用户名: 密码: 验证码:
寒地黑土玉米调亏灌溉和水氮耦合效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑龙江省玉米种植带位于东北春玉米区的北部,是国家重要的商品粮基地,承担着保障国家粮食安全的重要使命。黑龙江省水资源总量为810.33亿m3,人均占有量和耕地亩均占有量都低于全国平均水平。水资源时空分布不均、季节性干旱频发、作物生育期内水量分布不均、水肥利用不合理等因素成为玉米植面积发展与产量稳定和提高的主要限制因素。调亏灌溉是一种从作物生理角度出发的新节水灌溉技术,以提高水分利用率和经济产量为目的。因此,开展调亏灌溉及调亏灌溉条件下的水肥耦合效应对玉米生长发育及产量的影响研究,能够为寒地黑土区节水型高产玉米生产技术的发展提供理论依据,对发展高效节水农业具有重要意义。
     本文根据野外测坑与测筒试验的实测资料,运用对比分析方法、统计分析的方法、智能优化算法,详细探讨了不同调亏时期、不同水分亏缺程度以及调亏灌溉条件下水氮耦合对玉米生长发育指标、耗水量、水分利用效率、产量及产量构成因素的影响规律和作用效果,研究结论如下:
     (1)玉米经水分亏缺复水正常灌溉后的株高有不同程度的补偿性生长,补偿性生长提高的幅度与复水生育期的灌溉水平有关,灌溉水平越高、株高补偿性增长量越大。苗期中度亏水处理在拔节期复水正常灌溉后,拔节期~灌浆期的株高增长量比同时段内全生育期正常灌溉处理提高了27%;苗期、拔节期均连续中度亏水处理在抽雄期复水正常灌溉后,抽雄期~灌浆期的株高增长量比同时段内全生育期正常灌溉处理提高了8%。适宜的调亏灌溉可以抑制植株地上部分的生长,促进植株根干质量的增加。全生育期均正常灌溉处理的地上部分干重比各调亏试验处理的平均地上部分干重高31%,苗期中度亏水处理、拔节期中度亏水处理的根干质量比全生育期均正常灌溉处理分别提高了7.7%、10.6;苗期中度亏水处理、拔节期中度亏水处理和抽雄期中度亏水处理的根冠比比全生育期均正常灌溉处理分别提高了20%、52%和21%,多生育期连续中度亏水将大大减小植株根干质量,适宜的水分亏缺可以增加植株的根冠比,更好的控制根与冠之间的分配比例。
     低氮肥时,苗期水分亏缺对株高生长的影响小于拔节期,更小于抽雄期;中氮肥时,拔节期水分亏缺对株高生长的影响大于抽雄期水分亏缺;拔节期重度亏水,后期复水正常灌溉与结合高施氮量可以使株高得到较大的补偿性增长。苗期、拔节期连续重度水分亏缺对茎粗产生了不利影响;抽雄期中度或轻度亏水不会影响茎粗的生长。施氮量决定不同调亏时期的水分亏缺程度,苗期供应水分过高、氮肥过大会减少植株茎粗;拔节期水分亏缺时,植株茎粗受施氮量的影响较大,为了避免茎粗受到不利影响,水分亏缺程度越重,氮肥施用量就应该随之增高;抽雄期进行水分亏缺时,不同施氮量对茎粗差异性变化没有明显影响。
     (2)玉米受到不同程度的水分亏缺影响后,各生育期的耗水量呈现不同变化规律。调亏灌溉阶段内的植株蒸发蒸腾量明显降低,植株经水分亏缺复水灌溉后,其蒸发蒸腾量比正常灌溉有显著增加。与正常灌溉相比较,苗期中度水分亏缺可减少蒸发蒸腾量38%、拔节期中度水分亏缺可减少蒸发蒸腾量31%,抽雄期中度水分亏缺可减少蒸发蒸腾量30%。分别在苗期、拔节期、抽雄期进行单生育阶段中度亏水条件下的植株总蒸发蒸腾量比全生育期均正常灌溉可降低4%~8%;苗期、拔节期、抽雄期连续或不相邻的两个生育阶段中度亏水灌溉比全生育期均正常灌溉可降低植株总蒸发蒸腾量11%~15%。苗期中度亏水与中氮肥耦合处理、苗期重度亏水与低氮肥耦合处理经拔节期复水后的植株蒸发蒸腾量大于正常灌溉处理的蒸发蒸腾量。苗期中度亏水、其它生育期正常灌溉处理的水分利用效率最大,比全生育期均正常灌溉处理提高了12%左右;苗期中度亏水处理的水分利用效率比拔节期中度亏水处理、抽雄中度亏水处理分别提高了6.8%、8.3%,适宜生育阶段、适度水分亏缺可以降低植株蒸发蒸腾量,同时提高作物水分利用效率,达到节水、增产的目的。
     (3)苗期中度水分亏缺或拔节期中度水分亏缺可以提高玉米的百粒重。抽雄期中度亏水会增加玉米穗的秃尖长度,对产量有不利影响。拔节期轻度水分亏缺与中氮肥耦合或拔节期重度水分亏缺与高氮肥耦合可以提高玉米穗的长度。玉米抽穗开花期水分亏缺对产量影响最大,其次是拔节期,苗期水分亏缺对产量影响最小。经济产量最高的调亏灌溉模式为:适宜调亏生育期为苗期,水分亏缺阈值为田间持水量的50%~60%,其他生育期水分阈值为田间持水量70%~90%,其产量达到16483kg/hm2,比全生育期正常灌溉的产量提高了6.4%、水分利用效率提高了10.8%;节水量最大的调亏灌溉模式为:玉米苗期水分中度亏缺,阈值为田间持水量的55%~65%,拔节期和抽穗开花期水分正常灌溉,阈值为田间持水量的65%~75%,其产量达到13503kg/hm2,比玉米苗期、拔节期和抽穗开花期均正常灌溉的产量提高了8%,水分利用效率提高了12.6%。当目标产量为13500kg/hm2以上时,在95%的置信区间,得到调亏灌溉条件下玉米高产高效、节水的水氮优化综合管理模式为:苗期水分亏缺阈值取田间持水量的48~66%,拔节期水分亏缺阈值取田间持水量的72~84%,抽雄期水分亏缺下限阈值取田间持水量的66~81%,施纯氮量为160kg/hm2。
     (4)采用传统最小二乘法与偏最小二乘回归法分别建立调亏灌溉模式下玉米产量影响因素的关系模型,通过计算分析得出了偏最小二乘回归模型在绝对误差、相对误差等方面明显优于传统的最小二乘回归模型,该模型解决了自变量之间存在的多重相关性问题,结构稳定性最好,模型解释了各自变量对产量影响的程度和方向,模拟结果与试验实际情况相符。针对调亏灌溉方案优选过程中存在单项指标的灌溉优劣评估结果单一和难以客观评价灌溉综合效益等问题,本文提出了基于改进双链量子遗传算法的投影寻踪综合评价模型。建立的基于改进加速双链量子遗传算法的投影寻踪模型(ADCQGA-PPC)评价了调亏灌溉方案中各评价指标对目标产量的贡献率大小,确定了最佳调亏灌溉技术方案,研究结果表明玉米单株产量对整体评价结果的影响最大,其次是株高、根干重、百粒重、秃尖、WUE;苗期水分亏缺程度为田间持水量50%~60%的处理是最佳调亏灌溉方案,产量与水分利用效率比正常灌溉处理分别提高了6.4%、10.8%,这与试验实测产量和计算的结果相一致,改进后的模型全局搜索能力与优化效率得到了显著提高,具有重要的理论指导意义。
Heilongjiang Province was the important commodity grain base, and undertaked the importantmission of national food security, which was located in the north spring maize of northeast. Thetotal water resources in Heilongjiang Province were810.33billion cubic meters, both the averageperson possession and per mu possession of water were under the national average. The scarcity ofirrigation water had been intensified by uneven distribution of the spatial and temporal of waterresource, multiple seasonal drought, uneven distribution of water resource in the growth period,unreasonable use of water and fertilizer. The deficiency of irrigation water had become the mainlimiting factor for the development of the maize planting area and improvement yield. Regulateddeficit irrigation was the new management technology of water saving irrigation from the angle ofcrop physiological, whose aim was increasing crop yield, decreasing water consumption, andraising the water use efficiency. Under regulated deficit irrigation and coupling effect of irrigationand nitrogen fertilizer of maize, the study on impact of growth and yield of maize provided atheoretical basis for the producti of highly effective water-saving agriculture on technology ofwater saving and high yield, and had the important significance for the development.
