俊,丁国栋,韦立伟,等.落叶松人工林密度对林木生长的影响[J].水土保持通报,2010,30(4):78-80.
    [68]梁文俊,丁国栋,臧荫桐,等.华北土石山区油松林对降雨再分配的影响[J].水土保持研究,2012,19(4):77-80.
    [69]梁文俊,丁国栋,周美思,等.冀北山地汕松和落叶松林下枯落物的水文效应[J].水土保持通报,2012,32(4):71-74.
    [70]林波,刘庆,吴彦,等.亚高山针叶林人工恢复过程中凋落物动态分析[J].应用生态学报,2004,15(9):1491-1496.
    [71]林开敏,郭玉硕.生态位理论及其应用研究进展[J].福建林学院学报,2001,21(3):283-287.
    [72]林鹏.福建三明瓦坑的赤枝栲林[J].植物生态学与地植物生态学学报,1987,11(4):252-263.
    [73]刘秉昌.杭州仙居俞坑森林群落特征研究[J].生态学杂志,2002,20(1):22-25.
    [74]刘春延,李良,赵秀海,等.塞罕坝地区华北落叶松人工林对降雨的截留分配效应[J].西北林学院学报,2011,26(3):1-5.
    [75]刘家冈,万国良,张学培,等.林冠对降雨截留的半理论模型[J].林业科学,2000,36(2):2-5.
    [76]刘建立,王彦辉,于澎涛,等.六盘山叠叠沟小流域华北落叶松人工林的冠层降水再分配特征[J].水土保持学报,2009,23(4):76-81.
    [77]刘俊民,余新晓.水文与水资源学[M].北京:中国林业出版社,146-147.
    [78]刘世荣.落叶松人工林养分循环过程与潜在地力衰退的研究[J].东北林业大学学报, 1993,21(2):19-24.
    [79]刘曙光,郭景唐.华北人工林林下降雨空间分布的研究[J].北京林业大学学报,1988,10(4): 1-10.
    [80]刘思土,邹秀红,郭志坚,等.毛竹群落植物科属组成及其植物地理分析[J].福建林业科技,2003,30(4):59-61.
    [81]刘文桢,赵中华,惠刚盈,等.小陇山油松天然林结构特征[J].林业科学研究,2011,(4):437-442.
    [82]刘彦,余新晓,岳永杰,等.北京密云水库集水区刺槐人工林空间结构分析[J].北京林业大学学报,2009,31(5):25-28.
    [83]刘云,侯世全,李明辉,等.天山云杉林林冠干扰前后植物多样性及其与环境的关系[J].林业科学研究,2005,18(4):430-435.
    [84]鲁少波,徐成立,李春强,等.孟滦林管局森林生态系统服务功能价值研究[J].林业经济,2009(4),65-66.
    [85]陆元昌,Knut Sturm近自然森林经营的理论技术及在我国林业建设中的应用[M].森林经营管理研究.北京:中国林业出版社,2005,106-120.
    [86]陆元昌,程小放.加拿大的模式森林计划[J].世界林业研究,2001,14(2):55-60.
    [87]吕林昭,亢新刚,甘敬.长白山落叶松人工林天然化空间格局变化[J].东北林业大学学报,2008,36(3):12-15.
    [88]吕林昭.长白山落叶松人工天然混交林空间格局研究[J].内蒙古林业调查设计,2007,30(3):57-62.
    [89]吕锡芝,范敏锐,余新晓,等.北京百花山核桃楸华北落叶松混交林空间结构特征[J].水土保持研究,2010,17(3):212-216.
    [90]马克平.试论生物多样性的概念[J].生物多样性,1993,(1):20-22.
    [91]马雪华.森林水文学,北京:中国林业出版社.1993.
    [92]马志林,陈丽华,韩鹏,等.森林健康诊疗一体化经营模式初探[J].内蒙古农业大学学报.2009,30(4):308-313.
