用户名: 密码: 验证码:
基于GIS的新疆马铃薯甲虫Leptinotarsa decemlineata(Say)扩散规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯甲虫Leptinotarsa decemlineata (Say)隶属鞘翅目(Coleoptera),叶甲科(Chrysomelidae),是一种最具危险性的外来入侵有害生物。该虫最早发生于美国落基山山脉东坡,随后开始迅速扩散蔓延。现已广泛分布于北美和欧亚大陆,其分布北界从丹麦一直延续到俄罗斯北部地区,南界从西班牙、葡萄牙,经过地中海地区,其中也包括非洲北部地区,伊朗、土耳其到土库曼斯坦。马铃薯甲虫自20世纪90年代初侵入我国新疆北部地区以来,给当地马铃薯等茄科作物生产带来严重损失。马铃薯甲虫具有扩散能力强,繁殖能力高,以及兼性滞育等近乎完美的生物学习性和生存对策,使其进一步向东扩散进入我国甘肃、内蒙古等马铃薯主产区的风险正逐日增大。同时,在我国东北地区,马铃薯甲虫自我国周边疫情发生国扩散进入黑龙江、吉林等省份的风险也在进一步加大。外来生物扩散机理及其与新环境中生物、非生物因子之间的交互作用是其空间分布格局和扩散速率的重要决定因子之一。明确马铃薯甲虫分布扩散与环境因子之间的关系是对其进行更为有效的阻截防控的前提。本学位论文在公益性行业(农业)科研专项(200803024、201103026),以及西南大学研究生科技创新基金(ky2011007)资助下,着眼于入侵物种扩散及环境因子的影响这一热点内容,利用生态学、生物学的原理与方法以及“3s”信息技术等系统地对马铃薯甲虫在我国新疆地区的入侵历史,种群空间分布格局,以及温度、水分、地形、寄主、气流等因子在其分布、扩散中的作用进行了研究,旨在为我国马铃薯甲虫封锁和防控提供科学的理论依据和必要的技术储备。通过近4年的研究,取得了如下主要研究结果:
     1.马铃薯甲虫在新疆地区的入侵与为害研究
     本研究利用ArcGIS软件,结合马铃薯甲虫生物学、生态学特点,成功得出了马铃薯甲虫在北疆地区的空间分布格局和入侵历史。结果发现马铃薯甲虫自1993年入侵以来,目前已在我国北疆地区35个县市发生危害。其分布的最前沿地区仍为木垒县博斯坦乡三个泉子村以西的马铃薯种植区,分布范围没有进一步扩大。通过对马铃薯甲虫入侵历史溯源研究,揭示了马铃薯甲虫传播扩散的历史过程。其中,1995年越过塔城盆地是其传播扩散的一个转折点。同时,马铃薯甲虫在整个新疆地区的扩散过程中,由于特殊地理条件,其地理扩散没有呈现出常规外来入侵生物的扩散规律,即无明显的种群建立阶段,入侵后就以均匀的速度自西向东扩散。利用ArcGIS软件的空间插值功能对2010年马铃薯甲虫在北疆地区的危害程度进行了分析,结果发现马铃薯甲虫早期定殖的地区,如察布查尔县、伊宁县和传播扩散的前沿地区均呈重度危害,其他地区呈中度或轻度危害。通过对东疆地区及河西走廊等马铃薯甲虫潜在风险地区调查,结果发现在上述地区均没有马铃薯甲虫分布,木垒县与巴里坤县之间近200km的戈壁区域是阻隔马铃薯甲虫进一步向东扩散的天然屏障。
     2.马铃薯甲虫田间种群生物学、生态学研究
     2.1马铃薯甲虫田间种群消长规律
     本研究通过对乌鲁木齐县安宁渠镇马铃薯甲虫田间种群消长规律进行研究,明确了马铃薯甲虫在我国新疆地区的年生活史。一年可发生2代,发生期从5月一直持续到9月。第一代为害高峰期在6月中下旬发生,第二代为害高峰期则在8月中下旬,且世代重叠严重。因此,压低第一代幼虫虫口基数,对于有效降低第二代虫口密度、降低马铃薯甲虫的为害具有重要作用。
     通过对比2008—2010年乌鲁木齐县马铃薯甲虫田间种群的年变化规律,结果呈现出自2008年,马铃薯甲虫的为害有呈逐渐减弱趋势以及高峰期时间推后的特点。对比乌鲁木齐县的马铃薯甲虫种群消长规律,2009年木垒县的马铃薯甲虫危害特点明显不同,表现出木垒县马铃薯甲虫零星发生,且没有显著的危害高峰期出现。表明木垒县作为马铃薯甲虫防控的前沿地区,通过铲除戈壁野生寄主,有效的控制了马铃薯甲虫继续向东迁飞扩散。
     2.2越冬代马铃薯甲虫出土规律及其影响因子分析
     在本章研究中,成功确定了越冬代马铃薯甲虫出土的空间分布规律及其与环境因子之间的关系,为今后开展马铃薯甲虫的综合防控技术研究奠定了基础。通过对越冬代成虫的出土规律分析,明确了寻找寄主植物来补充营养,是马铃薯甲虫出土后的首要行为活动。其中在马铃薯寄主田内,越冬出土后成虫多聚集在刚出土的马铃薯苗上,且出土时间与马铃薯生育期中的出苗期基本一致。同时,通过对比马铃薯甲虫逐日出土量与土壤温度之间的关系,确定了土壤温度稳定在15℃时,马铃薯甲虫成虫开始出土。降水带来的土壤湿度增加,在一定程度上刺激了越冬成虫的出土活动,适宜马铃薯甲虫出土的土壤湿度范围在62%—-79%之间。
     2.3马铃薯甲虫田间的扩散规律研究
     本研究着眼于农田生态系统下的马铃薯甲虫扩散规律,分别对三种世代成虫的扩散规律进行研究。揭示了马铃薯甲虫田间扩散过程中种群拥挤度的变化规律,是由聚集分布向均匀分布转变的过程。随着释放时间的推后,调查得到的标记虫口数量逐渐减少。扩散速度上,而越冬代和第二代成虫的扩散速度差异不明显,分别为2.64m/d,2.52m/d,但显著高于第一代成虫。
     3.影响马铃薯甲虫空间分布的关键因子研究
     在明确了北疆地区马铃薯甲虫的空间分布格局的基础上,结合马铃薯甲虫现有分布数据,利用主成分分析方法,成功筛选出了影响马铃薯甲虫分布的4个关键因子:温度、水分、地形以及寄主,并依次对4个主要因子展开了具体分析。
     在温度因子方面,首次提出吐鲁番地区目前尚无马铃薯甲虫分布的原因是由于夏季日平均气温过高造成的。根据马铃薯甲虫羽化过程中的耐高温能力试验结果,成功得出了39℃是马铃薯甲虫羽化成功的临界温度。同时,耐受39℃高温的极限时间是72h,表明马铃薯甲虫具有很强的耐高温能力。进一步对新疆历史气候资料分析,结果得出吐鲁番地区夏季日平均最高气温超过39℃的持续天数在5d以上,且连续3d超过39℃的次数多在5次以上,该地区的夏季高温有效地制约马铃薯甲虫的成功羽化。
     此外,利用ArcGIS软件对冬季土壤温度低于-8℃的持续时间进行研究,在整个河西走廊地区、内蒙古和青藏高原地区冬季土壤温度低于-8℃持续的时间均大于10d,但是在越过兰州以后进入天水地区,冬季低温胁迫基本解除。由于在青海、内蒙两地冬季低温持续时间在22d以上,而河西走廊持续低温平均约15d。揭示了甘肃河西走廊地区在我国马铃薯甲虫阻截防控工作中的重要地位。
     在水分因子的影响方面,结合新疆历史降水数据对马铃薯甲虫现有分布区内的水分时空格局进行了研究,揭示了马铃薯甲虫分布与水分时空格局的关系。结果得到,马铃薯甲虫现有分布区内年降水量在200mm左右,最早发现马铃薯甲虫定殖的地区降水量大,随着其自西向东扩散的方向,年降水量开始逐渐减少。降水量的减少导致的水分缺乏在马铃薯甲虫分布扩散中具有一定的制约作用。
     在地形因子影响方面,利用虫情调查时手持GPS采集得到的高程数据,结合DEM数据衍生计算得到的坡度坡向,对马铃薯甲虫空间分布与地形的关系进行了研究。结果得出马铃薯甲虫分布区被限制在狭长的山间与山前浅山地带或平原地区是由于天山山脉的地理阻隔决定的作用。马铃薯甲虫现有分布范围受海拔等地形因素影响,天山的阻隔作用也是其进一步向东扩散的天然屏障。
     在寄主因子影响方面,以马铃薯甲虫的4种主要寄主植物:马铃薯、茄子、番茄、天仙子为研究对象,分别从寄主植物对马铃薯甲虫成虫的引诱作用,不同虫态的取食量比较等方面进行研究,揭示了马铃薯为马铃薯甲虫的最适栽培寄主,天仙子为最适野生寄主。由此可知,在初春马铃薯等栽培寄主植物缺乏时,天仙子作为最适合的野生寄主,弥补了马铃薯等栽培寄主匮乏时,天仙子能很好地为马铃薯甲虫成虫提供食物来源,维持生长发育与世代更替,不断扩展分布范围起到了至关重要的作用。
     4.基于GIS分析河流、大气背景场对马铃薯甲虫扩散的影响
     河流作为新疆农业生产的主要灌溉水来源,在提供水源的同时,也为有害生物的扩散提供了可能。本研究以沙湾县为例,运用ArcGIS软件的空间分析和缓冲区分析功能研究了河流对马铃薯甲虫扩散的影响。结果表明马铃薯甲虫的扩散方向与河流流向基本一致,同时明确了河流流域内马铃薯甲虫为害的空间格局特征:距离河流2—3km缓冲区内的为害级别最低,而位于1—2km和3-4km缓冲区为害最高,0—1km和4—5km缓冲区内为害级别较低。揭示了在河流流域的马铃薯甲虫发生区,应重点加强对河流流域1—2km和3—4km缓冲区内的马铃薯甲虫疫情的监测。
     马铃薯甲虫具有一定的自主扩散能力,能利用气流携带作用扩展其分布范围。本研究运用大气背景场分析方法对我国西北地区和东北地区上空气流方向与强度进行了研究,揭示了气流在我国马铃薯甲虫传播扩散中的作用。结果得出,我国西北地区在春季和秋季高空气流方向均不利于马铃薯甲虫随气流携带自西向东扩散,同时气流强度及其持续时间也不适合马铃薯甲虫从目前的分布最前沿的木垒县扩散进入甘肃河西走廊地区。同时,我国东北地区在春季和秋季高空气流方向有利于马铃薯甲虫随气流携带自俄罗斯滨海地区扩散进入我国黑龙江地区。在气流方向适合马铃薯甲虫扩散的时期,气流风速也很强,为马铃薯甲虫的随气流扩散提供了条件,应当切实加强黑龙江边境地区的马铃薯种植区内马铃薯甲虫的疫情监测。
