用户名: 密码: 验证码:
梅花遗传连锁图谱构建和表型性状QTLs分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梅花(Prunus mume Sieb.et Zucc.,2n=2x=16)为蔷薇科(Rosaceae)李属(Prunus)植物。因其花期早、花型丰富、花色繁多和花香独特等特点被广泛应用于园林绿化。目前,梅花新品种的选育多采用杂交育种的方式,花费时间较长,而且在基因组水平上缺少对梅花与近缘种属间的比较基因组学分析,造成梅花起源问题仍未解决。本研究以梅花品种‘粉瓣’和‘扣子玉蝶’杂交得到的F1代作图群体为材料,利用简单重复序列(Simple Sequence Repeat, SSR)和单核苷酸多态性(Single Nucleotide Polymorphism, SNP)分子标记构建梅花高密度遗传图谱并锚定其基因组组装序列,在此基础上不仅与李属T×E参考图谱(基于扁桃'Texas'X桃'Earlygold'杂交得到Fz群体构建的遗传图谱)进行共线性分析,也进行主要表型性状的数量性状定位(Quantitative trait loci, QTLs)分析。主要结论如下:
     1.在梅花全基因组序列的基础上,分析1~8bp核苷酸重复单元基序长度的SSR分布情况,其结果显示:在梅花基因组中,利用MISA (MIcroSAtellites identification tool)计算机程序,共鉴定188,149个SSRs标记,平均密度为793.9SSR/Mb。单核苷酸重复单元数量最多有67,183个SSRs标记。
     2.在梅花、苹果和草莓基因组和基因组的不同区域分析SSR分布情况,结果显示:在蔷薇科三个物种中随着核苷酸重复单元基序长度的增加,SSR标记数量逐渐下降,富含AT核苷酸重复单元基序类型的SSR数量较多而富含GC核苷酸重复单元基序类型的SSR数量较少,且基因间区中分布的SSR数量显著地高于编码区中分布的SSR数量。
     3.以梅花品种‘粉瓣’和‘扣子玉蝶’组合获得F1群体中的190棵子代为试验材料,从梅花基因组序列开发的SSR标记中随机选取670个,设计引物对其进行标记分离检测,结果显示:根据拟测交作图原理,利用144个多态性SSRs标记构建含有8条连锁群的梅花SSR框架遗传图谱,总遗传图距为668.7cM,共锚定71条梅花基因组组装序列,大小为66.5Mb,覆盖基因组28.1%。
     4.按照与限制性内切位点相关DNA标签(Restriction-site Associated DNA-tag, RAD-tag)测序策略,通过生物信息学分析,在亲本与190棵杂交子代中共检测到2,166个多态性SNPs位点。根据拟测交作图原理,以P<0.05为阈值,经过卡方检验检测,有1,484个SNPs标记位点符合孟德尔分离比例(1:1或1:2:1),共产生3,229个多态性位点,平均每个SNP标记产生大约2个多态性位点。
     5.利用1,484个SNPs标记对所构建的SSR框架遗传图谱进行加密,构建含有1,613个标记的梅花高密度遗传连锁图谱,共有8条连锁群,总遗传图距为780.9cM,标记间平均距离为0.5cM,锚定513条梅花基因组组装序列,大小为199.0Mb,覆盖基因组84.0%。
     6.利用梅花遗传连锁图谱所锚定的199.0Mb基因组序列与李属参考图谱所锚定的613条蔷薇科保守同源序列(Rosaceae Conserved Ortholog Set, RosCOS)间进行共线性分析,结果显示:在梅花基因组进化过程中,仅有PM3和PM4染色体发生染色体重排事件,即PM3染色体来源于李属的PG1、PG6和PG7染色体,PM4染色体来源于李属的PG2和PG5染色体。
     7.对梅花F1代作图群体的株高、地径、叶长、叶宽、叶面积和叶脉数目等6个表型性状的遗传变异进行统计和分析,并利用复合区间作图法检测与这些性状相关QTLs位点,其结果显示:共检测到控制这些表型性状的84个QTLs,其中控制叶面积和叶脉数目性状的QTLs最多均为35个,控制地径的QTL最少为1个。
     总之,本研究结果为梅花基因组结构和功能研究、分子标记定向辅助育种和近缘物种间比较基因组学研究奠定重要的理论基础,对进一步开展梅花分子标记聚合育种提供重要借鉴和参考,为今后揭示梅花重要观赏性状的遗传机制和探索梅花起源具有重要意义。
Belonging to the Rosaceae, sub-family Prunoideae, mei(Prunus mume Sieb. et Zucc.,2n=2x=16) possesses early blossom, varying types of flowers, colorful corollas, and pleasant fragrance and is extensively grown as a garden ornamental plant. Up to now, new cultivars of mei are always bred using traditional hybridizations which spend a lot of time. Meanwhile, the origin of mei isn't still revealed as a result of the lack of the comparative genomic analyses between mei and related species. Here, a high density genetic linkage map using simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers based on190F1segregating progeny generated from a cross between female P. mume 'Fenban' and male P. mume 'Kouzi Yudie' was constructed and was anchored genomic assembly sequences of mei, depanding on which not only the macro-colinearity between mei genome and Prunus T×E reference map [an interspecific almond 'Texas'×peach 'Earlygold'(T×E) F2mapping population] was identified, but also the quantitative trait loci (QTLs) for main phenotypic traits were detected in this study. The main results and conclusions are indicated as follows:
     1. We performed the genome-wide characterization of SSRs ranging in length from1to8bp in the mei genome and the results were shown as follows:A total of188,149SSRs were identified at a frequency of793.9SSR/Mb using MIcroSAtellites identification tool (MISA) and mononucleotide repeats (67,183) were the most common type of SSRs.
     2. We analysed the distribution of the repeat motifs of SSRs in the genomic and different genomic regions of mei, apple, and strawberry. The results were indicated as follows:The frequency of SSRs decreased with the increasing the repeat motif length, AT-rich repeat motifs were more common than GC-rich repeat motifs, and the frequency of SSRs was more common in intergenic regions than CDS regions in three genomes of Rosaceae.
     3.670SSRs were chosen from the total SSRs identified in mei genome and were detected among parental lines and190Fi segregating progeny generated from a cross between P. mutne 'Fenban' and P. mume 'Kouzi Yudie'. The results were indicated as follows:A framework genetic linkage map of mei was constructed based on144polymorphic SSRs according to pseudo-test-cross strategy, containing eight linkage groups (LGs). The total genetic distance was668.7cM. Seventy one scaffolds covering about28.1%of mei assembled sequences were anchored to this genetic map, totaling to66.5Mb.