     On the basis of the data measured in the barrel experiment and test-pit experiment, someeffect of growth indexes, water consumption, yield, yield components of maize were studied byusing comparison method, statistics method, and the intelligent optimization algorithm, includingthe period of regulated deficit irrigation, the degree of water deficit, irrigation and nitrogenfertilizer. Analysis results and conclusions of the thesis are as follows:
     (1) The plant height of maize had different compensative growth after re-watering, increasedamplitude of compensative growth related with the level of irrigation, the higher the level ofirrigation the bigger degree of compensative growth. Compared with the normal irrigationtreatment of the whole growth stage, increment of plant height of medium water deficit treatmentduring seedling stage was increased by27%between jointing stage and filling stage afterre-watering at jointing stage. Compared with the normal irrigation treatment of the whole growthstage, increment of plant height of medium water deficit treatment during seedling stage andjointing stage was increased by8%between anthesis stage and filling stage after re-watering atanthesis stage. Suitable regulated deficit irrigation could inhibit the growth of aerial part andimprove root dry weight. The average shoot dry weight of the normal irrigation treatment of the whole growth stage was increased by31%compared with each regulated deficit irrigation. The rootdry weight of medium water deficit treatment during seedling stage and medium water deficittreatment during jointing stage were respectively increased by7.7%and10.6compared with thenormal irrigation treatment of the whole growth stage. The root-shoot ratio of medium water deficittreatment during seedling stage, medium water deficit treatment jointing stage, and medium waterdeficit treatment anthesis stage were respectively increased by20%,52%, and21%compared withthe normal irrigation treatment of the whole growth stage. Continuous growth period of mediumwater deficit would greatly decrease root dry weight, suitable water deficit would increase theroot-shoot ratio and control the distribution ratio between root and shoot.
     Under low nitrogen condition, water deficit on the effect of the plant height of seedling stagewas less than that of jointing stage and much less than that of anthesis stage. Under mediumnitrogen condition, water deficit on the effect of the plant height of jointing stage was more thanthat of anthesis stage, the compensative growth of the plant height was increased by the treatmentcombined with high nitrogen, which was serious water deficit of jointing stage after re-watering atanthesis stage. Under medium nitrogen condition, there was unfavorable effect for the stemdiameter by serious water deficit of seedling stage and jointing stage, there was not effect for thestem diameter by medium or light water deficit of anthesis stage. The degree of water deficit wasdetermined by nitrogen rate. The stem diameter was decreased by high water and high nitrogen atseedling stage. In order to avoid effect of the stem diameter, the more serious water deficit, themore nitrogen rate was. The stem diameter was not obviously influenced by nitrogen rate and waterdeficit at anthesis stage.