     综上所述,本学位论文运用ArcGIS软件,结合马铃薯甲虫基础生物学、生态学特性,系统研究了我国新疆地区马铃薯甲虫种群空间分布格局与环境因子之间的关系。明确了越冬代成虫出土后聚集分布的规律,以及土壤温度、含水量以及降水对越冬成虫出土时间与逐日出土量的影响。在北疆地区马铃薯甲虫种群发生规律调查的基础上,得到了马铃薯甲虫的现有分布特点,反演得到了入侵历史路线。基于大量基础地理数据与气象数据,证明了马铃薯甲虫在我国新疆地区现有传播扩散是温度、水分、地形、寄主植物共同作用的结果。其中天山山脉的地理阻隔与寄主植物的缺失造成了目前马铃薯甲虫传播扩散的暂时中断,但河流与气流,以及人为活动等外界因素将会对其进一步传播扩散带来影响。鉴于气流活动在我国东北区域对马铃薯甲虫自主扩散的影响显著强于西北区域的事实,得出应当切实加强我国东北地区马铃薯甲虫疫情监测,而在我国西北区域,马铃薯甲虫除非通过人为携带的因素,其凭借自身能力进一步向东扩散进入甘肃河西走廊地区的可能性不大。本研究结果为进一步明确马铃薯甲虫的潜在分布区域以及对环境影响的机理,以及我国马铃薯甲虫的综合防治奠定科学基础。
Colorado potato beetle (CPB), Leptinotarsa decemlineata, is an important destructive pest on potato crops worldwide. It was originated in United States or Mexico and invaded into more than40different countries across North America, Europe, Australia and Asia. This invasive pest was dispersed from Kazakhstan into Xinjiang Autonomous Region of China and it was first discovered on potato crops in Ili River Valley area in1993. Since then, it has been widely spread to all over northern of Tianshan Mountain region. CPB has self-independent migration capacity, and reproducable, diapause, near-perfect survival strategy, which make it spread to further east and the risks of invading into Gansu and Inner Mongolia Autonomous Region, the main potato producing areas, are increasing. Meanwhile, it also has an increased risk of the CPB from our neighboring occurred countries spread into Heilongjiang, Jilin provinces in the northeastern China. The diffusion mechanism of alien species in new environment and its interaction between biological and non-biological factors is an important determinant of the spatial distribution pattern and the rate of diffusion. Understanding the relationship of spatial distribution pattern of CPB and environmental factors will be more effective for CPB prevention and control. Therefore, we initiated the study on the diffusion rule of Leptinotarsa decemlineata in Xinjiang. And the purpose of the current study was to understand the role of environment factors in CPB diffusion, and how to more effective to prevent and control of CPB in China. Based on the principle and method of ecological and biological knowledge as well as the use of "3S" information technology, population spatial pattern analysis, as well as temperature, moisture, topography, host, airflow and other factors in its distribution, diffusionin the role of research in order to provide a scientific basis We studied on invasion history of CPB invaded Xinjiang, and spatial pattern of population dynamatic in field. Especially, the relationship of its diffusion and host-plant, temperature, river, air flow and other environmental factors, was major study topics. The research was supported by Special Fund of Agro-Scientific Research in Public Interest (200803024and201103026), the Science and Technology Innovation Foundation for Graduate Students of Southwest University (ky2011007). The study goes well and the main results are summarized as follows:
     1. Invasion history research and analysis of CPB occurrence in Xinjiang
     In this study, by the use of ArcGIS software, and combination of biological and ecological characteristics of CPB, space distribution pattern and invasion history of CPB had been successfully obtained in the northern Xinjiang. The results found that the CPB has occurred in35counties and cities of the northern region of Xinjiang in China since1993invasion. The forefront of CPB distribution remains in west of Sangequanzi village, Boshitan town. Mori county, its distribution has not been further expanded. By historical research on the origin of CPB invasion reveals its diffusion historical process. In1995, across the the Tacheng Basin is a turning point in the spread of its spread. Meanwhile, in the diffusion process, spatial range expansion speed is more consistent. By the using of ArcGIS software to analysis the damage degree of CPB in2010. the results showed that the region of CPB colonized earily, such as the Qapqal county, Yining county and dissemination diffusion forward areas Qitai and Mori county, were the most serious damaged. The other regions showed moderate or mild damage. At the same time, the desert region nearly200km between Mori and Barkol county was a natural barrier to block the spread of CPB.