     4. According to the restriction-site associated with DNA-tag (RAD-tag) strategy, about2,166polymorphic SNPs were detected among the parental lines and190F1segregating progeny using bioinformatics analysis. The polymorphic1,484SNPs exhibited standard Mendelian segregation (1:1or1:2:1) by χ2test at cutoff of P<0.05. About3,229SNPs polymorphic loci were found in this mapping population, occurring at an average two polymorphic loci of each SNPs.
     5. We constructed a high density genetic linkage map including1,613markers based on the framework genetic linkage map added density using1,484polymorphic SNPs. This genetic map contained eight LGs, totaling to780.9cM. The average marker interval is0.5cM.513scaffolds covering about84.0%of mei assembled sequences were anchored to this high density genetic map, totaling to199.0Mb.
     6. A high level of macro-collinearity was revealed by aligning the199.0Mb assembled sequences anchored to the mei genetic map and613sequences of Rosaceae Conserved Ortholog Set (RosCOS) anchored to the Prunus T×E reference map. The results were indicated as follows:Among the process of mei evolution, PM3and PM4underwent chromosome rearrangement and PM3was originated from PG1, PG6and PG7of Prunus, and PM4was originated from PG2and PG5of Prunus.
     7. Hereditary variations of plant height, ground diameter, leafblade length, leafblade width, leafblade area and leafblade vein number were measured and analyzed based on F1mapping population of mei. These QTLs for these phenotypic traits using composit interval mapping. The results were shown as follows:There were84QTLs for these six phenotypic traits using composit interval mapping. Of these QTLs,35QTLs for leafblade area and for leafblade vein number were the most common, while only one QTL for ground diameter was the least.
     In summary, this study may facilitate genomic structure and function, maker-assisted selection breeding, and comparative genomic analyses between mei and relative species, may further provide an important reference for molecular marker polymerization breeding of mei, and pave the way for the study of genetic mechanism of important ornamental traits and the origin of mei.
引文
[1]包满珠.我国川滇藏部分地区的野梅种质资源及系统学研究[D].北京林业大学,1991.
    [2]包满珠.我国川,滇,藏部分地区梅树种质资源及其开发利用[J].华中农业大学学报,1993,12:498-501.
    [3]包满珠,陈俊愉.梅野生种与栽培品种同工酶研究[J].园艺学报,1993,20(4):375-378.
    [4]柴玉荣,张俊卫,包满珠.梅花朱砂型品种RAPD指纹图谱研究[J].北京林业大学学报,2003,25:54-56.
    [5]陈俊愉,张启翔,刘晚霞,等.梅花抗寒育种及区域试验的研究[J].北京林业大学学报,1995,17(1):42-45.
    [6]陈俊愉.中国梅花[M].海口:中国海南出版社.1996:2-4.
    [7]陈俊愉,陈瑞丹.中国梅花品种群分类新方案并论种间杂交起源品种群之发展优势[J].园艺学报,2009,36(5):693-700.
    [8]陈俊愉.中国梅花品种图志[M].北京:中国林业出版社.2010:8-50.
    [9]陈瑞丹,张启翔.梅花杂交育种中杂种F1代的早期鉴定[J].北京林业大学学报,2004,26:64-70.
    [10]陈瑞丹,张启翔,李青.梅花杂交种成熟胚培养及其无性系建立的初步研究[J].北京林业大学报,2003,25(S1):46-48.
    [11]高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,22(3):175-179.
    [12]高志红,章镇,盛炳成,等.果梅随机扩增多态DNA技术的研究[J].植物生理学通讯,1999,35(3):214-218.
    [13]高志红,章镇,韩振海,等.果梅SSR反应体系的优化[J].南京农业大学学报,2002,25(4):19-22.
    [14]高志红,韩振海,章镇,等.梅单瓣复瓣花的相关分子标记初探[J].园艺学报,2003,30(5):612-614.
    [15]高志红.果梅核心种质的构建于分子标记的研究[D].南京农业大学,2003.
    [16]贺丹.紫薇遗传连锁图谱的构建及遗传多样性的研究[D].北京林业大学,2012.
    [17]黄翠娟.梅花F1作图群体与框架分子连锁图谱的初步构建[D].华中农业大学,2007.
    [18]黄燕文,包满珠,沈清宇,等.野梅和栽培梅染色体数目及形态的研究[J].北京林业大学学报,1995,17(1):37-41.
    [19]贾继增.分子标记种质资源鉴定末日分子标记育种[J].中国农业科学,1996,29(4):1-10.
    [20]李金花.用RAPD标记检测与杨树生长和物候期有关的QTLs[J].林业科学研究,1999,12(2):111-117.
    [21]卢艳丽.不同类型玉米种质分子特征分析及耐旱相关性状的连锁-连锁不平衡联合作图[D].四川农业大学,2010.
    [22]李庆卫.川、滇、藏、黔野梅种质资源调查和梅花抗寒品种区域试验的研究[D].北京林业大学,2009.
    [23]刘海燕,崔金腾,高用明.遗传群体偏分离研究进展[J].植物遗传资源学报,2009,10(4):613-617.
    [24]刘建超,褚群,蔡红光,等.玉米SSR连锁图谱构建及叶面积的QTL定位[J].遗传,2010,32(6):625-631.
    [25]刘连森,贺善文,林美红.湖南省果梅品种资源种质杂化状况的初步研究[J].园艺学报,1993,20(4):225-230.
    [26]刘青林.梅花起源与品种演化问题初探.北京林业大学学报,1996,18(2):78-82.
    [27]刘青林,陈青华,陈俊愉.梅花愈伤组织培养研究初报[J].北京林业大学学报,1999,21(2):100-105.
    [28]明军,张启翔,毛庆山,等.‘美人’梅与其近缘种亲缘关系的AFLP研究[J].园艺学报,2002,29(6):588-589.
    [29]明军,张启翔,晏小兰,等.梅花基因组AFLP银染反应体系的建立和优化[J].北京林业大学报,2003,25(3):17-21.
    [30]明军,张启翔.亲缘关系相近的梅花品种AFLP DNA指纹分析[J].北京林业大学学报,2004,26(5):31-35.
    [31]宁国贵,吕海燕,张俊卫,等.梅花不同外植体离体培养及体细胞胚诱导植株再生[J].园艺学报,2010,37(1):114-120.