     (2) There was different variation of maize water consumption at each growth stage caused bywater deficit. Evapotranspiration was reduced by water deficit at growth stage, which had obviousincreasing compared with normal irrigation after re-watering.Compared the normal irrigation, theevapotranspiration of medium water deficit treatment during seedling stage, medium water deficittreatment during jointing stage, medium water deficit treatment during anthesis stage wererespectively reduced by38%,31%, and30%. The total evapotranspiration was reduced by4%~8%compared the normal irrigation at single growth period during seedling stage, jointing stage,anthesis stage. The total evapotranspiration was reduced by11%~15%compared the normalirrigation at tow growth period during seedling stage, jointing stage, anthesis stage.Evapotranspiration of the treatment with high nitrogen rate and medium water deficit at seedlingstage was more than the treatment with normal irrigation, a similar result was proved for anothertreatment with low nitrogen rate and serious water deficit at seedling stage. The treatment withmedium water deficit at seedling stage had the maximum water use efficiency, which was increasedby12%compared with the normal irrigation treatment of the whole growth stage. The water useefficiency of medium water deficit treatment during seedling stage were respectively increased by6.8%,8.3%, compared with medium water deficit treatment jointing stage and medium waterdeficit treatment anthesis stage. Evapotranspiration of the plant was reduced by the proper regulated deficit irrigation, meanwhile, the purpose of regulated deficit irrigation was proved, asincreasing water use efficiency, saving water, and improving yield.
     (3) The value of100-seed weight of maize would be increased with medium water deficit atseedling stage or medium water deficit treatment jointing stage. Medium water deficit at anthesisstage would increase the length of barren ear tip affect the yield. For the treatment with mediumnitrogen rate and light water deficit or the treatment with high nitrogen rate and serious waterdeficit at jointing stage, which the length of maize ear could be increased. Water deficit at anthesisstage affected yield mostly, followed by that at jointing stage, and the least at seedling stage.Maintaining the level of water deficit50%~60%of the field capacity at the seedling stage andwater deficit70%~90%of the field capacity at the other stages was the best deficit irrigationscheme of the economic yield, which was16483kg/hm2. Compared with the normal irrigationtreatment, the best irrigation scheme of the economic yield was increased by6.4%and the wateruse efficiency was increased by10.8%. The best deficit irrigation scheme of water saving was thatmaintaining the level of water deficit percentage of the field capacity was respectively50%~60%、65%~75%and65%~75%at seedling stage, jointing stage and heading stage of maize, which was13503kg/hm2. Compared with the normal irrigation treatment, the best deficit irrigation scheme ofwater saving was increased by8%and the water use efficiency was increased by12.6%. When thetarget yield was above13500kg/hm2and confidence interval was95%, the best deficit irrigation ofhigh yield and high efficiency water saving was that maintaining the threshold of water deficit48%~66%of the field capacity at the seedling stage of maize, the threshold of water deficit72%~84%of the field capacity at the jointing stage of maize, the threshold of water deficit66%~81%of the field capacity at the anthesis stage of maize, and nitrogen rate with160kg/hm2.
     (4) The traditional least-squares regression and the partial least-square regression were appliedto set up the yield model of the maize regulated deficit irrigation, which dealed with seriousmulticollinearity and a small with numerous predictor variables, eliminated the bad impact ofserious multicollinearity among factors, explained the dependent variables very well. Aftercalculation and analysis, both absolute error and relative error of the partial least-square regressionwas batter than the traditional least-squares regression. The model of the partial least-squareregression solved the problem of the multi-correlation with good stability, which explained thedegree and direction of each independent variable to the effect of yield, its simulation resultsequated with actual situation of the experiment.
     Due to the incompatibility of irrigation results for single evaluation index and difficulty inevaluating the comprehensive benefit objectively during the process of optimization choice ofirrigation schemes, the project pursuit model based on improved double chains quantum geneticalgorithm was proposed and applied to the comprehensive evaluation of regulated deficit irrigation.The model not only evaluated the contribution rate of each evaluation index to the target yield, butalso determined the optimum technical scheme of regulated deficit irrigation. The results showedthat the evaluation result was affected mostly by the yield of maize, and followed the order of height, root dry weight,100-grain weight, barren ear tip, water use efficiency. maintaining thelevel of water deficit50%~60%of the field capacity at the seedling stage of maize was the bestirrigation scheme. Compared with the normal irrigation treatment, the yield was increased by6.4%and the water use efficiency was increased by10.8%. The evaluation result of the model wasconsistent to real yield and computation, both the global search capability and optimizationefficiency of the improved projection pursuit model were significantly improved, which hadimportant guiding significance.
引文
[1]夏军,刘春蓁,任国玉.气候变化对我国水资源影响研究面临的机遇与挑战[J].地球科学进展,2010,26(1):1-12.
    [2]钱文婧,贺灿飞.中国水资源利用效率区域差异及影响因素研究[J].中国人口.资源与环境,2011,21(2):54-60.
    [3]山仑,邓西平,张岁岐.生物节水研究现状及展望[J].中国科学基金,2006,(2):66-71.
    [4]王浩,王建华.中国水资源与可持续发展[J].中国科学院院刊,2012,27(3):352-358.
    [5]许迪,康绍忠.现代节水农业技术研究进展与发展趋势[J].高技术通讯,2002,(12):103-108.
    [6]梁青青,朱厚岩.我国节水农业发展现状研究[J].中国环境管理,2011,(4):16-19.