     2. Research on population biology and ecology of CPB in field
     2.1Population dynamics in field
     The CPB's distribution regions in northern Xinjiang of China has been basically stable, as of now, it has been successfully controled in west of Boshitan town. Mori county. Changji Hui Autonomous Prefecture, where is far from the border of Xinjiang and Gansu at about550km. According to the investigation results in2010-2012, there were deep damage by CPB in Qapqal county, Yining city of Yili Prefecture, Wenquan county of Bole Prefecture, Ermin county of Tacheng Prefecture. Altay city of Altay region, Qitai county. Mori county of Changji Prefecture, other regions were less secious damage. And the damage level was just2degree or3degree. In2008-2010, field population dynamics of CPB in Urumqi county was taken, where was frontier distribution region of CPB. The investigation results were:After2008, the damage of CPB was significantly weakened. At the same time,7monitoring stations of CPB was established in Mori county, and CPB occurrence analysis showed that there were no CPB distribution in three monitoring points of east region of the county, while in the four monitoring points near and west of the county, the charactersitic of CPB damage were sporadic, only a small number of larvae. The population density'of CPB in distribution forefront was lower based on the effective integrated control.
     2.2Analysis of distribution pattern and affecting factors of overwintering CPB
     In this paper, the spatial pattern of overwintering CPB was studied by the use of1DW interpolation tools in ArcGIS software. The overwintering CPBs were collected near in potato emergence point after unearth and they usually go to find host-plants nutritional supplement, and there was an aggregation trends. It was closely related to air temperature and soil moisture during the overwintering adult unearthed period. And with low temperature and low humidity conditions were discourage its emergence significantly. The rise of temperature in spring was directly related to CPB unearth. And the soil temperature usually had an impact on adult survival rate. When spring (April) temperature was stabilized at above15℃, overwintering adults began to unearthed, and the amount of daily emergence was changed with the variation of daily mean temperature fluctuations. Besides, it was also affected by rain, the water, include precipitation and irrigation water during unearthed time, which had an significant relationship of soil temperature and humidity. Soil moisture in the depth of10-20cm, has a direct impact on CPB unearthed. Too high or too low were neither not helpful for overwintering adults unearthed.
     2.3Diffusion rule of CPB adults in field'
     With the use of "mark-release-recapture" method, diffusion characterisc of CPB adults of different generations were studied in a potato field in2012. The diffusion speeds of overwintering generation and second generation adults were significantly higher than the first generation of CPB, and there was no significantly difference between the overwintering generation and second generation adults. In the difference of gender of CPB, female CPB spread more quickly than male ones, the volecity of female was2.64±0.25m/d, and the male was1.33±0.28m/d. On the direction of diffusion, the CPB adults diffused slowly on the direction of more insects recapture.
     3. Key factors impact on spatial distribution pattern of CPB
     Combine with the distribution data of CPB in current occurrence regions and their24of geographical environment factors, four key main factors:temperature, moisture, terrain and human activity were choosen to analysis.
     Temperature factor:Combined with the historical climate data of Xinjiang, spatial analysis function of ArcGIS software was used to create a distribution map of the daily mean maximum temperatures of the Xinjiang in summer. With the increasing of temperature, the eclosion rate of CPB larvae was gradually decreased, and the developmental duration was gradually extended. When the temperature reaches39℃, the emergence rate approached zero, the critical high temperature of CPB eclosion tolerance was39℃, and at the same time, the tolerance duration at the temperature of39℃was72h. Summer temperature in Turpan area can rise above39℃and last for more than a month. The extremely heat prevents CPB from colonizing in local areas and limits CPB's dispersal eastward. It is necessary, however, to strengthen the inspection and quarantine measures to prevent spreading of CPB eastward through human-facilitated transmission. This precautionary measure is critical for the sustainable production of potatoes and other Solanaceae crops. The winter low temperature and soil temperature for the outcome of the CPB overwinter stagnation sterile play a key role, if the days of soil temperature is below-8℃more than10days, it will affect CPB overwintermg.
     Moisture factor:the CPB existing area of distribution of annual precipitation is about200mm, first discovered the CPB colonization areas precipitation, with direction from west to east, the proliferation of annual precipitation began to reduce. The annual precipitation is less than200mm in Mori county, east of Barkol, Hami in eastern Xinjiang region. The southern border areas precipitation is lower. Reduced rainfall lead to lack of water has a certain role in restricting the spread of CPB distribution.
     Topographical factors:the barrier effect of the Tianshan Mountains in the Xinjiang region, the CPB distribution was limited to narrow mountain and piedmont shallow mountain belts or plain areas. Distribution by altitude and terrain factors, at the same time. Tianshan barrier effect was further eastward spread of natural barriers. Its spatial distribution in different altitude ranges, according to the characteristics of Xinjiang topography, CPB mainly distributed in concentrated area at an altitude of more than1400m. The current of CPB distribution was affected by altitude and other topographical factors, the effect of Tianshan barrier will be cutted off CPB "s further eastward.
     Host plant factor:Our study focused on:i) examining the appeal of different host plants to CPB adults in the laboratory; ii) CPB consumption levels during different development stages, including four larval instars and adults; and iii) a field survey of host selectivity among different host plants. The results indicated that there were significant differences (p<0.001) in attraction among the four plants. In order of appeal to CPB, they were (from highest to lowest):potato>henbane>eggplant>tomato. Significant differences (p<0.001) also existed among the four plant species in the amount of leaf consumption by CPBs. Consumption levels were ranked as follows (from highest to lowest):potato>henbane>eggplant>tomato. The field host-selectivity survey also found significant differences (p<0.01) among the four host plants; there were many more CPBs in fields of henbane and potato than in fields of eggplant and tomato. Based on the combined results of these laboratory and field experiments, we concluded that potato and henbane are the most suitable host plants for CPBs, consistent with an analysis done in the first year of their invasion of China in the1990s.
     4. Analysis of river and the atmospheric circulation on the spread of CPB based on GIS
     As the CPB spread along riparian habitats from south to north, the damage degree of impact gradually declined, so that the northern towns and those areas received less impact. The Directional Distribution (Standard Deviational Ellipse) tool of ArcGIS was used to determine whether its distribution of the CPB exhibits a directional trend while it compared with the river flow in Shawan county. The results suggested the spread direction of CPB and the river flows coincide; which were both go from south to north. The damage levels from CPB were documented by calculated a series of nested buffer zones. The series of five1-km-wide nested buffer zones were created along Manas rivers in study area. The results showed that CPB damage was significantly different in each buffer zone:buffer zone2> buffer zone4> buffer zone5>buffer zone1>buffer zone3. Habitats along rivers also showed significantly different impacts from CPB:Jinggou River> Anjihai River> Manas River> Xi'an Canal.
     The direction and velocity of airflow were analysised in northwest and northeast China from April to September in2009in850hPa with the method of atmospheric background field analysis by using GrADS software. The results showed that:in northwest China, the direction of airflow was from west to east only in seldom season, and its velocity was too slow to carry CPB diffusion, as a result, the air flow was not considered as a type of CPB spread and it does not lead to CPB diffuse into the Hexi Corridor in Gansu from its current frontier distribution regions-Boshitan Town, Mori county. In northeast China, during the spring and autumn, the direction of airflow was the same as the direction of CPB invade into China. It was helpful for CPB diffusion from the coastal region of Russia into Heilongjiang and Jilin Province, northeast China. At the same time, the direction of air flow was suitable with the CPB migratory into China, and the wind speed of airflow was also very strong, with the help of airflow, the CPB was able to invade into China. It is important to strengthen the monitoring of the epidemic effectively strong potato cultivation in the region of Heilongjiang border areas.
     In summary, combined with the biological and ecological characteristics of the CPB. and use of ArcGIS software, this dissertation studied on the relationship between population spatial distribution patterns and environmental factors in Xinjiang. Clear the overwintering generation adults'distribution rule was aggregated after the emergence, as well as the impact of soil temperature, moisture content, and precipitation in spring on overwintering unearthed time and daily amounts. And based on investigation of CPB populations in the northern region, invasion history of CPB and its diffusion mechanisms were knowed. Be controlled in Xinjiang was interaction of temperature, moisture, topography, host plant. Geographical barrier of the Tianshan Mountains and lack of host plants caused CPB's diffusion was temporarily interrupted. But with the help of the river flow, as well as human activities and other external factors, CPB self-diffusion in the northeast China region in view of the activities of the air flow was significantly stronger in the northwest region. By the facts, monitoring and forecasting of CPB should be earnestly strengthened in northeast China than northwest in China. CPB was ability to further spread eastward into the Hexi Corridor in Gansu Province is unlikely. The results of this study to further clarify the CPB potential distribution of the scientific basis as well as the mechanism of environmental impact, as well as the comprehensive prevention and control.