    [32]乔飞,王力荣,范崇辉,等.利用AFLP和RAPD标记构建桃的遗传连锁图谱[J].果树学报,2006,23(5):766-769.
    [33]阮成江,何祯祥,钦佩.我国农作物QTL定位研究的现状和进展[J].植物学通报,2003,20(1):10-22.
    [34]沈志军,马瑞娟,俞明亮,等.油蟠桃组合遗传连锁图谱构建及糖酸性状QTL分析[J].园艺学报,2010,37(11):1735-1744.
    [35]宋健,韩明玉,赵彩平,等.桃‘秦光2号’ב曙光’F1代SSR遗传连锁图谱的构建[J].西北植物学报,2008,28(5):895-900.
    [36]宋立琴,张立彬,张吉军,等.一个与桃成熟期QTL连锁的SSR标记[J].园艺学报,2011,38(3):535-540.
    [37]宋婉,陈晓阳,续九如,等.林木遗传连锁图谱构建研究进展与发展方向[J].遗传,2003,25(6):749-756.
    [38]苏建荣,缪迎春,张志钧.云南红豆杉紫杉醇含量变异及其相关的RAPD分子标记[J].林业科学,2009,45(7):16-20.
    [39]吴根松,孙丽丹,张启翔,等.基于近缘物种SSR引物和EST-SSR序列的梅花SSR引物开发[J].北京林业大学学报,2011,33(5):103-108.
    [40]吴根松.梅花遗传多样性研究及DNA指纹管理信息系统构建[D].北京林业大学,2011.
    [41]吴俊,束怀瑞,张开春,等.桃分子连锁图的构建与分析[J].园艺学报,2004,31(5):593-597.
    [42]王源秀.响叶杨×银白杨遗传图谱构建及杨属图谱比较研究[D].南京林业大学,2008.
    [43]席章营,朱芬菊,台国琴,等.作物QTL分析的原理与方法[J].中国农学通报,2005,21(1):88-92,99.
    [44]徐云碧,朱立煌.分子数量遗传学[M].北京:中国农业出版社.1994:10-66.
    [45]杨小红,严建兵,郑艳萍,等.植物数量性状关联分析研究进展[J].作物学报,2007,33(4):523-530.
    [46]尹佟明,郑阿宝.林木遗传图谱构建研究概述[J].江苏林业科技,2000,27(6):38-43.
    [47]尹伟伦,胡建军.杨树遗传图谱构建与数量性状基因定位[M].北京:中国环境科学出版社,2005:15-70.
    [48]张德强.毛白杨遗传连锁图谱的构建及重要性状的分子标记[D].北京林业大学,2002.
    [49]周冬生,杨瑞馥.细菌比较基因组学和进化基因组学[J].微生物学杂志,2003,23(5):31-34.
    [50]张飞,陈发棣,房伟民,等.菊花管状花数量和花心直径的QTL分析[J].中国农业科学,2011,44(7):1443-1443.
    [51]张俊卫,包满珠.梅,桃,李,杏,樱的RAPD分析[J].北京林业大学学报,1998,20(2):12-15.
    [52]张俊卫,包满珠.利用RAPD分析梅栽培品种间的遗传变异[J].北京林业大学学报,2007,29(1):54-58.
    [53]张俊卫,柴玉荣,包满珠.利用RAPD标记鉴定和区分梅花42个宫粉型品种[J].园艺学报,2004,31(4):487-490.
    [54]张俊卫,毛庆山,包满珠.梅遗传多样性的SRAP分析[J].园艺学报,2011,38(1):117-124.
    [55]张启翔.梅花远缘杂交与抗寒育种[D].北京:北京林业大学,1985.
    [56]张启翔.梅花远缘杂交与抗寒育种(Ⅰ)梅开花授粉习性及远缘杂交的探讨[J].北京林业大学学报,1987,9(1):69-79.
    [57]章秋平,刘威生,刘宁,等.杏杂合位点共显性标记的分离方式及连锁图谱构建[J].园艺学报,2011,38(10):1983-1990.
    [58]张秦英,陈俊愉,魏淑秋.梅花在中国分布北界变化的研究[J].北京林业大学学报,2007,29(S1):35-37.
    [59]张瑞萍,吴俊,李秀根,等.梨AFLP标记遗传图谱构建及果实相关性状的[J].园艺学报,2011,38(10):1991-1998.
    [60]张蕴哲,刘红霞,邬荣领,等.毛新杨×毛白杨AFLP分子遗传图谱[J].林业科学研究,2003,16(5):595-603.
    [61]朱蕊蕊.耧斗菜遗传连锁图谱构建和重要观赏性状QTLs定位分析[D].北京林业大学,2011.
    [62]郑用琏,李建生,严建兵,等.玉米F2群体分子标记偏分离的遗传分析[J].遗传学报,2003,30(10):913-918.
    [63]章元明.作物QTL定位方法研究进展[J].科学通报,2006,51(19):2223-2231.
    [64]邹喻苹,葛颂.新一代分子标记——SNPs及其应用[J].生物多样性,2003,11(5):370-382.
    [65]Ai H-L, Wang H, Li D-Z, Yang J-B. Isolation and characterization of 13 microsatellite loci from Incarvillea mairei(Bignoniaceae), an endemic species to the Himalaya-Hengduan mountains region [J]. Conserv Genet,2009,10(5):1613-1615.
    [66]Aranzana M, Pineda A, Cosson P, et al. A set of simple-sequence repeat (SSR) markers covering the Prunus genome[J]. Theoretical and Applied Genetics,2003,106(5):819-825.
    [67]Badenes M, Hurtado M, Sanz F, et al. Searching for molecular markers linked to male sterility and self-compatibility in apricot[J]. Plant breeding,2000,119(2):157-160.
    [68]Baird NA, Etter PD, Atwood TS, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers[J]. PloS one,2008,3(10):e3376.
    [69]Barchi L, Lanteri S, Portis E, et al. Identification of SNP and SSR markers in eggplant using RAD tag sequencing[J]. BMC genomics,2011, 12(1):304.
    [70]Beutler E, Gelbart T, Han JH, et al. Evolution of the genome and the genetic code:selection at the dinucleotide level by methylation and polyribonucleotide cleavage[J]. Proceedings of the National Academy of Sciences of the United States of America,1989,86(1):192-196.
    [71]Billotte N, Risterucci A, Barcelos E, et al. Development, characterisation, and across-taxa utility of oil palm (Elaeis guineensisJacq.) microsatellite markers[J]. Genome,2001,44(3):413-425.