    [7]夏军,翟金良,占车生.我国水资源研究与发展的若干思考[J].地球科学进展,2011,26(9):905-915.
    [8]高占义,王浩.中国粮食安全与灌溉发展对策研究[J].水利学报,2008,39(11):1273-1278.
    [9]张利平,夏军,胡志芳.中国水资源状况与水资源安全问题分析[J].长江流域资源与环境,2009,18(2):116-120.
    [10]Brown L R,Halweil B.China's Water Shortage Could Shake World Food Security[J].WorldWatch,1998,11(4):7-8.
    [11]司振中,李貌,邱维理,等.中国耕地资源的区域差异与保护问题[J].自然资源学报,2010,25(5):913-921.
    [12]杨贵羽,汪林,王浩.基于水土资源状况的中国粮食安全思考[J].农业工程学报,2010,26(12):1-5.
    [13]于程,于娜.东北地区农业水资源利用及发展对策[J].农业工程,2011,1(1):77-79.
    [14]谭智心,钟真.新时期中国粮食安全现状与面临的挑战[J].江汉论坛,2011,(7):74-79.
    [15]李铁男,李莹,郎景波.黑龙江省旱灾对粮食安全影响的分析研究[J].节水灌溉,2010,(12):84.
    [16]矫江,杜少敏.黑龙江省农业水资源高效开发利用研究[J].农业经济与管理,2011,(4):26-27.
    [17]王秋菊来永才.试论黑龙江省水稻生产与水资源持续利用的对策与建议[J].中国稻米,2010,16(4):25-28.
    [18]董英.黑龙江省灌溉农业发展战略的思考[J].农村水利,2010,(15):61.
    [19]张苗苗,张云峰,王会山,等.黑龙江省空中水资源的时空分布特征[J].2010,38(27):1569-1571.
    [20]郭庆海.中国玉米主产区的演变与发展[J].玉米科学,2010,18(1):140.
    [21]王静,杨晓光,吕硕.黑龙江省春玉米产量潜力及产量差的时空分布特征[J].中国农业科学,2012,45(10):1914-1925.
    [22]宋戈,连臣.黑龙江省耕地资源安全预警分析及预警系统的构建[J].农业工程学报,2012,28(6):247-252.
    [23]王巍.黑龙江省玉米产量变化与相关因素的分析[J].黑龙江农业科学,2012,(7):28-31.
    [24]茆智.构建节水防污型生态灌区[J].中国水利,2009,(19):28.
    [25]赵营,同延安,赵护兵.不同施氮量对夏玉米产量、氮肥利用率及氮平衡的影响[J].土壤肥料,2006(2):30.
    [26]李红莉,张卫峰,张福锁.中国主要粮食作物化肥施用量与效率变化分析[J].植物营养与肥料学报,2010,16(5):1136-1143.
    [27]赵永宏,邓祥征,战金艳,等.我国农业面源污染的现状与控制技术研究[J].2010,38(5):2548-2552.
    [28]饶静,许翔宇,纪晓婷.我国农业面源污染现状、发生机制和对策研究[J].农业经济问题,2011,(8):81-82.
    [29]曲威,刘作新,张法升,等.水肥耦合对玉米籽粒全氮含量的影响[J].生态学杂志,2010,29(9):1749-12750.
    [30]梁运江,依艳丽,许广波,等.水肥耦合效应的研究进展与展望[J].湖北农业科学,2006,45(3):387.
    [31]冯鹏,王晓娜,王清郦,等.水肥耦合效应对玉米产量及青贮品质的影响[J].中国农业科学.2012,45(2):377.
    [32]潘晓莹,武继承.水肥耦合效应研究的现状与前景[J].河南农业科学,2011,40(10):20-23.
    [33]陈宝燕,马兴旺,盛建东,等.新疆内陆干旱区棉花水肥耦合研究进展[J].中国农学通报,2009,25(13):124-127.
    [34]谢伟,黄璜,沈建凯.植物水肥耦合研究进展[J].作物研究,2007,21(5):541.
    [35]Dordas C.A.,Sioulas C.Safflower yield, chlorophyll content, photosynthesis, and water useefficiency response to nitrogen fertilization under rained conditions [J]. Industrial Crops andProducts,2008,27:75–85.
    [36]Aron I. Physiological principles of dry and crop production[J].In:Gupa US(ed), physiologicalaspects of dry and land farming,1975,3-124.
    [37]Benjamin J.G., Porter L.K., Duke H.R., et al. Nitrogen movement with furrow irrigationmethod and fertilizer band placement [J]. Soil Sci Soc Am,1998,62(4):1103–1108.
    [38]谭军利,王林权,王西娜,等.水肥异区交替灌溉对夏玉米生理指标的影响[J].西北植物学报,2010,30(2):0344-0349.
    [39]刘小刚,张富仓,杨启良,等.控制性分根区灌溉对玉米根区水氮迁移和利用的影响[J].农业工程学报,2009,25(11):62-67.
    [40]王海红,束良佐,周秀杰,等.局部根区水分胁迫下氮对玉米生长的影响[J].2011,25(1):0149-0154.
    [41]薛亮,周春菊,雷杨莉,等.夏玉米交替灌溉施肥的水氮耦合效应研究[J].2008,24(3):91-94.
    [42]Lehrsch G A, Sojka R E, Westermann D T. Nitrogen placement, row spacing, and furrowirrigation water positioning effects on corn yield[J]. Agron J,2000,92(6):1266-1275.
    [43]肖自添,蒋卫杰,余宏军.作物水肥耦合效应研究进展[J].作物杂志,2007,(6):18-22.