引文
1. Alyokhin, A. Colorado potato beetle management on potatoes:current challenges and future prospects. Fruit, Veg. Cereal Sci. Biotech.2009,3:10-19.
    2. Jaques, R L. The potato beetles:Flora & Fauna Handbook No.3. New York:EJ Brill Leiden,1988.
    3. Casagrande, R A. The "Iowa" Potato Beetle, its discovery and spread to potatoes. Bulletin of the Entomological Society of America.1985,31 (2):27-29.
    4. Casagrande, R A. The Colorado potato beetle:125 years of mismanagement. Bulletin of the Entomological Society of America.1987,33 (3):142-150.
    5. Weber, D. Colorado beetle:pest on the move.pesticide outlook.2003,14 (5):256-259.
    6. 梁忆冰,林伟,王跃进,徐亮,翟图娜,陆平,克依木,张兰.生态因子在马铃薯甲虫地理分布中的作用.植物检疫.1999,13(05):257-262.
    7. 郭文超,吐尔逊,许咏梅,刘建,许建军,王佩玲,何江,夏正汉,付文君,景新跃,张冬梅.马铃薯甲虫持续防控技术研究与应用.新疆农业科学.2011,48(2):853-858.
    8. 郭文超,吐尔逊,许建军,刘建,何江,李晶,马德成,王俊.马铃薯甲虫识别及其在新疆的分布、传播和危害.新疆农业科学.2010,47(5):906-909.
    9. 张生芳.马铃薯甲虫分布区形成的历史和现状.植物检疫.1985,1:7.
    10. 郭文超,吐尔逊,许建军,刘建,何江,李晶,马德成,王俊.马铃薯甲虫识别及其在新疆的分布、传播和危害.新疆农业科学.2010,47(5):906-909.
    11. Liu, N, Li, Y, Zhang, R. Invasion of Colorado potato beetle, Leptinotarsa decemlineata, in China: dispersal, occurrence, and economic impact. Entomologia Experimentalis et Applicata.2012,143 (3): 207-217.
    12. Rafoss, T, Saethre, M G. Spatial and temporal distribution of bioclimatic potential for the Codling moth and the Colorado potato beetle in Norway:model predictions versus climate and field data from the 1990s. Agricultural and Forest Entomology.2003,5 (1):75-86.
    13. Jonsson, A M, Pulatov, B, Linderson, M L, Hall, K. Modelling as a tool for analysing the temperature-dependent future of the Colorado potato beetle in Europe. Global Change Biology.2013, 19 (4):1043-1055.
    14. 赵建周.国外马铃薯甲虫发生与防治概况.植物保护.1995,(4):35-36.
    15. 阿合买提吐尔逊,许建军,郭文超,刘建,何江,夏正汉,付文君,张冬梅.马铃薯甲虫主要生物学特性及发生规律研究.新疆农业科学.2010,47(006):1147-1151.
    16. 洪波,张云慧,李超,吐尔逊,陈林,程登发.马铃薯甲虫空间分布型及序贯抽样.植物保护学报.2010,37(3):206-210.
    17. 王利军,郭文超,徐建军,肖利凤,韩振忠,张建萍.马铃薯甲虫空间分布型及抽样技术研究. 环境昆虫学报.2011,33(2):147-153.
    18. Logan, P A, Casagrande, R A, Faubert, H H, Drummond, F A. Temperature-dependent development and feeding of immature Colorado potato beetles, Leptinotarsa decemlineata (Say)(Coleoptera: Chrysomelidae). Environmental Entomology.1985,14 (3):275-283.
    19. Tauber, C A, Tauber, M J, Gollands, B, Wright, R J, Obrycki, J J. Preimaginal development and reproductive responses to temperature in two populations of the Colorado potato beetle (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America.1988,81 (5):755-763.
    20. Ferro, D, Logan, J, Voss, R, Elkinton, J. Colorado potato beetle (Coleoptera:Chrysomelidae) temperature-dependent growth and feeding rates. Environmental Entomology.1985,14 (3):343-348.
    21. Logan, P A, Casagrande, R A. Predicting Colorado potato beetle (Leptinotarsa decemlineata Say) density and potato yield loss. Environmental Entomology.1980,9 (5):659-663.
    22. Groden, E, Casagrande, R A. Population dynamics of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera:Chrysomelidae), on Solanum berthaultii. Journal of economic entomology. 1986,79(1):91-97.
    23. 吐尔逊·阿合买提,许建军,郭文超,刘建,何江,夏正汉,付文君,张冬梅.马铃薯甲虫主要生物学特性及发生规律研究.新疆农业科学.2010,47(6):1147-1151.
    24. 王春林,赵建周.马铃薯甲虫.北京:中国农业出版社,1994.
    25. 张学祖.马铃薯叶甲在世界的发生,分布及研究现状.新疆农业科学.1994,(005):214-217.
    26. 赵建周.国外马铃薯甲虫发生危害与防治概况.植物保护.1995,21(4):35-36.
    27. 洪波,吐尔逊,郭文超,程登发.马铃薯甲虫发育与温度关系的研究和发生检验.植物保护科技创新与发展——中国植物保护学会2008年学术年会论文集.2008.
    28. Tauber, M J, Tauber, C A, Obrycki, J J, Gollands, B, Wright, R J. Geographical variation in responses to photoperiod and temperature by Leptinotarsa decemlineata (Coleoptera:Chrysomelidae) during and after dormancy. Annals of the Entomological Society of America.1988,81 (5):764-773.
    29. Hurst, G. Meteorology and the Colorado potato beetle1975.
    30. Ooperi S, J A. Modeling invasion dynamics of Colorado potato beetle to test spatially targeted management strategy. In Proceedings of the 18th World Imacs Congress and Modsim 09 International Congress on Modelling and Simulation:Interfacing Modelling and Simulation with Mathematical and Computational Sciences (Cairns, Australia),2009,1957-1963.
    31. Hare, J D. Ecology and management of the Colorado potato beetle. Annual Review of Entomology. 1990,35(1):81-100.
    32. Afonin, A, Greene, S, Dzyubenko, N, Frolov, A. Interactive Agricultural Ecological Atlas of Russia and Neighboring Countries. Economic Plants and their Diseases, Pests and Weeds.2009.
    33. 周昭旭,罗进仓,吕和平,郭文超.温度对马铃薯甲虫生长发育的影响.昆虫学报.2010,53(8): 926-931.
    34. 周昭旭,罗进仓,吕和平,郭文超.温度对马铃薯甲虫生长发育的影响.昆虫学报.2010,53(8):926-931.
    35. 洪波,程登发,吐尔逊,郭文超,陈林,张云慧.新疆地区马铃薯甲虫发育与温度关系的研究.植物保护.2009,35(6):60-63.
    36. Lee, J R, Richard, E, Costanzo, J O N P, Kaufman, P E, Lee, M R, Wyman, J A. Ice-nucleating active bacteria reduce the cold-hardiness of the freeze-intolerant Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of economic entomology.1994,87 (2):377-381.
    37. Lee, R, Costanzo, J P, Mugano, J. Regulation of supercooling and ice nucleation in insects. European Journal of Entomology.1996,93:405-418.
    38. Lee, R E, Steigerwald, K A, Wyman, J A, Costanzo, J P, Lee, M R. Anatomic site of application of ice-nucleating active bacteria, mfects supercooling in the Colorado potato beetle (Coleoptera: Chrysomelidae). Environmental Entomology.1996,25 (2):465-469.
    39. Bale, J, Hayward, S. Insect overwintering in a changing climate. Journal of Experimental Biology. 2010,213 (6):980-994.
    40. Bale, J. Insects and low temperatures:from molecular biology to distributions and abundance. Philosophical Transactions of the Royal Society of London. Series B:Biological Sciences.2002,357 (1423):849-862.