    [72]Blair MW, Hurtado N, Chavarro CM, et al. Gene-based SSR markers for common bean(Phaseolus vulgaris L.) derived from root and leaf tissue ESTs:an integration of the BMc series[J]. BMC plant biology,2011,11(1):50.
    [73]Bliss F, Arulsekar S, Foolad M, et al. An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach[J]. Genome,2002,45(3):520-529.
    [74]Born C, Hardy OJ, Chevallier M-H, et al. Small-scale spatial genetic structure in the Central African rainforest tree species Aucoumea klaineana. a stepwise approach to infer the impact of limited gene dispersal, population history and habitat fragmentation[J]. Molecular Ecology,2008, 17(8):2041-2050.
    [75]Bohn M M, Khairallah D. QTL mapping in tropical maize:Genomic region affecting leaf feeding resistance to sugarcane borer and other traits [J]. Crop Sci,1996,36(4):1352-1361.
    [76]Bowers, J E, Chapman, B A, Rong, J, et al. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events[J]. Nature,2003,422(6930):433-438.
    [77]Bus A, Hecht J, Huettel B, et al. High-throughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing[J]. BMC genomics,2012,13(1):281.
    [78]Cabrera A, Kozik A, Howad W, et al. Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers[J]. BMC genomics,2009,10(1):562.
    [79]Cachi A, Wunsch A. Characterization and mapping of non-S gametophytic self-compatibility in sweet cherry (Prunus avium L.)[J]. Journal of experimental botany,2011,62(6):1847-1856.
    [80]Calenge F, Van der Linden C, Van de Weg E, et al. Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple[J]. Theoretical and Applied Genetics,2005,110(4):660-668.
    [81]Campoy JA, Ruiz D, Egea J, et al. Inheritance of flowering time in apricot(Prunus armeniacaL.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers[J]. Plant Molecular Biology Reporter,2011,29(2):404-410.
    [82]Canli FA. Development of a second generation genetic linkage map for sour cherry using SSR markers[J]. Pakistan Journal of Biological Sciences,2004,7(10):1676-1683.
    [83]Causse MA, Fulton TM, Cho YG, et al. Saturated molecular map of the rice genome based on an interspecific backcross population [J]. Genetics,1994,138(4):1251-1274.
    [84]Cavagnaro PF, Senalik DA, Yang L, et al. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.)[J]. BMC genomics,2010,11(1):569.
    [85]Chagne D, Brown G, Lalanne C, et al. Comparative genome and QTL mapping between maritime and loblolly pines[J]. Mol Breeding,2003,12(3):185-195.
    [86]Chan SW, Henderson IR, Jacobsen SE. Gardening the genome:DNA methylation in Arabidopsis thaliana[J]. Nature reviews Genetics,2005,6(5):351-360.
    [87]Chaparro J, Werner D, O'Malley D, et al. Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach[J]. Theoretical and Applied Genetics,1994,87(7):805-815.
    [88]Charlesworth B. Driving genes and chromosomes[J]. Nature,1988,332(6163):394-395.
    [89]Choudhary S, Sethy N, Shokeen B, et al. Development of chickpea EST-SSR markers and analysis of allelic variation across related species[J]. Theoretical and Applied Genetics,2009,118(3):591-608.
    [90]Chutimanitsakun Y, Nipper RW, Cuesta-Marcos A, et al. Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley [J]. BMC genomics, 2011,12(1):4.
    [91]Clarke J, Sargent D, Boskovic R, et al. A cherry map from the inter-specific cross Prunus avium 'Napoleon'× P. nipponicabased on microsatellite, gene-specific and isoenzyme markers[J]. Tree genetics & genomes,2009,5(1):41-51.
    [92]Cuc LM, Mace ES, Crouch JH, et al. Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea)[J]. BMC plant biology,2008,8(1):55.
    [93]Dettori MT, Quarta R, Verde I. A peach linkage map integrating RFLPs, SSRs, RAPDs, and morphological markers[J]. Genome,2001,44(5):783-790.
    [94]Dhanapal AP, Martinez-Garcia P, Gradziel T, et al. First genetic linkage map of chilling injury susceptibility in peach(Prunuspersica (L.) Batsch) fruit with SSR and SNP markers[J]. journal of Plant Science and Molecular Breeding,2012,1(1):3-14.
    [95]Dirlewanger E, Bodo C. Molecular genetic mapping of peach[J]. Euphytica,1994,77(1):101-103.
    [96]Dirlewanger E, Cosson P, Boudehri K, et al. Development of a second-generation genetic linkage map for peach [Prunuspersica (L.) Batsch] and characterization of morphological traits affecting flower and fruit[J]. Tree genetics & genomes,2006,3(1):1-13.
    [97]Dirlewanger E, Cosson P, Howad W, et al. Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid-location of root-knot nematode resistance genes[J]. Theoretical and Applied Genetics,2004,109(4):827-838.
    [98]Dirlewanger E, Graziano E, Joobeur T, et al. Comparative mapping and marker-assisted selection in Rosaceae fruit crops[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101 (26):9891-9896.
    [99]Dirlewanger E, Moing A, Rothan C, et al. Mapping QTLs controlling fruit quality in peach (Prunuspersica (L.) Batsch)[J]. Theoretical and Applied Genetics,1999,98(1):18-31.
    [100]Dirlewanger E, Pascal T, Zuger C, et al. Analysis of molecular markers associated with powdery mildew resistance genes in peach(Prunus persica (L.) Batsch) x Prunus davidiana hybrids[J]. Theoretical and Applied Genetics,1996,93(5):909-919.
    [101]Dominguez I, Graziano E, Gebhardt C, et al. Plant genome archaeology:evidence for conserved ancestral chromosome segments in dicotyledonous plant species[J]. Plant Biotechnology Journal, 2003, 1(2):91-99.
    [102]Dondini L, Lain O, Geuna F, et al. Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps[J]. Tree genetics & genomes,2007,3(3):239-249.
    [103]Dondini L, Lain O, Vendramin V, et al. Identification of QTL for resistance to plum pox virus strains M and D in Lito and Harcot apricot cultivars[J]. Mol Breeding,2011,27(3):289-299.
    [104]Dong Y, Xie M, Jiang Y, et al. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus)[J]. Nature biotechnology,2012,31:135-141.
    [105]Du D, Zhang Q, Cheng T, et al. Genome-wide identification and analysis of late embryogenesis abundant (LEA) genes in Prunus mume[J]. Molecular biology reports,2013,40(2):1937-1946.