    [93]宁金魁,陆元昌,赵浩彦,等.北京西山地区油松人工林近自然化改造效果评价[J].东北林业大学学报,2009,37(7):42-44.
    [94]牛丽丽,余新晓,刘彦,等.不同起测胸径对判定油松分布格局的影响[J].北京林业大学学报,2008,30(2):12-16.
    [95]牛丽丽,余新晓,岳永杰.北京松山自然保护区天然油松林不同龄级立木的空间点格局[J].应用生态学报,2008,19(7):1414-1418
    [96]裴铁播,郑远长.林冠分配降雨过程模拟与模型[J].林业科学,1996,32(1):6-10.
    [97]彭舜磊,王得祥.秦岭主要森林类型近自然度评价[J].林业科学.2011,47(1):135-142.
    [98]齐辉,郑世群.永定桫椤群落的结构特征[J].植物资源与环境学报,2001,10(3):30-34.
    [99]沈国舫.森林培育学.北京:中国林业出版社.2001.
    [100]石培礼,李文华.森林植被变化对水文过程和径流的影响效应.自然资源学报[J],2001,16(5):481-487.
    [101]石培礼,吴波,程根伟,等.长江上游地区主要森林植被类型蓄水能力的初步研究[J].自然资源学报,2004,19(3):351-490.
    [102]时忠杰,王彦辉,徐丽宏,等.六盘山华山松林降雨再分配及其空间变异特征[J].生态学报,2009,29(1):76-85.
    [103]舒清态,唐守正.国际森林资源监测的现状与发展趋势[J].世界林业研究,2005,18(3):33-37.
    [104]宋于洋,李园园,张文辉.基于Ripley的K(r)函数和分形维数的梭梭种群空间格局[J].应用生态学报,2010,21(4):827-835.
    [105]苏薇,岳永杰,余新晓,等.北京山区油松天然林的空间结构分析[J].灌溉排水学报,2008,28(1):113-117.
    [106]孙培琦,赵中华,惠刚盈,等.天然林林分经营迫切性评价方法及其应用[J].林业科学研究,2009,22(3):343-348.
    [107]孙儒泳,李博,诸葛阳等.普通生态学[M].北京:高等教育出版社,1993.
    [108]孙伟中,赵士洞.长白山北坡锻树阔叶红松林群落主要树种分布格局的研究[J].应用生态学报,1997,8(2):308-311
    [109]孙向阳,王根绪,李伟.贡嘎山亚高山演替林林冠截留特征与模拟[J].水科学进展,2011,22(1):23-29.
    [110]汤孟平,娄明华,陈永刚,等.不同混交度指数的比较分析[J].林业科学,2012,48(8):46-53.
    [111]汤孟平,唐守正,张会儒,等.森林收获安排模型研究进展[J].世界林业研究,2003,16(3):25-31.
    [112]汤孟平,周国模,施拥军,等.不同地形条件下群落物种多样性与胸高断面积的差异分析[J].林业科学,2007,43(6):27-31.
    [113]汤孟平,唐守正,李希菲,等.树种组成指数及其应用[J].林业资源管理.2003,(2):33-36.
    [114]汤孟平,周国模,施拥军等.天目山常绿阔叶林优势种群及其空间分布格局[J].植物生态学报,2006,30(5):743-752
    [115]汤孟平.林分空间结构分析与优化经营模型研究.北京:中国林科院博士学位论文.2003.
    [116]汤孟平.森林空间经营理论与实践.北京:中国林业出版社.2007
    [117]汤梦平,唐守正,雷相东,等.两种混交度的比较分析[J].林业资源管理,2004,(4):25-27.
    [118]唐守正.以史为鉴,发展森林资源和林业产业[J].中国林业产业,2012:86.
    [119]田超,杨新兵,李军,等.冀北山地阴坡枯落物层和土壤层水文效应研究[J].水土保持学报,2011,25(2):97-103.
    [120]王凤友.森林凋落物量综述研究[J].生态系统学进展,1989,6(2):95-102.