    41. Lyytinen, A, Boman, S, Grapputo, A, Lindstr m, L, Mappes, J. Cold tolerance during larval development:effects on the thermal distribution limits of Leptinotarsa decemlineata. Entomologia Experimentalis et Applicata.2009,133 (1):92-99.
    42. Costanzo, J P, Humphreys, T L, Lee Jr, R E, Moore, J B, Lee, M R, Wyman, J A. Long-term reduction of cold hardiness following ingestion of ice-nucleating bacteria in the Colorado potato beetle, Leptinotarsa decemlineata. Journal of Insect Physiology.1998,44 (12):1173-1180.
    43. Minder, I, Chesnek, S. The dependence of cold resistance in the Colorado beetle (Leptinotarm decemlineata) on the time of the onset of diapause. Zoologicheskii Zhurnal.1970,49 (6):855-861.
    44. 张云慧,张智,何江,吐尔逊,程登发.马铃薯甲虫自然种群抗寒能力测定.植物保护.2012,38(5):64-67.
    45. Boiteau, G, Coleman, W. Cold tolerance in the Colorado potato beetle, Leptinotarsa decemlineata (Say)(Coleoptera:Chrysomelidae). The Canadian Entomologist.1996,128 (6):1087-1099.
    46. Hiiesaar, K, Metspalu, L, Judu, J, Jgar, K. Over-wintering of the Colorado potato beetle(Leptinotarsa decemlineata Say) in field conditions and factors affecting its population density in Estonia. Agronomy research.2006,4 (1):21-30.
    47. Vlasova, V. Forecasting the area of distribution of the Colorado beetle in the Asiatic territory of the USSR. Zashchita Rastenii.1978, (6):44-45.
    48. Lague, C, Khelifi, M, Gill, J, Lacasse, B. Pneumatic and thermal control of Colorado potato beetle. Canadian Agricultural Engineering.1999,41 (1):53-57.
    49. Kung, K S, Milner, M, Wyman, J, Feldman, J, Nordheim, E. Survival of Colorado potato beetle (Coleoptera:Chrysomelidae) after exposure to subzero thermal shocks during diapause. Journal of economic entomology.1992,85 (5):1695-1700.
    50. 邓小霞,王俊刚,江海澜,何泽敏,马天文,彭俊.马铃薯甲虫自然种群对光周期的适应性研究.石河子大学学报.2012,30(2).
    51. Caprio, M A, Grafius, E J. Effects of light, temperature, and feeding status on flight initiation in postdiapause Colorado potato beetles (Coleoptera:Chrysomelidae). Environmental Entomology. 1990,19 (2):281-285.
    52. Ushatinskaya, R, Ivanchik, E. Reversibility of ecologo-physiological adaptations in the Colorado beetle (Leptinotarsa decemlineata). Zoologicheskii Zhurnal.1982,61 (3):358-363.
    53. 张学祖.马铃薯甲虫在世界的发生、分布及研究现状.新疆农业科学.1994,5:214-216.
    54. Dickens, J C. Behavioural responses of larvae of Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera:Chrysomelidae), to host plant volatile blends attractive to adults. Agricultural and Forest Entomology.2002,4 (4):309-314.
    55. Dickens, J C. Orientation of Colorado potato beetle to natural and synthetic blends of volatiles emitted by potato plants. Agricultural and Forest Entomology.2001,2 (3):167-172.
    56. Dickens, J. Plant volatiles moderate response to aggregation pheromone in Colorado potato beetle. Journal of Applied Entomology.2006,130 (1):26-31.
    57. Bolter, C J, Dicke, M, Van Loon, J J, Visser, J, Posthumus, M A. Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination. Journal of Chemical Ecology. 1997,23 (4):1003-1023.
    58. Hsiao, T. Host plant adaptations among geographic populations of the Colorado potato beetle. Entomologia Experimentalis et Applicata.1978,24 (3):437-447.
    59. Jolivet, P. The Colorado beetle menaces Asia(Leptinotarsa decemlineata Say 1824)(Col. Chrysomelidae). L'Entomologiste.1991,47:29-48.
    60. 罗进仓,刘长仲,周昭旭.不同寄主植物上马铃薯甲虫种群生长发育的比较研究.昆虫学报.2012,55(1):84-90.
    61. 吐尔逊·阿合买提,许建军,郭文超,刘建,何江,夏正汉,付文君,张冬梅.马铃薯甲虫主要生物学特性及发生规律研究.新疆农业科学.2010,47(6):1147-1151.
    62. 阿马努拉依明尼亚孜.黄花刺茄的扩散特性及其与马铃薯甲虫的相互作用.乌鲁木齐:新疆农业大学,2011.
    63. Voss, R, Ferro, D. Phenology of flight and walking by Colorado potato beetle (Coleoptera: Chrysomelidae) adults in western Massachusetts. Environmental Entomology.1990,19(1):117-122.
    64. Voss, R H, Ferro, D N. Ecology of migrating Colorado potato beetles (Coleoptera:Chrysomelidae) in western Massachusetts. Environmental Entomology.1990,19(1):123-129.
    65. Wiktelius, S. Wind dispersal of insects. Grana.1982,20 (3):205-207.
    66. Sandeson, P, Boiteau, Q Le Blanc, J R. Adult density and the rate of Colorado potato beetle (Coleoptera:Chrysomelidae) flight take-off. Environmental Entomology.2002,31 (3):533-537.
    67. Johansson, K. Oevervintringsfoersoek med koloradoskalbagge vintern 1973-74. Vaxtskyddsnotiser. 1975,39.
    68. Graensbo, G. Control measures towards Colorado beetle eradication in Sweden. EPPO Bulletin.1980, 10 (4):499-505.
    69. Gripwall, U. Koloradoskalbaggen. Sveriges Lantbruksuniversitet, Uppsala,:1993.
    70. Hansen LM, N G. Philipsen H, Moller L, Secher B. Colorado Beetles:Biology and Control. Denmark: Gron Viden, Markbrug, Tjele,2004.
    71. De Wilde, J, Hsiao, T. Geographic diversity of the Colorado potato beetle and its infestation in Eurasia. Advances in potato pest management. Hutchinson Ross, Stroudsburg, PA.1981:47-68.
    72. Caprio, M A. Flight initiation behavior and host plant attraction in the Colorado potato beetle, Leptinotarsa decemlineata (Say)(Coleoptera:Chrysomelidae). Michigan State University. Department of Entomology,1987.
    73. Alyokhin, A, Ferro, D N, Hoy, C W, Head, G. Laboratory assessment of flight activity displayed by Colorado potato beetles (Coleoptera:Chrysomelidae) fed on transgenic and Cry3a toxin-treated potato foliage. Journal of economic entomology.1999,92 (1):115-120.
    74. 郭利娜,郭文超,刘曼双,吐尔逊,何江,许建军.拥挤度对马铃薯甲虫飞行能力的影响.新疆农业科学.2011,48(02):320-327.
    75. Ferro, D N, Alyokhin, A V, Tobin, D B. Reproductive status and flight activity of the overwintered Colorado potato beetle. Entomologia Experimentalis et Applicata.1999,91 (3):443-448.
    76. 郭利娜,郭文超,吐尔逊,何江,许建军.寄主对马铃薯甲虫飞行能力的影响.新疆农业科学.2011,48(5):853-858.
    77. 郭利娜,郭文超,吐尔逊,何江,许建军.温度与取食对越冬后马铃薯甲虫飞行能力的影响.植物保护.2011,37(5):56-61.
    78. Kuhar, T P, Hitchner, E M, Youngman, R R, Mori, K, Dickens, J C. Field response of Colorado potato beetle to enantiomeric blends of CPB I aggregation pheromone. Agricultural Sciences.2012,3 (7): 896-899.
    79. Piiroinen, S, Lindstrom, L, Lyytinen, A, Mappes, J, Chen, Y H, Izzo, V, Grapputo, A. Pre-invasion history and demography shape the genetic variation in the insecticide resistance-related acetylcholinesterase 2 gene in the invasive Colorado potato beetle. BMC Evolutionary Biology.2013, 13(1):13.