    [106]Eduardo I, Pacheco I, Chietera G, et al. QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect[J]. Tree genetics & genomes,2011,7(2):323-335.
    [107]Edwards D, Batley J. Plant genome sequencing:applications for crop improvement[J]. Plant Biotechnology Journal,2009,8(1):2-9.
    [108]Eldredge L, Ballard R, Baird W, et al. Application of RFLP analysis to genetic linkage mapping in peaches[J]. HortScience,1992,27(2):160-163.
    [109]Ellegren H. Microsatellites:simple sequences with complex evolution[J]. Nature Reviews Genetics,2004,5(6):435-445.
    [110]Ellis J, Burke J. EST-SSRs as a resource for population genetic analyses[J]. Heredity,2007, 99(2):125-132.
    [111]Emerson KJ, Merz CR, Catchen JM, et al. Resolving postglacial phylogeography using high-throughput sequencing [J]. Proceedings of the National Academy of Sciences,2010,107(37): 16196-16200.
    [112]Entani T, Iwano M, Shiba H, et al. Comparative analysis of the self-incompatibility (S-) locus region of Prunus mume. identification of a pollen-expressed F-box gene with allelic diversity[J]. Genes to cells:devoted to molecular & cellular mechanisms,2003,8(3):203-213.
    [113]Esmenjaud D, Minot J, Voisin R, et al. Inheritance of resistance to the root-knot nematode Meloidogyne arenaria in Myrobalan plum[J]. Theoretical and Applied Genetics,1996,92(7):873-879.
    [114]Etienne C, Rothan C, Moing A, et al. Candidate genes and QTLs for sugar and organic acid content in peach [Prunuspersica (L.) Batsch][J]. Theoretical and Applied Genetics,2002,105(1): 145-159.
    [115]Fan S, Bielenberg DG, Zhebentyayeva TN, et al. Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach(Prunus persica)[J]. New Phytologist,2010,185(4):917-930.
    [116]Fang J, Twito T, Zhang Z, et al. Genetic relationships among fruiting-mei(Prunus mume Sieb. et Zucc.) cultivars evaluated with AFLP and SNP markers[J]. Genome,2006,49(10):1256-1264.
    [117]Gao Z, Shi T, Luo X, et al. High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with pistil development in Japanese apricot[J]. BMC genomics,2012,13(1):371.
    [118]Gautami B, Fonceka D, Pandey MK, et al An International Reference Consensus Genetic Map with 897 Marker Loci Based on 11 Mapping Populations for Tetraploid Groundnut(Arachis hypogaea L.)[J]. PloS one,2012,7(7):e41213.
    [119]Gulick PGP, Olukolu BAOB, Trainin TTT, et al. Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot(Prunus armeniaca L.)[J]. Genome,2009, 52(10):819-828.
    [120]Gupta P, Balyan H, Sharma P, et al. Microsatellites in plants:a new class of molecular markers[J]. Current Science,1996,70(1):45-54.
    [121]Haldane J, Smith C. A new estimate of the linkage between the genes for colour-blindness and haemophilia in man[J]. Annals of Human Genetics,1947,14(1):10-31.
    [122]Han Y, Zheng D, Vimolmangkang S, et al. Integration of physical and genetic maps in apple confirms whole-genome and segmental duplications in the apple genome[J]. Journal of experimental botany,2011,62(14):5117-5130.
    [123]Hayashi K, Shimazu K, Yaegaki H, et al. Genetic diversity in fruiting and flower-ornamental Japanese apricot (Prunus mume) germplasms assessed by SSR markers[J]. Breeding Science,2008, 58(4):401-410.
    [124]Helentjaris T. A genetic linkage map for maize based on RFLPs[J]. Trends in Genetics, 1987,3:217-221.
    [125]Hemmat M, Weedon N, Manganaris A, et al. Molecular marker linkage map for apple[J]. Journal of Heredity,1994,85(1):4-11.
    [126]Hurtado M, Romero C, Vilanova S, et al. Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.), and mapping of PPV (sharka) resistance[J]. Theoretical and Applied Genetics,2002, 105(2):182-191.
    [127]Illa E, Sargent DJ, Girona EL, et al. Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family [J]. BMC Evolutionary biology,2011, 11(1):9.
    [128]Jauregui B, De Vicente M, Messeguer R, et al. A reciprocal translocation between'Garff almond and'Nemared'peach[J]. Theoretical and Applied Genetics,2001,102(8):1169-1176.
    [129]Jansen RC. Interval mapping of multiple quantitative trait loci[J]. Genetics,1993,135(1):205-211.
    [130]Jia X, Zhang Z, Liu Y, et al. Development and genetic mapping of SSR markers in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Theoretical and Applied Genetics,2009,118(4):821-829.
    [131]Jiao Y, Jia HM, Li XW, et al. Development of simple sequence repeat (SSR) markers from a genome survey of Chinese bayberry (Myrica rubra) [J]. BMC genomics,2012,13(1):201.
    [132]Joobeur T, Viruel M, De Vicente M, et al. Construction of a saturated linkage map for Prunus using an almondx peach F2 progeny[J]. Theoretical and Applied Genetics,1998,97(7):1034-1041.
    [133]Jung S, Cestaro A, Troggio M, et al. Whole genome comparisons of Fragarta, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies[J]. BMC genomics,2012, I3(1):1-12.
    [134]Jung S, Main D, Staton M, et al. Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes [J]. BMC genomics,2006,7(1):81.
    [135]Jung S, Staton M, Lee T, et al. GDR (Genome Database for Rosaceae):integrated web-database for Rosaceae genomics and genetics data[J]. Nucleic acids research,2008,36(suppl 1):D1034- D1040.
    [136]Kalia RK, Rai MK, Kalia S, et al. Microsatellite markers:an overview of the recent progress in plants[J]. Euphytica,2011,177(3):309-334.
    [137]Kent WJ. BLAT-the BLAST-like alignment tool[J]. Genome research,2002,12(4):656-664.
    [138]Klagges C, Campoy JA, Quero-Garcia J, et al. Construction and comparative analyses of highly dense linkage maps of two sweet cherry intra-specific progenies of commercial cultivars[J]. PloS one,2013,8(1):e54743.
    [139]Kosambi D. The estimation of map distances from recombination values[J]. Annals of Human Genetics,1943,12(1):172-175.
    [140]Krzywinski M, Schein J, Birol I, et al. Circos:an information aesthetic for comparative genomics[J]. Genome research,2009,19(9):1639-1645.