    [44]Skinner R H, Hanson J D, Benjamin J G. Root distribution following spatial separation ofwater and nitrogen supply in furrow irrigated corn[J]. Plant and Soil,1998,199:187-194
    [45]刘小刚,张富仓,杨启良,等.玉米叶绿素、脯氛酸、根系活力对调亏灌溉和氮肥处理的响应[J].华北农学报,2009,24(4):106-111.
    [46]吕凤华,张丽华,赵洪祥,等.不同水氮调控对玉米农艺性状及产量的影响[J].2012,37(2):4-7.
    [47]韦彩会,李伏生,许春辉,等.调亏灌溉及施肥对玉米干物质积累和相关生理性状的影响[J].2010,28(4):76-83.
    [48]邢维芹,王林权,骆永明,等.半干旱地区玉米的水肥空间耦合效应研究[J].2002,18(6):46-49.
    [49]Vamerali T, Saccomani M, Bona S, et al. A comparison of root characteristics in relation tonutrient and water stress in two maize hybrids[J]. Plant and Soil,2003,255:157-167.
    [50]李楠楠,张忠学.黑龙江半干旱区玉米膜下滴灌水肥耦合效应试验研究[J].中国农村水利水电,2010,(6):88-90.
    [51]李昊儒,梅旭荣,郝卫平,等.不同灌溉施肥制度对土壤水分变化及夏玉米产量的影响[J].灌溉排水学报,2012,31(4):72-74.
    [52]李蓓,李久生.滴灌带埋深对田间土壤水氮分布及春玉米产量的影响[J].中国水利水电科学研究院学报,2009,7(3):222-226.
    [53]李久生,张建君,饶敏杰.滴灌施肥灌溉的水氮运移数学模拟及试验验证[J].水利学报,2005,36(8):932-938.
    [54]Oktem A, Simsek M, Oktem A G. Deficit irrigation effects on sweet corn (Zea mayssaccharata Sturt) with drip irrigation system in a semi-arid region: I. Water-yieldrelationship[J]. Agricultural Water Management,2003,61:63-74.
    [55]孙文涛,孙占祥,王聪翔,等.滴灌施肥条件下玉米水肥耦合效应的研究[J].中国农业科学,2006,39(3):563-568.
    [56]杜红霞,吴普特,冯浩,等.氮施用量对夏玉米土壤水氮动态及水肥利用效率的影响[J].中国水土保持科学,2009,7(4):82-87.
    [57]王西娜,王朝辉,李生秀.施氮量对夏季玉米产量及土壤水氮动态的影响[J].生态学报,2007,27(1):197-204.
    [58]谢英荷,栗丽,洪坚平,等.施氮与灌水对夏玉米产量和水氮利用的影响[J].植物营养与肥料学报,2012,18(6):1354-1361.
    [59]胡克林,李保国,陈研,等.作物生长与土壤水氮运移联合模拟的研究Ⅰ-模型[J].水利学报,2007,38(7):779-785.
    [60]金梁,胡克林,李保国,等.作物生长与土壤水氮运移联合模拟的研究Ⅱ-模型验证与应用[J].水利学报,2007,38(8):972-979.
    [61]尹光华,陈温福,刘作新,等.风沙半干旱区春玉米水肥耦合产量效应研究初报[J].玉米科学,2007,15(1):103-106.
    [62]叶优良,李隆.水氮量对小麦/玉米间作土壤硝态氮累积和水氮利用效率的影响[J].农业工程学报,2009,25(1):33-39.
    [63]Latiri-Souki K, Nortcliff S, Lawlor D W. Nitrogen fertilizer can increase dry matter, grainproduction and radiation and water use efficiencies for durum wheat under semi-aridconditions [J].European Journal of Agronomy,1998,9:21–34.
    [64]Shimshi D. The effect of N on some indices of plant-water relations of beans[J]. New phytol,1970,(69):413-424.
    [65]王丽梅,李世清,邵明安水.氮供应对玉米冠层营养器官干物质和氮素累积、分配的影响[J].中国农业科学,2010,43(13):2697-2705.
    [66]孙占祥,孙文涛.水肥互作对玉米生长发育及产量的影响[J].沈阳农业大学学报,2005,36(3):275-278.
    [67]张玉铭,张佳宝,胡春胜,等.水肥耦合对华北高产农区小麦玉米产量和土壤硝态氮淋失风险的影响[J].中国生态农业学报,2011,19(3):532-539.
    [68]温利利,刘文智,李淑文,等.水肥耦合对夏玉米生物学特性和产量的影响[J].河北农业大学学报,2012,35(3):14-19.
    [69]Gheysari M,Mirlatifi S M, Bannayan M, et al. Interaction of water and nitrogen on maizegrown for silage[J]. Agricultural Water Management,2009,96:809-821.
    [70]李秀芳,李淑文,和亮,等.水肥配合对夏玉米养分吸收及根系活性的影响[J].水土保持学报,2011,25(1):188-191.
    [71]孟兆江,刘安能,昊海卿.商丘试验区夏玉米节水高产水肥耦合数学模型与优化方案[J].灌溉排水,1997,16(4):20-23.
    [72]Moser,S B,Feil,B,Jampatong,S,et al. Effects of pre-anthesis dro nitrogen fertilizer rate,and variety on grain yield,yield components,harvest index of tropical maize[J]. Agric. WaterManage.2006,81:41-58.
    [73]刘小刚,张富仓,杨启良,等.调亏灌溉与氮营养对玉米根区土壤水氮有效性的影响[J].农业工程学报,2010,26(2):135.