    80. Szendrei, Z, Byrne, A M. Field evaluations of registered and experimental insecticides for managing Colorado potato beetle on potatoes2012.
    81. Szendrei, Z, Grafius, E, Byrne, A, Ziegler, A. Resistance to neonicotinoid insecticides in field populations of the Colorado potato beetle (Coleoptera:Chrysomelidae). Pest management science. 2012.
    82. Yankova, V, Nacheva, E. Response of Susceptibility to Colorado potato beetle Leptinotarsa decemlineata Say in Potato Varieties and Lines Grown in Conditions of Biological Production. Plant Science.2012,49.
    83. Boman, S. Ecological and genetic factors contributing to invasion success:The northern spread of the Colorado potato beetle(Leptinotarsa decemlineata):University of Jyva'skyla,2008.
    84. Boman, S, Grapputo, A, Lindstrom, L, Lyytinen, A, Mappes, J. Quantitative genetic approach for assessing invasiveness:geographic and genetic variation in life-history traits. Biological Invasions. 2008,10 (7):1135-1145.
    85. Carrasco, L R, Baker, R, MacLeod, A, Knight, J D, Mumford, J D. Optimal and robust control of invasive alien species spreading in homogeneous landscapes. Journal of the Royal Society Interface. 2010,7 (44):529.
    86. PaDIL. Plant Biosecurity Toolbox, Colorado Potato Beetle-Leptinotarsa decemlineata:2009.
    87. Alvarez, J M, Srinivasan, R, Cervantes, F A. Occurrence of the Carabid beetle, pterostichus melanarius (Illiger), in potato ecosystems of Idaho and its predatory potential on the Colorado potato beetle and aphids. American Journal of Potato Research.2012:1-10.
    88. Werling, B P, Gratton, C. Local and broadscale landscape structure differentially impact predation of two potato pests. Ecological Applications.2010,20 (4):1114-1125.
    89. Capinera, J L, Horton, D R, Epsky, N D, Chapman, P L. Effects of plant density and late-season defoliation on yield of field beans. Environmental Entomology.1987,16 (1):274-280.
    90. Bach, C E. The influence of plant dispersion on movement patterns of the Colorado potato beetle, Leptinotarsa decemlineata(Coleoptera:Chrysomelidae). Great Lakes Entomologist.1982,15 (4): 247-252.
    91. Zehnder, G W, Hough, G J. Colorado potato beetle (Coleoptera:Chrysomelidae) population development and effects on yield of potatoes with and without straw mulch. Journal of economic entomology.1990,83 (5):1982-1987.
    92. Szendrei, Z, Kramer, M, Weber, D. Habitat manipulation in potato affects Colorado potato beetle dispersal. Journal of Applied Entomology.2009,133 (9-10):711-719.
    93. Boiteau, G, Vincent, C, Meloche, F, Leskey, T C. Harmonic radar:Assessing the impact of atg weight on walking activity of Colorado potato beetle, Plum curculio, and Western corn rootworm. Journal of economic entomology.2010,103 (1):63-69.
    94. 程登发,张,陈林.农作物重大生物灾害监测与预警技术.北京:重庆出版社,2010.
    95. 李超,张智,郭文超,张云慧,孙京瑞,程登发,刘怀.基于GIS的马铃薯甲虫扩散与河流关系研究——以新疆沙湾县为例.生态学报.2011,31(21):6488-6494.
    96. 张智,李超,程登发,张云慧,孙京瑞,魏政.高温对马铃薯甲虫致死作用的初步研究.中国农业科学技术出版社,City:2010.
    97. 王春林.外来入侵生物(马铃薯甲虫)的预警研究.重庆:重庆大学,2005.
    98. 齐静,程登发,乔红波,张云慧,陈林,孙京瑞,洪波.马铃薯受马铃薯甲虫危害后冠层光谱特征的初步研究.植物保护.2010,36(01):69-72.
    99. 洪波,陈林,赵惠燕,程登发.基于GIS的有害生物分布预测系统研究开发.计算机工程与设计.2009,(2):499-502.
    100.洪波.基于GIS的有害生物空间分布预测系统研究.杨凌:西北农林科技大学,2009.
    101. Liebhold, A M, Tobin, P C. Population ecology of insect invasions and their management. Annu. Rev. Entomol.2008,53:387-408.
    102. Peterson, D P, Fausch, K D, White, G C. Population ecology of an invasion:effects of brook trout on native cutthroat trout. Ecological Applications.2004,14 (3):754-772.
    103. Kolar, C S, Lodge, D M. Progress in invasion biology:predicting invaders. Trends in Ecology & Evolution.2001,16(4):199-204.
    104. Theoharides, K A, Dukes, J S. Plant invasion across space and time:factors affecting nonindigenous species success during four stages of invasion. New Phytologist.2007,176 (2):256-273.
    105. Pyscek, P, Hulme, P E. Spatio-temporal dynamics of plant invasions:linking pattern to process. Ecoscience.2005,12 (3):302-315.
    106. Voss, R, Ferro, D. Ecology of migrating Colorado potato beetles (Coleoptera:Chrysomelidae) in western Massachusetts. Environmental Entomology.1990,19(1):123-129.
    107. Follett, P A, Cantelo, W W, Roderick, G K. Local dispersal of overwintered Colorado potato beetle (Chrysomelidae:Coleoptera) determined by mark and recapture. Environmental Entomology.1996, 25(6):1304-1311.
    108. Boiteau, G, Picka, J D, Watmough, J. Potato field colonization by low-density populations of Colorado potato beetle as a function of crop rotation distance. Journal of economic entomology.2008, 101 (5):1575-1583.
    109. Leskinen, M, Markkula, I, Koistinen, J, Pylkko, P, Ooperi, S, Siljamo, P, Ojanen, H, Raiskio, S, Tiilikkala, K. Pest insect immigration warning by an atmospheric dispersion model, weather radars and traps. Journal of Applied Entomology.2011,135 (1-2):55-67.
    110. Valosaari, K, Aikio, S, Kaitala, V. Spatial simulation model to predict the Colorado potato beetle invasion under different management strategies. Helsinki:Suomen Biologian Seura Vanamo,1964-, City:2008.
    111. Gui, L Y, Boiteau, G. Effect of food deprivation on the ambulatory movement of the Colorado potato beetle, Leptinotarsa decemlineata. Entomologia Experimentalis et Applicata.2010,134 (2):138-145.
    112. Reznik, S Y. Host plant population density and distribution pattern as factors limiting geographic distribution of the ragweed leaf beetle Zygogramma suturalis F.(Coleoptera, Chrysomelidae). Entomological Review.2011,91 (3):292-300.
    113.中国国际工程咨询公司《保障食物安全》课题组.关于保障中国食物安全问题的对策建议.中国粮食经济.2003,(4):4-7.
    114.屈冬玉,谢开云,金黎平,庞万福,卞春松,段绍光.中国马铃薯产业发展与食物安全.中国农业科学.2005,38(2):358-362.
    115.李学湛,吕典秋.东北地区脱毒马铃薯种薯质量安全现状及建议.农业质量标准.2004,(4):36-37.
    116.屈冬玉,谢开云,金黎平,庞万福,卞春松,段绍光.中国马铃薯产业发展与食物安全.中国农业科学.2005,38(2):358-362.
    117. Alyokhin, A, Baker, M, Mota-Sanchez, D, Dively, G, Grafius, E. Colorado potato beetle resistance to insecticides. American Journal of Potato Research.2008,85 (6):395-413.
    118.郭文超,邓春生,李国清,邓建宇,姜卫华,吴家和,王佩玲,谭万忠,张青文.我国马铃薯甲虫生物防治技术研究进展.新疆农业科学.2012,48(12):2217-2222.
    119. Pilcher, C, Obrycki, J, Rice, M, Lewis, L. Preimaginal development, survival, and field abundance of insect predators on transgenic Bacillus thuringiensis corn. Environmental Entomology.1997,26 (2): 446-454.