    [121]王礼先,张志强.森林植被变化的水文生态效应研究进展[J].世界林业研究,1998,(6):14-22.
    [122]王鹏,陈丽华,卞西陈,等.北沟林场天然次生林群落结构与种群分布格局[J].应用生态学报,2011,22(7):1668-1674.
    [123]王威,郑小贤,梁雨,等.北京八达岭林场黄栌风景林空间结构分析[J].东北林业大学学报,2008,36(2):25-26.
    [124]王小平,陆元昌,秦永胜.北京近自然森林经营技术指南.北京:中国林业出版社,2008,38-43.
    [125]王雄宾,谷建才,朱建刚,等.熵值计算及其在森林生物量分布中的应用[J].北京林业大学学报,2008,30(2):160-164.
    [126]魏天兴,余新晓,朱金兆.山西西南部黄土区林地枯落物截持降水的研究[J].北京林业大学学报,1998,20(6):5-10.
    [127]吴钦孝,赵鸿雁,刘向东,等.森林枯枝落叶层涵养水源保持水土的作用评价[J].水土保持学报,1998,4(2):23-28.
    [128]吴征镒.中国植被[M].北京:科学出版社,1980.
    [129]肖笃宁,布仁仓.生态空间理论与景观异质性[J].生态学报,1997,17(5):453-461.
    [130]肖风劲,欧阳华,程淑兰,等.中国森林健康生态风险评价[J].应用生态学报,2004,15(2):349-353.
    [131]肖洋,陈丽华,余新晓,等.北京密云水库油松人工林对降水分配的影响[J].水土保持学报,2007,21(3):154-157
    [132]肖洋,陈丽华,余新晓,等.北京密云水库油松人工林对降水分配的影响[J].水土保持学报,2007,21(3):154-157.
    [133]徐化成.森林生态系统与生态系统经营.北京:化学工业出版社.2004
    [134]徐嘉,费世民,何亚平,等.川西南山地云南松过熟林上层枯立木和活立木竞争强度研究[J].四川林业科技,2007,28(6):1-8.
    [135]闫德仁.落叶松人工林地力衰退趋势的研究[J].内蒙古林业科技,1996,(34):93-98.
    [136]杨承栋.杉木人工林根际土壤性质变化的研究[J].林业科学,1999,35(6):2-9.
    [137]杨澄,刘建军.桥山油松天然林水文效应的研究[J].西北林学院学报,1997,12(1):29-33.
    [138]杨春时.系统论信息论控制论浅说[M].北京:中国广播电视出版社,1987(2):23-24.
    [139]杨新兵,张伟,张建华,等.生态抚育对华北落叶松幼龄林枯落物和土壤水文效应的影响[J].水土保持学报,2010,24(1):119-122.
    [140]杨艳锋,郑小贤,梁雨等.北京八达岭林场元宝枫人工林林分结构研究[J].林业资源管 理,2008,2:57-60.
    [141]杨志鹏,李小雁,孙永亮,等.毛乌素沙地沙柳灌丛降雨截留与树干茎流特征[J].水科学进展,2008,19(5):693-698.
    [142]伊力塔,韩海荣,程小琴,等.灵空山林区辽东栎(Quercusliaotungensis)种群空间分布格局[J].生态学报,2008,28(7):3254-3261.
    [143]殷晖,关文彬,薛肖肖,等.贡嘎山暗针叶林林冠对降雨能量再分配的影响研究[J].北京林业大学学报,2010,32(2):1-5.
    [144]玉宝,王立明.兴安落叶松天然林分级木生长特性分析[J].林业科学研究2007,20(4):452~457.
    [145]岳永杰,余新晓,李钢铁,等.北京松山自然保护区蒙古栎林的空间结构特征[J].应用生态学报,2009,20(8):1811-1816.
    [146]曾伟生,唐守正.立木生物量方程的优度评价和精度分析[J].林业科学,2011,47(11):106-113.
    [147]张鼎华.人工地力的衰退与维护[M].北京:中国林业出版社,2001.