    [141]Lalli D, Decroocq V, Blenda A, et al. Identification and mapping of resistance gene analogs (RGAs) in Prunus:a resistance map for Prunus[J].Theoretical and Applied Genetics,2005,111(8): 1504-1513.
    [142]Lambert P, Dicenta F, Rubio M, et al. QTL analysis of resistance to sharka disease in the apricot (Prunus armeniaca L.)'Polonais'×'Stark Early Orange'F1 progeny[J]. Tree genetics & genomes, 2007,3(4):299-309.
    [143]Lambert P, Hagen L, Arus P, et al. Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond Texasx peach Earlygold reference map for Prunus[J]. Theoretical and Applied Genetics,2004,108(6):1120-1130.
    [144]Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics,1989,121 (1):185-199.
    [145]Le Dantec L, Cardinet G, Bonet J, etal. Development and mapping of peach candidate genes involved in fruit quality and their transferability and potential use in other Rosaceae species[J]. Tree genetics & genomes,2010,6(6):995-1012.
    [146]Lecouls A, Rubio-Cabetas M, Minot J, et al. RAPD and SCAR markers linked to the Mal root-knot nematode resistance gene in Myrobalan plum (Prunus cerasifera Ehr.)[J]. Theoretical and Applied Genetics,1999,99(2):328-335.
    [147]Li D, Deng Z, Qin B, et al. De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.)[J]. BMC genomics,2012,13(1):192.
    [148]Li X, Korir NK, Liu L, et al. Microarray analysis of differentially expressed genes engaged in fruit development between Prunus mume and Prunus armeniaca[J].Journal of plant physiology, 2012,169(3):1776-1788.
    [149]Li X, Shangguan L, Song C, et al. Analysis of expressed sequence tags from Prunus mume flower and fruit and development of simple sequence repeat markers[J]. BMC genetics,2010,11(1):66.
    [150]Li X, Wang C, Yang G, et al. Employment of a new strategy for identification of Primus mume cultivars using random amplified polymorphic deoxyribonucleic acid (RAPD) markers[J]. African Journal of Plant Science,2011,5(9):500-509.
    [151]Li X, Wang Y, Wang B, et al. Genetic relationships between fruiting and flowering mei(Prunus mume) cultivars using SNP markers[J]. The journal of horticultural science & biotechnology,2010, 85(4):329-334.
    [152]Liang X, Chen X, Hong Y, et al. Utility of EST-derived SSR in cultivated peanut(Arachis hypogaea L.) and Arachis wild species[J]. BMC plant biology,2009,9(1):35.
    [153]Lim A, Dimalanta ET, Potamousis KD, et al. Shotgun optical maps of the whole Escherichia coliO157:H7 genome[J]. Genome research,2001,11(9):1584-1593.
    [154]Lincoln SE, Lander ES. Systematic detection of errors in genetic linkage data[J]. Genomics,1992, 14(3):604-610.
    [155]Lorieux M, Goffmet B, Perrier X, et al. Maximum-likelihood models for mapping genetic markers showing segregation distortion.1. Backcross populations[J]. Theoretical and Applied Genetics,1995a,90(1):73-80
    [156]Lorieux M, Perrier X, Goffinet B, et al Maximum-likelihood models for mapping genetic markers showing segregation distortion.2. F2 populations[J]. Theoretical and Applied Genetics, 1995b,90(1):81-89.
    [157]Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize[J], Theoretical and Applied Genetics,2002,105(4):622-628.
    [158]Ma H, Moore PH, Liu Z, et al. High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya[J]. Genetics,2004,166(1):419-436.
    [159]Martinez-Garcia P J, Parfitt D E, Ogundiwin E A, et al. High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunuspersica L.)[J]. Tree Genetics & Genomes, 2013,9(1):19-36.
    [160]McCarthy, F M, Wang, N, Magee, G B, et al. AgBase:a functional genomics resource for agriculture[J]. BMC genomics,2006,7(1):229.
    [161]Meglecz, E, Neve, G, Biffin, E, et al. Breakdown of phylogenetic signal:a survey of microsatellite densities in 454 shotgun sequences from 154 non model Eukaryote species[J]. PLoS One,2012,7(7):e40861.
    [162]Metzgar D, Bytof J, Wills C. Selection against frameshift mutations limits microsatellite expansion in coding DNA[J]. Genome research,2000,10(1):72-80.
    [163]Mezard C. Meiotic recombination hotspots in plants[J]. Biochemical Society Transactions,2006, 34(4):531-534.
    [164]Michelmore RW, Paran I, Kesseli R. Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proceedings of the National Academy of Sciences,1991,88(21):9828-9832.
    [165]Miles LG, Lance SL, Isberg SR, et al. Cross-species amplification of microsatellites in crocodilians:assessment and applications for the future[J]. Conserv Genet,2009,10(4):935-954.
    [166]Miller MR, Dunham JP, Amores A, et al. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers[J]. Genome research,2007, 17(2):240-248.
    [167]Moore G, Devos K, Wang Z, et al. Cereal genome evolution:grasses, line up and form a circle[J]. Current Biology,1995,5(7):737-739.
    [168]Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes[J]. Nature genetics,2002,30(2):194-200.
    [169]Morton NE. Sequential tests for the detection of linkage[J]. American journal of human genetics, 1955,7(3):277-318.
    [170]Nelson JC, Wang S, Wu Y, et al. Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum[J]. BMC genomics,2011,12(1):352.
    [171]Ning G, Bai S, Bao M, et al. Factors affecting plantlet regeneration from in vitro cultured immature embryos and cotyledons of Prumts mume "Xue mei"[J]. In Vitro Cellular & Developmental Biology-Plant,2007,43(2):225-230.
    [172]Ning GG, Fan XL, Huang WJ, et al. Micropropagation of six Prunus mume cultivars through axillary shoot proliferation, and issr analysis of cloned plants[J]. Acta Biologica Cracoviensia Series Botanica,2007,49(1):25-31.
    [173]Ohyama A, Asamizu E, Negoro S, et al. Characterization of tomato SSR markers developed using BAC-end and cDNA sequences from genome databases[J]. Mol Breeding,2009,23(4):685-691.
    [174]Olmstead JW, Sebolt AM, Cabrera A, et al. Construction of an intra-specific sweet cherry(Prunus avium L.) genetic linkage map and synteny analysis with the Prunus reference map[J]. Tree genetics & genomes,2008,4(4):897-910.
    [175]Ooijen JV. JoinMap(?)4, software for the calculation of genetic linkage maps in experimental populations[M]. Wageningen,The Netherlands,2006:1-55.