    [74]武阳,王伟,雷廷武,等.调亏灌溉对滴灌成龄香梨果树生长及果实产量的影响[J].农业工程学报,2012,28(11):118.
    [75]陈琳,李芳花,孙艳玲.东北黑土区调亏灌溉对水稻前期生长发育的影响[J].东北农业大学学报,2011,42(2):122-123.
    [76]郭相平,康绍忠.调亏灌溉—节水灌溉的新思路[J].西北水资源与水工程,1998,9(4):22-25.
    [77]胡相明,赵艳云.小麦调亏灌溉研究及其应用前景展望[J].山东农业科学,2010,(11):47-50.
    [78]BolandAM,Mitchell P D,Jerie P H,et al.The effect ofregulated deficit irrigationontreewateruse and growth of peach[J].Journal of Horticultural Seience,1993,68(2):261-264.
    [79]Chalmers D J,Burge G,Jerie P H,et al.The mechanism of regulation of Bartlett pear fruit andvegetative growth by irrigation with holding and regulated deficit irrigation[J].Journal of theAmerican Society for Horticultural Seience,1986,111(6):904-907.
    [80]Blachman P G,Davies W J. Root to shoot communication in maize plants of the effects of soildrying[J].Journal Experimental Botany,1985,36(1):39-48.
    [81]吴普特,冯浩,赵西宁,等.现代节水农业理念与技术探索[J].灌溉排水学报,2006,25(4):1-6.
    [82]Domingo R, Ruiz-Sanchez M C, Sanchez-Blanco M J, et al. Water relations, growth and yieldof Fino lemon trees under regulated deficit irrigation[J].Irrigation science,1996,16(3):115-123.
    [83]丁端锋.调亏灌溉对作物生长和产量影响机制的试验研究[D].陕西:西北农林科技大学,2006.
    [84]Acevedo E, Hsiao T C, Henderson D W. Immediate and subse-quent growth responses ofmaize leaves to changes in water stress[J]. Plant Physiol,1971,48:631-636.
    [85]王密侠,康绍忠,蔡焕杰,等.玉米调亏灌溉节水调控机理研究[J].西北农林科技大学学报(自然科学版),2004,32(12):87-90.
    [86]邢英英,张富仓,王秀康.不同生育期水分亏缺灌溉和氮营养对玉米生长的影响[J].干旱地区农业研究,2010,28(6):1-6.
    [87]郭相平,康绍忠.摘玉米调亏灌溉的后效性[J].农业工程学报,2000,16(4):58-60[J].
    [88]孟兆江,段爱旺,王景雷,等.调亏灌溉对冬小麦根冠生长影响的试验研究[J].灌溉排水学报,2012,31(4):37-41.
    [89]Blackman P G,Davies W J. Root to shoot communication in maize plants of the effects of soildrying[J]. J Exp Bot,1985,(36):39-48.
    [90]张岁岐,周小平,幕自新,等.不同灌溉制度对玉米根系生长及水分利用效率的影响[J].农业工程学报,25(10):1-6.
    [91]王伟.调亏灌溉对冬小麦和夏玉米生长和产量影响机制的试验研究[D].陕西:西北农林科技大学,2009.
    [92]孟兆江,卞新民,刘安能,等.调亏灌溉对夏玉米光合生理特性的影响[J].水土保持学报,2006,20(3):182-186.
    [93]Payero O J,Melvin R S,Irmak S,et al.Yield response of corn to deficit irrigation in asemiarid climate[J].Agricultural Water Management,2006,(84):101-112.
    [94]刘安能,孟兆江.玉米调亏灌溉效应及其优化农艺措施[J].农业工程学报。1999,15(3):107-112.
    [95]谭国波,赵立群,张丽华,等.玉米苗期调亏技术的研究[J].吉林农业科学,2009,34(1):3-4,42.
    [96]Cakir R. Effect of water stress at different development stages on vegetative and reproductivegrowth of corn[J]. Field Crops Research,2004,89:1-16.
    [97]Chalmers D J, Mitchell P D, Jerie P H. The physiology of growth control of perch an peartrees using reduced irrigation [J]. Acta Horticulture.1984,(146):143-148.
    [98]张步翀,李凤民,齐广平.调亏灌溉对干旱环境下春小麦产量与水分利用效率的影响[J].中国生态农业学报,2007,15(1):58-62.
    [99]许迪,龚时宏,李益农,等.作物水分生产率改善途径与方法研究综述[J].水利学报,2010,41(6):631-639.
    [100] Rosenzweig C,Strzepek K M,Major D C et al.Water resources for agriculture in a changingclimate:International case studies[J].Global Environmental Change,2004,14:345-360.
    [101]Jame L W. Daily and seasonal evapotranspiration and yield of irrigated alfalfa in southernidaho[J]. Agronomy Journal,1988,80:622-669.
    [102]肖俊夫,刘战东,陈玉民.中国玉米需水量与需水规律研究[J].玉米科学,2008,16(4):21-25.
    [103]张建平,王春乙,杨晓光,等.未来气候变化对中国东北三省玉米需水量的影响预测[J].农业工程学报,2009,25(7):50-54.
    [104]刘战东,肖俊夫,刘祖贵,等.高产条件下夏玉米需水量与需水规律研究[J].节水灌溉,2011,(6):4-6.
    [105]董秋婷,李茂松,刘江近,等.50年东北地区春玉米干旱的时空演变特征[J].自然灾害学报,2011,20(4):52-59.
    [106]刘钰,汪林,倪广恒,等.中国主要作物灌溉需水量空间分布特征[J].农业工程学报,2009,25(12):6-12.