    [148]张峰,彭祚登,安永兴,等.北京西山主要造林树种林下枯落物的持水特性[J].林业科学,2010,46(10):7-13.
    [149]张光灿,刘霞,赵玫.树冠截留降雨模型研究进展及其述评[J].南京林业大学学报,2000,24(1):64-68.
    [150]张光辉.森林发展类型设计初探[J].林业调查规划,2008,33(1):11-13.
    [151]张桂莲,张金屯.关帝山神尾沟优势种生态位分析[J].武汉植物学研究,2002,20(3):203-208.
    [152]张会儒,唐守正.森林生态采伐理论[J].林业科学,2008,44(10):127-131.
    [153]张会儒,唐守正.森林生态采伐研究简述[J].林业科学,2007,43(9):83-87.
    [154]张会儒,武纪成,杨洪波,等.长白落叶松-云杉-冷杉混交林林分空间结构分析[J].浙江林学院学报2009,26(3):319-325.
    [155]张济世,刘立昱,程中山,等.统计水文学[M].郑州:黄河水利出版社,2006,134.
    [156]张佳音,丁国栋,余新晓,等.北京山区人工侧柏林的径级结构与空间分布格局[J].浙江林学院学报,2010,27(1):30-35.
    [157]张佳音.木兰围场北沟林场森林生态系统健康评价研究[D].北京:北京林业大学,2009.
    [158]张建华.木兰围场国有林区历史沿革及其丰富的植物资源[J].河北林业科技,2007(7):192-194.
    [159]张金屯,孟东平.芦芽山油松-辽东栎林优势树种空间分布格局研究[J].西北植物学报,2006,26(8):168-1685.
    [160]张金屯.植物种群空间分布的点格局分析[J].植物生态学报,1998,22(4):344-349.
    [161]张俊艳,成克武,臧润国,等.不同云南松群落近自然度评价及其评价指标体系的构建[J].河北农业大学学报.2011,34(3):71-76.
    [162]张胜利,雷瑞德,吕瑜良,等.秦岭火地塘林区森林生态系统水量平衡研究[J].水土保持通报,2000,20(6):18-22.
    [163]张守攻,朱春全,肖文发.森林可持续导论.北京:林业出版社,2001.
    [164]张伟,杨新兵,张汝松,等.冀北山地不同林分枯落物及土壤的水源涵养功能评价[J].水土保持通报,2011,31(3):208-238.
    [165]张一平,王馨,王玉杰等.西双版纳地区热带季节雨林与橡胶林林冠水文效应比较研究[J].生态学报,2003,23(12):2653-2665.
    [166]张宜辉,阙德海.福建三明小湖赤枝拷群落组成结构及物种多样性分析[J].厦门大学学报(自然科学版).2002,41(2):251-257.
    [167]张振明,余新晓,牛健植,等.不同林分枯落物层的水文生态功能[J].水土保持学报,2005,19(3):139-143.
    [168]赵常明,等.广东南澳岛次生林的群落结构分析[J].植物生态学报,2004,28(3):341-350.
    [169]赵中华,惠刚盈,胡艳波,等.2种类型阔叶红松林优势种群空间分布格局及其关联性[J].林业科学研究,2011,24(5):554-562.
    [170]赵中华,惠刚盈,袁士云,等.小陇山锐齿栎天然林空间结构特征[J].林业科学,2009,45(3):1-6.
    [171]赵中华,惠刚盈.基于林分状态特征的森林自然度评价——以甘肃小陇山林区为例[J].林业科学,2011,47(12):9-16
    [172]赵中华,袁士云,惠刚盈,等.经营措施对林分空间结构特征的影响[J].西北农林科技大学学报(自然科学版),2008,36(7):135-142.
    [173]赵中华,惠刚盈,袁士云,等.小陇山锐齿栎天然林的树种多样性和结构特征[J].林业科学研究,2008,21(5):605-610.
    [174]郑景明,罗菊春.长白山阔叶红松林结构多样性的初步研究[J].生物多样性,2003,11(4):295-302.