    [176]Paillard S, Schnurbusch T, Winzeler M, et al. An integrative genetic linkage map of winter wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics,2003,107(7):1235-1242.
    [177]Pan L, Xia Q, Quan Z, et al. Development of novel EST-SSRs from sacred lotus (Nelumbo nucifera Gaertn) and their utilization for the genetic diversity analysis of N. nucifera[J]. The Journal of heredity,2010,101 (1):71-82.
    [178]Passos MA, de Cruz VO, Emediato FL, et al. Analysis of the leaf transcriptome of Musa acuminata during interaction with Mycosphaerella musicola:gene assembly, annotation and marker development[J]. BMC genomics,2013,14(1):78.
    [179]Paterson AH, Bowers JE, Bruggmann R, et al. The Sorghum bicolor genome and the diversification of grasses[J]. Nature,2009,457(7229):551-556.
    [180]Pfender W, Saha M, Johnson E, et al. Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne[J]. Theoretical and Applied Genetics,2011,122(8):1467-1480.
    [181]Pierantoni L, Cho KH, Shin IS, et al. Characterisation and transferability of apple SSRs to two European pear F1 populations[J]. Theoretical and Applied Genetics,2004,109(7):1519-1524.
    [182]Pilarova P, Marandel G, Decroocq V, et al. Quantitative trait analysis of resistance to plum pox virus in the apricot F1 progeny "Harlayne"×"Vestar"[J]. Tree genetics & genomes,2010,6(3): 467-475.
    [183]Powell W, Machray GC, Provan J. Polymorphism revealed by simple sequence repeats[J]. Trends in plant science,1996,1(7):215-222.
    [184]Qian J, Xu H, Song J, et al. Genome-wide analysis of simple sequence repeats in the model medicinal mushroom Ganoderma lucidum[J]. Gene,2013,512(2):331-336.
    [185]Rafalski A. Applications of single nucleotide polymorphisms in crop genetics[J]. Current opinion in plant biology,2002,5(2):94-100.
    [186]Rauscher G, Simko I. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes[J]. BMC plant biology,2013,13(1):11.
    [187]Ren Y, Zhao H, Kou Q, et al. A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome[J]. PloS one,2012,7(1):e29453.
    [188]Risterucci AM, Duval MF, Rohde W, et al. Isolation and characterization of microsatellite loci from Psidium guajavar L[J]. Molecular Ecology Notes,2005,5(4):745-748.
    [189]Rodolphe F, Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity [J]. Genetics,1993,134(4):1277-1288.
    [190]Roy CB, Nazeer M, Saha T. Identification of simple sequence repeats in rubber(Hevea brasiliensis)[J]. CURRENT SCIENCE-BANGALORE,2004,87(6):807-810.
    [191]Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers[M]. Bioinformatics methods and protocols. Humana Press,1999:365-386.
    [192]Sanchez-Perez R, Howad W, Dicenta F. Mapping major genes and quantitative trait loci controlling agronomic traits in almond[J]. Plant breeding,2007,126(3):310-318.
    [193]Sargent D, Rys A, Nier S, et al. The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera[J]. Theoretical and Applied Genetics,2007,114(2):373-384.
    [194]Sasaki R, Yamane H, Ooka T, et al. Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot[J]. Plant Physiol,2011,157(1):485-497.
    [195]Schlotterer, C. Evolutionary dynamics of microsatellite DNA[J]. Chromosoma,2000,109(6): 365-371.
    [196]Schmutz J, Cannon SB, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature,2010,463(7278):178-183.
    [197]Scott KD, Eggler P, Seaton G, et al. Analysis of SSRs derived from grape ESTs[J]. Theoretical and Applied Genetics,2000,100(5):723-726.
    [198]Shokeen B, Choudhary S, Sethy NK, et al. Development of SSR and gene-targeted markers for construction of a framework linkage map of Catharanthus mseus[J]. Annals of botany,2011, 108(2):321-336.
    [199]Shulaev V, Korban SS, Sosinski B, et al. Multiple models for Rosaceae genomics[J]. Plant Physiology,2008,147(3):985-1003.
    [200]Shulaev V, Sargent DJ, Crowhurst RN, et al. The genome of woodland strawberry (Fragaria vesca)[J].Nature genetics,2010,43(2):109-116.
    [201]Socquet-Juglard D, Duffy B, Pothier J, et al. Identification of a major QTL for Xanthomonas arboricola pv. pruni resistance in apricot [J]. Tree genetics & genomes,2013,9:409-421.
    [202]Sonah H, Deshmukh RK, Sharma A, et al. Genome-wide distribution and organization of microsatellites in plants:an insight into marker development in Brachypodium[J]. PloS one,2011, 6(6):e21298.
    [203]Sonneveld T, Robbins T, Boskovic R, et al. Cloning of six cherry self-incompatibility alleles and development of allele-specific PCR detection[J]. Theoretical and Applied Genetics,2001,102(6): 1046-1055.
    [204]Soriano J, Vilanova S, Romero C, et al. Characterization and mapping of NBS-LRR resistance gene analogs in apricot(Prunus armeniaca L.)[J]. Theoretical and Applied Genetics,2005,110(5): 980-989.
    [205]Soriano J M, Domingo M L, Zuriaga E, et al. Identification of simple sequence repeat markers tightly linked to plum pox virus resistance in apricot[J]. Molecular Breeding,2012,30(2):1017-1026.
    [206]Tacuatia LO, Cidade FW, Souza AP, et al. Development and characterization of nine microsatellite loci for Sisyrinchium micranthum (Iridaceae)[J]. American journal of botany,2012, 99(10):e402-404.
    [207]Tangphatsornruang S, Somta P, Uthaipaisanwong P, et al. Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean [Vigna radiata(L.) Wilczek] [J]. BMC plant biology,2009,9(1):137.
    [208]Tani E, Polidoros AN, Tsaftaris AS. Characterization and expression analysis of FRUITFULL-and SHATTERPROOF-like genes from peach (Prunus persica) and their role in split-pit formation[J]. Tree physiology,2007,27(5):649-659.
    [209]Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes [J]. Nucleic acids research,1984,12(10):4127-4138.
    [210]Tavassolian I, Rabiei G, Gregory D, et al. Construction of an almond linkage map in an Australian population Nonpareilx Lauranne[J]. BMC genomics,2010,11(1):551.
    [211]Toth G, Gaspari Z, Jurka J. Microsatellites in different eukaryotic genomes:survey and analysis[J]. Genome research,2000,10(7):967-981.