    [107]刘玉洁,李援农,潘韬,等.不同灌溉制度对覆膜春玉米的耗水规律及产量的影响[J].干旱地区农业研究,2009,27(6):67-71.
    [108]赵春林.汾河灌区春玉米节水高效灌溉制度试验研究[J].节水灌溉,2011,(6):24-26.
    [109]朱景嵩.玉米灌溉技术[J].现代农业科技,2010,(22):101.
    [110]Brown, P.W, C.B. Tanner. Alfalfa stem and leaf growth during water stress[J]. AgronomyJournal,1983,75:779-805.
    [111]董国锋.调亏灌溉对苜蓿生长、生理指标及其产量效应的影响研究[D].甘肃:甘肃农业大学2006.
    [112]刘春光,高洪军,李强,等.吉林省西部半干旱区玉米需水规律及生长发育动态探讨[J].吉林农业科学,2009,34(6):16-19.
    [113]任福聪,程霞,周涛.喷灌玉米的节水灌溉制度研究[J].宁夏农林科技,2007,(5):53-55.
    [114]徐建新,郭霄,韩茁.洛阳地区夏玉米节水灌溉制度优化研究[J].人民黄河,2012,34(4):75-76.
    [115]亢振军,尹光华,刘作新,等.辽西玉米需水规律及灌溉预报研究[J].中国科学院研究生院学报,2010,27(5):614-619.
    [116]高晓容,王春乙,张继权,等.3近50年东北玉米生育阶段需水量及旱涝时空变化[J].农业工程学报,2012,28(12):101-107.
    [117]郭相平,刘才良,邵孝侯,等.调亏灌溉对玉米需水规律和水分生产效率的影响[J].干旱地区农业研究,1999,17(3):93-96.
    [118]郭法强,杨昕馨,姚鹏亮.TOPSIS模型的节水灌溉方案优选[J].水利与建筑工程学报,2009,7(3):84-86.
    [119]邓丽娟,马爱玲.基于CRITIC权重与TOPSIS模型的节水灌溉方案优选[J].水科学与工程技术,2010,(2):10-12.
    [120]王宁,史海滨,朱丽.基于WIN ISAREG模型的辣椒沟灌灌溉制度优化研究[J].中国农村水利水电,2012,(6):87-90.
    [121]薛仓生,金菊良,魏一鸣.水利工程方案优选的投影寻踪方法[J].长江科学院院报,2005,22(4):80-83.
    [122]陈欢,叶少有.基于属性识别模型的节水灌溉方案优选[J].合肥工业大学学报(自然科学版),2009,32(12):1893-1895.
    [123]卢彦,李光.灰色关联投影法在节水灌溉方案选择中的应用[J].东北水利水电,2010(4):62-66.
    [124]高军省.节水灌溉方案优选的集对分析方法[J].节水灌溉,2010,(12):81-83.
    [125]周宣赤,白春华,王仲琦,等.粒子群投影寻踪算法在岩爆预测中的应用[J].上海交通大学学报,2012,46(12):1956-1961.
    [126]原君静,李洪文.基于投影寻踪技术的保护性耕作效益评价[J].农业工程学报,2010,26(4):175-179.
    [127]孙琦伟,吴普特,王玉宝,等.投影寻踪分类模型在黑河流域农业用水方案健康性评价中的应用[J].干旱地区农业研究,2012,30(1):175-182.
    [128]丁红,刘东,李陶.基于改进人工鱼群算法的三江平原投影寻踪旱情评价模型[J].农业工程学报,2010,26(12):84-87.
    [129]姜秋香,付强,王子龙.基于粒子群优化投影寻踪模型的区域土地资源承载力综合评价[J].农业工程学报,2011,27(11):319-323.
    [130]马智泉,李鹏,王魁.混沌粒子群优化投影寻踪法在电能质量监测网中的应用[J].水电能源科学,2012,30(5):181-184.
    [131]张浩,户超.遗传算法与投影寻踪模型在湿地水质综合评价中的应用[J].利与建筑工程学报,2012,10(4):110-112.
    [132]王斌,张展羽,魏永霞,等.基于投影寻踪的农业基本旱情评估[J].农业工程学报,2009,25(4):157-162.
    [133]姜林,李梦龙.基于免疫算法优化的投影寻踪水质评价模型[J].四川大学学报:自然科学版,2004,41(8):816-819.
    [134]李红霞,李霖,赵忠君.基于模拟退火算法的投影寻踪模型在土地生态安全评价中的应用研究[J].国土与自然资源研究,2011(1):62-64.
    [135]方崇,成艳荣,代志宏,等.基于蚁群算法岩体可爆性分级的投影寻踪回归方法[J].工程爆破,2010,16(1):12-15.
    [136]代永强,王联国.蛙跳算法投影寻踪模型及其在甘肃省主要城市国民经济综合指标评价中的应用[J].甘肃农业大学学报,2011,46(2):156-160.
    [137]徐淑琴,付强,董淑喜,等.基于RAGA的PPC模型评价水分胁迫对寒区水稻生长和产量的影响[J].2009,25(2):29-33.
    [138]陈曜,丁晶,赵永红.基于投影寻踪原理的四川省洪灾评估[J].水利学报,2010,41(2):220-225.
    [139]封志明,郑海霞,刘宝勤.基于遗传投影寻踪模型的农业水资源利用效率综合评价[J].2005,21(3):66-70.
    [140]张礼兵,程吉林,金菊良,等.农业灌溉水质评价的投影寻踪模型[J].农业工程学报,2006,22(4):15-18.