    [175]周厚诚,彭少麟,任海.青藏高原东缘岷江冷杉天然群落的种群结构和空间分布格局[J].广西植物,2001,21(3):209-214.
    [176]Amarakoon D, Chen A, Mclean P. Estimating daytime latentheat flux and evapotranspiration in Jamaica [J]. A gric For Meteorol,2000,102:113-124.
    [177]Andrej B. Comparison of structure and biodiversity in the rajhenav virgin forest remnant and managed forest in the dynamic region of Slovenia [J]. Global Ecology and Biogeography,2000,9(3):201-211.
    [178]Asdak C, Jarvis P G, van Gardingen P, et al. Rainfall interception loss in unlogged and logged forest areas of Central Kalimantan, Indonesia[J]. Journal of Hydrology,1998,206: 237-244.
    [179]Bosch JM, Hew lett JD. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology,1982,55 (1/4):3-23.
    [180]Carlyle-Moses D E, Laureano J S F, Price A G. Throughfall and throughfall spatial variability in Madrean oak forest communities of northeastern Mexico[J]. Journal of Hydrology,2004,297:124-135.
    [181]Chappell N A, Bidin K, Tych W. Modelling rainfall and canopy controls on net-precipitation beneath selectively-logged tropical forest [J]. Plant Ecology,2001,153: 215-229.
    [182]Crockford R H, Richardson D P. Partitioning of rainfall into throughfall, stemflow, and interception:effect of forest type, ground cover and climate [J]. Hydrological Processes, 2000,14:2903-2920.
    [183]David Dunkerley. Measuring interception loss and canopy storage in dryland vegetation:a brief review and evaluation of available research strategies [J]. Hydrological processes, 2000,14,669-678.
    [184]De Steven D, Wright S J. Consequences of variable reproduction for seedling recruitment in three Neotropical tree species [J]. Ecology,2002,83:2315-2327.
    [185]Deguchi A, Hattori S, Park H T. The influence of seasonal changes in canopy structure on interception loss:application of the revised Gash model. Journal of Hydrology [J].2006, 318:80-102.
    [186]Dietz J, Holscher D, Leuschner C, Hendrayan to Rainfall partitioning in relation to forest structure in differently managed montane forest stands in Central Sulawesi Indonesia. Forest Ecology and Management,2006,237(1/3):170-178.
    [187]Dykes A P. Rainfall interception from a lowland tropical rain forest in Brunei [J]. Journal of Hydrology,1997,200:260-279.
    [188]Edwards P J. Studies of mineral cycling in a mountain rain forest in Brunei [J]. Journal of Ecology,1982,70:807-827.
    [189]Ford E D, Deans J D. The effects of canopy structure on stemflow, throughfall and interception loss in a toung Sitka Spruce plantation [J]. Journal of Applied Ecology,1978, 15:905-917.
    [190]Gadow K V, Nagel J, Saborowski J. Continuous Cover Forestry [J]. Kluwer Academic Publishers, the Nether lands,2002.
    [191]Gadow K V, Hui G Y. Characterizing forests Patial structure and diversity. "Sustainable Forestry in Temperate Regions", Proceedings of the SUFOR International Workshop [J]. University of Lund, Sweden,2002,4:7-9.
    [192]Gardiner J J. Environmental conditions and site aspects. In:A. F. M. Olsthoorn H H, Bartelink J J, Gardiner H, Pretzsch H J, Hekhuis A, Frano(eds). Manafement of mixed-species forest:silviculture and economics. Dlo Instisute for Forestry and Nature Research(IBN-DLO). Wageningen,1999.
    [193]Gmez J A, Vanderlinden K, Giraldez J V, et al. Rainfall concentration under olive trees[J]. Agricultural water management,2002,55:53-70.
    [194]Hansorg D. Plant invasion patches-reconstructing pattern and process by means of herb-chronology [J]. Biological Invasions,2002,4:211-222.