    120.李红,秦晓辉,赛丽蔓.博州地区马铃薯甲虫发生特点与综合防治技术.中国蔬菜.2007,(7):55-56.
    121.王瑞,王印政,万方浩.外来入侵植物一年蓬在中国的时空扩散动态及其潜在分布区预测.生态学杂志.2010,29(6):1068-1074.
    122.王瑞.我国严重威胁性外来入侵植物入侵与扩散历史过程重建及其潜在分布区的预测.中国科学院研究生院(植物研究所),2006.
    123.吐尔逊.马铃薯甲虫发生规律检疫和防治技术研究.乌鲁木齐:新疆农业大学,1995.
    124.鞠瑞亭,李慧,石正人,李博.近十年中国生物入侵研究进展.生物多样性.2012,20(5):581-611.
    125. Ding, H, Xu, H, Liu, Z. Impacts of Invasion of Eupatorium adenophorum on Vegetation Diversity [J]. Journal of Ecology and Rural Environment.2007,2:005.
    126. Lei, Y, Xiao, H, Feng, Y, Li, B, Ma, K. Impacts of alien plant invasions on biodiversity and evolutionary responses of native species. Biodiversity Science.2010,18 (6):622-630.
    127.张智,张云慧.阻断马铃薯甲虫东扩之路.大自然.2011,(04):53.
    128.罗进仓,刘长仲,周昭旭.不同寄主植物上马铃薯甲虫种群生长发育的比较研究.昆虫学报.2012,55(001):84-90.
    129.罗华东,王利君,谭万忠,周军,杜喜翠.马铃薯甲虫虫生真菌分离及强致病菌株筛选.南京农业大学学报.2011,(01).
    130.徐汝梅,成新跃.昆虫种群动态学—基础与前沿.北京:科学出版社,2005.
    131.徐汝梅.昆虫种群生态学.北京:北京师范大学出版社,1987.
    132.魏鸿钧.马铃薯瓢虫与马铃薯甲虫发生动态.昆虫知识.1995,32(3):187-188.
    133.王秀,苗孝可,孟志军,叶涛,潘瑜春.插值方法对GIS土壤养分插值结果的影响.土壤通报.2005,36(6):826-830.
    134.丁岩钦.昆虫数学动态学.北京:科学出版社,1994.
    135. Midgarden, D, Fleischer, S, Weisz, R, Smilowitz, Z. Impact of site-specific IPM on the development of esfenvalerate resistance in Colorado potato beetle (Coleoptera:Chrysomelidae) and on population densities of natural enemies. J. Econ. Entomol.1997,90:855-867.
    136. Huang, H, Smilowitz, Z, Saunders, M C, Weisz, R. Field selection for esfenvalerate resistance by the Colorado potato beetle. American Journal of Potato Research.1995,72 (1):1-12.
    137. Fleischer, S, Blom, P, Weisz, R. Sampling in precision IPM:when the objective is a map. Phytopathology.1999,89(11):1112-1118.
    138. Weisz, R, Fleischer, S, Smilowitz, Z. Site-specific integrated pest management for high value crops: sample units for map generation using the Colorado potato beetle (Coleoptera:Chrysomelidae) as a model system. Journal of economic entomology.1995,88 (5):1069-1080.
    139. Weisz, R, Fleischer, S, Smilowitz, Z. Site-specific integrated pest management for high-value crops: impact on potato pest management. Journal of economic entomology.1996,89 (2):501-509.
    140. Szendrei, Z, Grafius, E, Byrne, A, Ziegler, A. Resistance to neonicotinoid insecticides in field populations of the Colorado potato beetle (Coleoptera:Chrysomelidae). Pest management science. 2012,68 (6):941-946.
    141. Voss, R H, Ferro, D N. Phenology of flight and walking by Colorado potato beetle (Coleoptera: Chrysomelidae) adults in western Massachusetts. Environmental Entomology.1990,19 (1):117-122.
    142.张蓉,朱猛蒙,马建华,王芳.基于地理信息系统的耕地苜蓿斑蚜种群发生的适宜生境.应用生态学报.2009,20(8):1.
    143.周强,张润杰,古德祥.地质统计学在昆虫种群空间结构研究中的应用概述(?).动物学研究.1998,19(6):482-488.
    144.张润杰,周强,陈翠贤,王寿松.普通克立格法在昆虫生态学中的应用.应用生态学报.2003,14(1):90-92.
    145.王正军,李典谟,商晗武,程家安.地质统计学理论与方法及其在昆虫生态学中的应用.昆虫知识.2002,39(6):405-411.
    146.汪俊,高金耀,吴招才,张涛.局部多项式插值方法在多源海底沉积厚度数据融合中的应用.海洋科学.2009,(4):25-28.
    147.孙志忠,袁慰平,闻震初.数值分析.南京:东南大学出版社,2002.
    148. Polzehl, J, Spokoiny, V. Varying coefficient regression modeling by adaptive weights smoothing: WIAS,2003.
    149. Fortin, M-J, James, P, MacKenzie, A, Melles, S J, Rayfield, B. Spatial statistics, spatial regression, and graph theory in ecology. Spatial Statistics.2012,1:100-109.
    150.郭文超,吐尔逊,许咏梅,刘建,许建军,王佩玲,何江,夏正汉,付文君,景新跃,张冬梅.马铃薯甲虫持续防控技术研究与应用.新疆农业科学.2011,(02).
    151. Blom, P E, Fleischer, S J, Smilowitz, Z. Spatial and temporal dynamics of Colorado potato beetle (Coleoptera:Chrysomelidae) in fields with perimeter and spatially targeted insecticides. Environmental Entomology.2002,31 (1):149-159.
    152.魏玉红,罗进仓,周昭旭,刘月英.甘肃省苹果蠹蛾卵的空间分布格局.应用昆虫学报ISTIC.2012,49(1).
    153.梅增霞,李建庆.韭菜迟眼蕈蚊幼虫的空间格局及抽样技术.湖北农业科学.2012,51(6):1128-1130.
    154.胡靖,张廷伟,刘长仲,韩天虎,代健聪,陈威,王小强.基于模糊聚类法的亚洲小车蝗种群空间格局分析.甘肃农业大学学报.2012,47(3):62-66.
    155.李丹,赵惠燕,胡想顺.蚜虫种群时空分布动态模型.生态学报.2010,30(18):4986-4992.
    156.蒋群,许光泉,梁修雨.主成分和聚类分析应用于淮南矿区地下水水质评价.能源环境保护.2007,21(2):51-59.
    157.吴景社,康绍忠,王景雷,黄修桥,宋毅夫.基于主成分分析和模糊聚类方法的全国节水灌溉分区研究.农业工程学报.2004,20(4):64-68.
    158. Boman, S. Ecological and genetic factors contributing to invasion success:The northern spread of the Colorado potato beetle (Leptinotarsa decemlineata). University of Jyvaskyla,2008.
    159. Hoffmann, A A, Blows, M W. Species borders:ecological and evolutionary perspectives. Trends in Ecology & Evolution.1994,9 (6):223-227.
    160. Gaston, K J. The structure and dynamics of geographic ranges:Oxford University Press, USA,2003.
    161. Tilavov, T. Changes in resistance to high temperature during the post-embryonal development of the Colorado potato beetle. Zoologicheskii Zhurnal.1969,48 (12):1811-1815.
    162.陈永川,范泽,曹艳,张林,杨红艳.吐鲁番盆地最高,最低气温的气候变化特征.农技服务.2010,27(10):1307-1308.
    163. Goovaerts, P. Geostatistics for natural resources evaluation:Oxford University Press, USA,1997.
    164. Webster, R, Oliver, M A. Geostatistics for environmental scientists:John Wiley & Sons Inc,2007.
    165.王政权.地质统计学及其生态学中的应用.北京:科学出版社,1999.
    166.张英,温跨达.新疆降水丰,旱特点及水资源的稳定度.干旱区资源与环境.1992,6(2):80-84.