    [212]Tuskan GA, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torn & Gray)[J]. Science,2006,313(5793):1596-1604.
    [213]Varshney RK, Graner A, Sorrells ME. Genic microsatellite markers in plants:features and applications[J]. Trends in biotechnology,2005,23(1):48-55.
    [214]Varshney RK, Nayak SN, May GD, et al. Next-generation sequencing technologies and their implications for crop genetics and breeding[J]. Trends in biotechnology,2009,27(9):522-530.
    [215]Velasco, R., Zharkikh, A., Affourtit, J., et al. The genome of the domesticated apple(Malus X domestica Borkh.)[J]. Nature genetics,2010,42(10):833-839.
    [216]Vilanova S, Romero C, Abbott A, et al. An apricot(Prunus armeniaca L.) F2 progeny linkage map based on SSR and AFLP markers, mapping plum pox virus resistance and self-incompatibility traits[J]. Theoretical and Applied Genetics,2003,107(2):239-247.
    [217]Vilanova S, Sargent DJ, Arus P, et al. Synteny conservation between two distantly-related Rosaceae genomes:Prunus (the stone fruits) and Fragaria (the strawberry)[J]. BMC plant biology, 2008,8(1):67.
    [218]Vogel JP, Garvin DF, Mockler TC, et al. Genome sequencing and analysis of the model grass Brachypodium distachyon[J]. Nature,2010,463(7282):763-768.
    [219]Wang D, Karle R, Iezzoni A. QTL analysis of flower and fruit traits in sour cherry[J]. Theoretical and Applied Genetics,2000,100(3):535-544.
    [220]Wang DG, Fan J-B, Siao C-J, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome[J]. Science,1998,280(5366):1077-1082.
    [221]Wang N, Fang L, Xin H, et al. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing[J]. BMC plant biology,2012,12.(1):148.
    [222]Wang S, Wang X, He Q, et al. Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish[J]. Plant cell reports,2012,31(8):1437-1447.
    [223]Wang Y, Georgi L, Reighard G, et al. Genetic mapping of the evergrowing gene in peach [Prunus persica(L.) Batsch] [J]. Journal of Heredity,2002,93(5):352-358.
    [224]Weber JL. Informativeness of human (dC-dA) n.(dG-dT) n polymorphisms[J]. Genomics,1990, 7(4):524-530.
    [225]Woodhead M, Russell J, Squirrell J, et al. Development of EST-SSRs from the Alpine Lady-fern, Athyrium distentifolium[J].Molecular Ecology Notes,2003,3(2):287-290.
    [226]Xu P, Wu X, Wang B, et al. A SNP and SSR based genetic map of asparagus bean(Vigna unguiculata ssp. sesquipedialis) and comparison with the broader species[J]. PloS one,2011, 6(1):e15952.
    [227]Xu Q, Wen X, Deng X. Isolation of TIR and nonTIR NBS-LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt)[J].Theoretical and Applied Genetics,2005, 111(5):819-830.
    [228]Xu Q, Wen X, Deng X. Phylogenetic and evolutionary analysis of NBS-encoding genes in Rosaceae fruit crops[J]. Molecular phylogenetics and evolution,2007,44(1):315-324.
    [229]Xu X, Liu X, Ge S, et al. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes[J]. Nature biotechnology,2011,30(1):105-111.
    [230]Xu Y, Lu Y, Xie C, et al. Whole-genome strategies for marker-assisted plant breeding[J]. Molecular Breeding,2012,29(4):833-854.
    [231]Yamamoto T, Shimada T, Imai T, et al. Characterization of Morphological Traits Based on a Genetic Linkage Map in Peach [J]. Breeding Science,2001,51 (4):271-278.
    [232]Yamamoto T, Yamaguchi M, Hayashi T. An integrated genetic linkage map of peach by SSR, STS, AFLP and RAPD[J]. J Jpn Soc Hort Sci,2005,74(3):204-213.
    [233]Yamane H, Kashiwa Y, Kakehi E, et al. Differential expression of dehydrin in flower buds of two Japanese apricot cultivars requiring different chilling requirements for bud break[J]. Tree Physiol, 2006,26(12):1559-1563.
    [234]Yang C, Zhang J, Xu Q, et al. Establishment of AFLP technique and assessment of primer combinations for mei flower[J]. Plant Molecular Biology Reporter,2005,23(1):79-80.
    [235]Yang C-D, Zhang J-W, Yan X-L, et al. Genetic relatedness and genetic diversity of ornamental mei(Prunus mume Sieb. et Zucc.) as analysed by AFLP markers[J]. Tree genetics & genomes,2008, 4(2):255-262.
    [236]Yang H, Tao Y, Zheng Z, et al. Application of next-generation sequencing for rapid marker development in molecular plant breeding:a case study on anthracnose disease resistance in Lupinus angustifolius L[J]. BMC genomics,2012,13(1):318.
    [237]Young ND, Debelle F, Oldroyd GE, et al. The Medicago genome provides insight into the evolution of rhizobial symbioses[J]. Nature,2011,480(7378):520-524.
    [238]Yu J, Hu S, Wang J, et'al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica)[J]. Science,2002,296(5565):79-92.
    [239]Zeng Z-B. Precision mapping of quantitative trait loci[J]. Genetics,1994,136(4):1457-1468.
    [240]Zhang G, Sebolt AM, Sooriyapathirana SS, et al. Fruit size QTL analysis of an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry [J]. Tree genetics & genomes,2010,6(1):25-36.
    [241]Zhang Q, Chen W, Sun L, et al. The genome of Primus mume[J].Nature communications,2012, 3:1318.
    [242]Zhang Z, Deng Y, Tan J, et al. A genome-wide microsatellite polymorphism database for the indica and japonica rice[J]. DNA research,2007,14(1):37-45.
    [243]Zhou S, Kvikstad E, Kile A, et al. Whole-genome shotgun optical mapping of Rhodobacter sphaeroides strain 2.4.1 and its use for whole-genome shotgun sequence assembly[J]. Genome research,2003,13(9):2142-2151.
    [244]Zhou S, Wei F, Nguyen J, et al. A single molecule scaffold for the maize genome[J]. PLoS genetics,2009,5(11):e 1000711.
    [245]Zhu H, Senalik D, McCown BH, et al. Mining and validation of pyrosequenced simple sequence repeats (SSRs) from American cranberry(Vaccinium macrocarpon Ait.)[J]. Theoretical and applied genetics,2012,124(1):87-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700