    [195]Herbst M, Roberts J M, Rosier P T W, Gowing D J. Measuring and modelling the rainfall interception loss by hedgerows in southern England[J].Agricultural and Forest Meteorology, 2006,141:244-256.
    [196]Herbst M, Rosier P T W, Mcneil D D, et al. Seasonal variability of interception evaporation from the canopy of a mixed deciduous forest. Agricultural and Forest Meteorology,2008, 148:1655-1667.
    [197]Herwitz S R. Interception storage capacities of tropical rainforest canopy trees [J]. Journal of Hydrology,1985,77(1/4):237-252.
    [198]Holwerda F, Scatena F N, and Bruijnzeel L A. Throughfall in a Puerto Rican lower montane rain forest:A comparison of sampling strategies [J]. Journal of Hydrology,2006,327: 592-602.
    [199]Iida S, Tanaka T, Sugita M. Change of interception process due to the succession from Japanese red pine to evergreen oak. Journal of Hydrology,2005,315(1/4):154-166.
    [200]Jackson I J. Relationships between rainfall parameters and interception by tropical rainforest [J]. Journal of Hydrology,1975,24(3/4):215-238.
    [201]Jeffery P D, Lisa M R, Peter N. Underst orey plant community characteristics and natural hardwood regeneration under three partial harvest treatment sapplied in anorthern red oak (Quer-cus rubra L.) stand in the Great Lakes-St. Law rence forest region of Canada [J]. Forest Ecology and Management,2008,256:760-773.
    [202]Johnson R C The interception, through fall and stem flow in a forest in Highland Scotland and the comparison with other upland forests in the UK [J]. Journal of Hydrology,1990, 118:281-287.
    [203]Kareiva P. Diversity and sustainability on the prairie [J]. Nature,1996,379:673-674.
    [204]Kav vaadias V A, Alifrag is D, Tsiontsis A, et al. Litter fall litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece[J]. Forest Ecology Management,2001,144(1/3):113-117.
    [205]Keim R F, Skaugset A E, Weiler M. Temporal persistence of spatial patterns in throughfall [J]. Journal of Hydrology,2005,314:263-274.
    [206]Kimmins J P. Some statistical aspects of sampling throughfall precipitation in nutrient cycling studies in British Columbian coastal forests[J], Ecology, (1973),54,1008-1019.
    [207]Klaassen W, Bosveld F, De Water E. Water storage and evaporation as constituents of rainfall interception [J]. Journal of Hydrology,1998,212/213:36-50.
    [208]Leer. ForestHydrology [M]. New York:ColumbiaUniversity Press,1980.
    [209]Levia D F, Frost E E. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. Journal of Hydrology,2003, 274:1-29.
    [210]Limousin J M, Rambal S, Ourcival J M, et al. Modelling rainfall interception in a Mediterranean Quercus ilex ecosystem:Lesson from a throughfall exclusion experiment [J]. Journal of Hydrology,2008:357,57-66.
    [211]Liu J. Theoretical model of the process of rainfall interception in forest canopy [J]. Ecological Modelling; 1988,42:111-123.
    [212]Llorens P, Domingo F. Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. Journal of Hydrology,2007,335:37-54.
    [213]Loescher H W, Powers J S, Oberbauer S F. Spatial variation of throughfall volume in an old-growth tropical wet forest, Costa Rica[J]. Journal of Tropical Ecology,2002,18: 397-407.
    [214]Loustau D, Berbigier P, Grainier A, et al. Interception loss, throughfall and stemflow in a maritime pine standl. Variability of throughfall and stemflow beneath the pine canopy [J]. Journal of Hydrology,1992,138:449-467.
    [215]Manfroi O J, Kuraji K, Suzuki M, et al. Comparison of conventionally observed interception evaporation in a 4-ha area of the same Bornean lowland tropical forest [J]. Journal of Hydrology,2006,329:329-349.
    [216]Manfroi O J, Kuraji K, Suzuki M, et al. The stemflow of trees in a Bornean lowland tropical forest. Hydrological Processes,2004,18:2455-2474.