    [141]杨晓华,杨志峰,沈珍瑶.水资源可再生能力评价的遗传投影寻踪方法[J].水科学进展,2004,15(1):73-76.
    [142]邵光成,张展羽,刘娜,等.投影寻踪分类模型在膜下滴灌模式评价中的应用[J].水利学报,2007,38(8):944-947.
    [143]王宇,魏征.基于投影寻踪分类模型的烤烟节水灌溉模式评价[J].节水灌溉,2012,(8):60-62.
    [144]山仑.节水农业与作物高校用水[J].河南大学学报,2003,33(1):1-5.
    [145]李百凤,冯,浩,吴普特.作物非充分灌溉适宜土壤水分下限指标研究进展[J].干旱地区农业研究,2007,25(3):228.
    [146]张文丽,张彤,吴冬秀,等.土壤逐渐干旱下玉米幼苗光合速率与蒸腾速率变化的研究[J].中国生态农业学报,2006,14(2):72-75.
    [147]郭松年,丁林,王福霞.作物调亏灌溉理论与技术研究进展及发展趋势[J].中国农村水利水电,2009,(8):12-15.
    [148]康绍忠,史文娟,胡笑涛,等.调亏灌溉对于玉米生理指标及水分利用效率的影响[J].农业工程学报,1998,14(4):82-87.
    [149]Wold S, Ruhe A, Wold H, et al. The collinearity problem in linear regression, The partialleast squares (PLS) approach to generalized inerses[J].SIAM J Science StatisticsComputer,1984,5(2):735-743.
    [150]Wold S,Albano C,Dunn M, et al. Pattern Regression Finding and Using Regularities inMultivariate Data[M]. In Martens J In Proc IUFOST Conf“Food Research and Data”,London Analysis Applied Science Publication,1983.
    [151]金丹,徐卫亚,黄玮.偏最小二乘回归在边坡工程安全监测中的应用[J].地下空间与工程学报,2012,8(5):1095.
    [152]王明珠,邓寅东,常秀娟.基于偏最小二乘回归法的飞机总工时预测模型研究[J].航空学报,2012,33(8):1449-1451.
    [153]BolandAM,Mitchell P D,Jerie P H,et al. The effect of regulated deficit irrigation on treewater use and growth of peach[J]. Journal of Horticultural Science,1993,68(2):261-264.
    [154]杨启良,周兵,刘小刚.亏缺灌溉和施氮对小桐子根区硝态氮分布及水分利用的影响[J].农业工程学报,2013,29(4):147.
    [155]Viets F G. Water deficits and nutrient availability[J].water defictits and plant growth,1972,(3):217-239.
    [156]Dioufa O, Broub Y C, Dioufa M, et al. Response of pearl millet to nitrogen as affected bywater deficit[J].Agronomie,2004,24(2):77-84.
    [157]姜琳琳,韩立思,韩晓日,等.氮素对玉米幼苗生长!根系形态及氮素吸收利用效率的影响[J].植物营养与肥料学报,2011,17(1):247,-253
    [158]付凌,彭世彰,李道西.作物调亏灌溉效应影响因素之研究进展[J].农业工程科学,2006,22(1):380-383.
    [159]黄高宝,张恩和.调亏灌溉条件下春小麦玉米间套农田水、肥与根系的时空协调性研究[J].农业工程学报,2002,18(1):53-56.
    [160]陈竹君,刘春光,周建斌,等.不同水肥条件对小麦生长及养分吸收的影响[J].干旱地区农业研究,2001,19(3):30-35.
    [161]宋继娟,柳金来,周柏明,等.玉米穗部性状与产量关系的研究[J].吉林农业科学,2006,31(4):11-13.
    [162]Feynman R P.Simulating Physics with Computers[J].International Journal of TheoreticalPhysics,1982,21(6/7):467-488.
    [163]Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring[C].Procof the35thAnnual Symp on Foundations of Computer Science. New York, USA: IEEEComper Society Press,1994.
    [164]Grover L K.Afast quantum mechanical algorithm for database search[C].Proc of the28thAnnual ACM Symp on Theory of Computing, Philadelphia PA USA,1996.
    [165]Han K H, Kim J H. Quantum-inspired evolutionary algorithm for a class of combinationaloptimization[J]. IEEE Transactions on Evolutionary Computing,2002,6(6):580-593.
    [166]李欣,程春田,曾筠.基于改进量子遗传算法的过程神经元网络训练[J].控制与决策,2009,24(3):347-349.
    [167]高颖慧,沈振.角度编码染色体量子遗传算法[J].计算机工程与科学,2009,31(3):75-76.
    [168]杨俊安,庄镇泉,史亮.多宇宙并行量子遗传算法[J].电子学报,2004,32(6):923-927.
    [169]张葛祥,李娜,金炜东,等.一种新量子遗传算法及其应用[J].电子学报,2004,32(3):476-479.
    [170]李映,张艳宁,赵荣椿,等.免疫量子进化算法[J].西北工业大学学报,2005,23(4):543-547.
    [171]李士勇,李盼池.量子计算与量子优化算法[M].哈尔滨:哈尔滨工业大学出版社,2009:69-84.
    [172]孙梦娴,陈小平.矢量矩浓度的免疫算法在函数优化中的应用[J].苏州大学学报,2010,30(3):56-57.
    [173]段玉波,任伟建,霍凤财,等.一种新的免疫遗传算法及其应用[J].控制与决策,2005,20(10):1185-1186.
    [174]葛红,毛宗源.免疫算法的实现[J].计算机工程,2003,29(5):62-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700