    [217]Marin C, Bouten W, Sevink J. Gross rainfall and its partitioning into throughfall, stem flow and evaporation of intercepted water in four forest ecosystems in western Amazonia [J]. Journal of Hydrology,2000,237:40-57.
    [218]Nadkarni N M, Sumera M M. Old-growth forest canopy structure and its relationship to throughfall interception [J]. Forest Science,2004,50(3):290-298.
    [219]Park H T, Hattori S, Kang H M. Seasonal and inter-plot variations of stemflow, throughfall and interception loss in two deciduous broadleaved forests [J]. Journal of Japan Society of Hydrology and Water Resource,2000,13:17-30.
    [220]Pretzsch H.Structural diversity as a result of silvicultural operations.In:A.F.M. Olsthoorn H H, Bartelink J J, Gardiner H, Pretzsch H J, Hekhuis A, Frano (eds). Manafement of mixed-species forest:silviculture and economics. Dlo Instisute for Forestry and Nature Research(IBN-DLO), Wageningen.1999.
    [221]Price A G, Carlyle Moses D E Measurement and modeling of growing season canopy water fluxes in a mature mixed deciduous forest stand, southern Ontario, Canada [J]. Agricultural and Forest Meteorology,2003,119:69-85.
    [222]Richard H W, WilliamH.S.Forest ecosystems:concepts and management [M]. Florida: Academic Press,1985,94.
    [223]Rowe L K. Rainfall interception by an evergreen beech forest, Nelson, New Zealand [J]. Journal of Hydrology,1983,66:143-158.
    [224]Rutter A J, Kershaw K A, Robins P C, et al. A predictive model of rainfall interception in forests. Derivation of the model fromobservation in a plantation of Corscian pine [J]. Agricultural and Forest Meteorology,1971,9:367-384.
    [225]Schellekens J, Scatena F N, Bruijnzeel L A. Modelling rainfall interception by a low land tropical rain forest in northeastern PuertoRico [J]. Journal of Hydrology,1999,225: 168-184.
    [226]Sraj M, Brilly M, Mikos M. Rain fall interception by two deciduous Mediterranean forests of contrasting stature in Slovenia. Agricultural and Forest Meteorology,2008,148 (1): 121-134.
    [227]Staelens J, Schrijvrt A D, Verheyen K, et al. Spatial variability and temporal stability of throughfall water under a dominant beech (Fagus sylvatica L.) tree in relationship to canopy cover[J]. Journal of Hydrology,2006,330:651-662.
    [228]Sun G, McNulty S G, Amatya D M, et al. A comparison of the watershed hydrology of coastal forested wetlands and the mountainous uplands in the Southern US [J]. Journal of Hydrology,2002,263:92-104.
    [229]Taniguchi M, Tsujimura M, Tanaka T. Significance of stemflow in groundwater recharge: evaluation of the stemflow contribution to recharge using a mass balance approach [J]. Hydrological Processes,1996,10:71-80.
    [230]Teklehaimanot Z, Jarvis P G, Ledger D C. Rainfall interception and boundary layer conductance in relation to tree spacing [J]. Journal of Hydrology,1991,123:261-278.
    [231]Tilman D. Causes, consequences and ethics of biodiversity [J]. Nature,2000,405,298-211.
    [232]Viville D, Biron P, Granier A, et al. Interception in a mountains declining spruce stand in Strengbach catchment (Vosges, France)[J]. Journal of Hydrology,1993,144:273-282.
    [233]Wallace J, Mc Jannet D. On interception modelling of a lowland coastal rainforest in northern Queen Sland, Australia [J]. Journal of Hydrology,2006,329:477-488.
    [234]Yoshinori Shinohara, Yuka Onozawa, Masaaki Chiwa, et al. Spatial variations in throughfall in a Moso bamboo forest:sampling design for the estimates of stand-scale throughfall [J]. Hydrological Processes,2010,24,253-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700