    167.蓝永超,沈永平,苏宏超,文军,吴素芬,魏荣庆.全球变暖情景下新疆降水的变化.干旱区资源与环境.2008,22(10):66-71.
    168.王娇.新疆降水的环流背景场及水汽输送兰州:兰州大学,2006.
    169.傅德平,赵志敏,苏静,吕光辉.基于GIS的新疆降水空间插值方法分析.水土保持研究..2008,15(6):35-37.
    170.李江风.新疆气候.北京:气象出版社,1991.
    171.刘晔,沈泽昊.长江三峡库区昆虫丰富度的海拔梯度格局——气候,土地覆盖及采样效应的影响.生态学报.2011,31(19):5663-5675.
    172.张飞萍,钟景辉,江宝福,李少尉,缪福清.沿海拔高度松突圆蚧热耐受性的变化.昆虫学报.2010,(001):68-75.
    173.刘学军,龚健雅,周启鸣,汤国安.基于DEM坡度坡向算法精度的分析研究.测绘学报.2004,33(3):258-263.
    174. Liu, X-j. On the Accuracy of the Algorithms for Interpreting Grid-based Digital Terrain Model. Wuhan:Wuhan University,2002.
    175. Landolt, P J, Tumlinson, J, Alborn, D. Attraction of Colorado potato beetle (Coleoptera: Chrysomelidae) to damaged and chemically induced potato plants. Environmental Entomology.1999, 28 (6):973-978.
    176. Hitchner, E M, Kuhar, T P, Dickens, J C, Youngman, R R, Schultz, P B, Pfeiflfer, D G. Host plant choice experiments of Colorado potato beetle (Coleoptera:Chrysomelidae) in Virginia. Journal of economic entomology.2008,101 (3):859-865.
    177. Schutz, S, WeiBbecker, B, Klein, A, Hummel, H. Host plant selection of the Colorado potato beetle as influenced by damage induced volatiles of the potato plant. Naturwissenschaften.1997,84 (5): 212-217.
    178. Yaglikci, Y, Karsavuran, Y. The effects of some hosts on the water and dry matter amounts of Leptinotarsa decemlineata (Say)(Coleoptera:Chrysomelidae). Ege Universitesi Ziraat Fakiiltesi Dergisi.2011,48 (2):93-102.
    179. Weber, E, Sun, S-G, Li, B. Invasive alien plants in China:diversity and ecological insights. Biological Invasions.2008,10 (8):1411-1429.
    180. Xiao Wen, W, Jing, L, JiaKuan, C, Bo, L. Spatial patterns of invasive alien plants in China and its relationship with environmental and anthropological factors. Journal of Plant Ecology.2006,30 (4): 576-584.
    181. Wan, F, Zhang, G, Liu, S, Luo, C, Chu, D, Zhang, Y, Zang, L, Jiu, M, Lu, Z, Cui, X. Invasive mechanism and management strategy of Bemisia tabaci (Gennadius) biotype B:Progress report of 973 Program on invasive alien species in China. Science in China Series C:Life Sciences.2009,52 (1):88-95.
    182. Wan, F-H, Guo, J-Y, Zhang, F. Research on biological invasions in China:Science Press,2009.
    183. Liu, J, Liang, S, Liu, F, Wang, R, Dong, m. Invasive alien plant species in China:regional distribution patterns. Diversity and Distributions.2005,11 (4):341-347.
    184. Huang, D, Zhang, R, Kim, K C, Suarez, A V. Spatial pattern and determinants of the first detection locations of invasive alien species in mainland China. PloS one.2012,7 (2):e31734.
    185.李军,杨青,史玉光.基于DEM的新疆降水量空间分布.干旱区地理.2010,33(6):868-873.
    186.赵成义,施枫芝,盛钰,李君,赵志敏,韩明,伊力,哈木,伊马木.近50a来新疆降水随海拔变化的区域分异特征.冰川冻土.2011,33(6):1203-1213.
    187. G, K G, R, F R. Response of insecticide resistant and susceptible Colorado potato beetle to 2-tride-canone and resistant tomato foliage:the absence of cross resistance. Entomol Exp Appl.1987, 45:187-192.
    188. Mena Covarrubias, J, Drummond, F A, Haynes, D L. Population dynamics of the Colorado potato beetle (Coleoptera:Chrysomelidae) on horsenettle in Michigan. Environmental Entomology.1996, 25 (1):68-77.
    189. Hsiao, T H, Fraenkel, G. The role of secondary plant substances in the food specificity of the Colorado potato beetle. Annals of the Entomological Society of America.1968,61 (2):485-493.
    190. Bongers, W. Aspects of host-plant relationship of the Colorado beetle:Veenman,1970.
    191.林玉,谭敦炎.一种潜在的外来入侵植物:黄花刺茄.植物分类学报.2007,45(5):675-685.
    192.林玉.黄花刺茄在新疆的繁殖特点与潜在天敌研究.新疆农业大学,2007.
    193. Boiteau, G, Picka, J, Watmough, J. Potato field colonization by low-density populations of Colorado potato beetle as a function of crop rotation distance. Journal of economic entomology.2008,101 (5): 1575-1583.
    194.王俊,王登元,候洪.新疆马铃薯甲虫发生与防治现状.新疆农业科技.2008,3:60.
    195.赵红山,秦晓辉,马德成.7种药剂对马铃薯甲虫的防治效果评价.植物检疫.2007,21(4):217-219.
    196.郭建国,张海英,刘永刚,吕和平,郭文超.新烟碱了杀虫剂拌种对马铃薯甲虫幼虫食物利用和生长发育的影响.昆虫学报.2010,53(7):748-753.
    197.王志田,姜卫华,李国清.新疆北疆马铃薯甲虫成虫抗药性水平监测.农药.2010,49(3):206-208.
    198.钱天荣,曲能治,陈宏,周永淑.马铃薯甲虫在我国及周边地区适生地的初步预测.植物检疫.1995,9(2):95-97.
    199.程义美,崔良刚,陈月颖,史殿军,王威.马铃薯甲虫在吉林省发生的可能性分析.吉林农业科学.2005,30(03):34-35.
    200.隋广义,焦晓丹,袁来喜.马铃薯甲虫入侵黑龙江省的风险.植物检疫.2008,22(6):369-371.
    201.白丽月,伍世代,朱佳佳.基于GIS的景观空间分布趋势分析.吉林师范大学学报(自然科学版).2008,(1):23-25.
    202.郝振华,杨海博,张海燕,吴蔚,方源松,盛仙娇,张发成,陈燕芳,张孝羲,翟保平.台风莫兰蒂对褐飞虱迁飞的影响.应用昆虫学报.2011,48(5):1278-1287.
    203.季璐.气象条件对稻飞虱迁飞过程及后期暴发的影响机理研究.杭州:中国计量学院,2012.
    204.唐基友.永福县水稻两迁害虫发生发展的气象条件分析.南方农业学报.2011,42(5):512-514.
    205.白先达,黄超艳,唐广田,李国刚,邹丽霞,贾方曌.气象条件对稻纵卷叶螟迁飞的影响分析.中国农学通报.2010,26(21):262-267.
    206.蒋春先,杨秀丽,齐会会,张云慧,程登发.中国华南地区稻纵卷叶螟迁飞的一次雷达观测.中国农业科学.2012,45(023):4808-4817.
    207.齐国君,芦芳,高燕,梁居林,蓝日青,张孝羲,翟保平,吕利华.稻纵卷叶螟2010年的一次迁飞过程及其虫源分析.昆虫学报.2011,54(10):1194-1203.
    208.王凤英,张孝羲,翟保平.稻纵卷叶螟的飞行和再迁飞能力.昆虫学报.2010,53(11):1265-1272.
    209.潘蕾,翟保平.2002年我国华北三代粘虫大发生的虫源分析.生态学报.2009,29(11):6248-6256.
    210.张丽,张云慧,曾娟,姜玉英,程登发.2010年牧区2代草地螟成虫迁飞的虫源分析.生态学报.2012,32(8):2371-2380.
    211.高书晶,魏云山,特木儿,刘爱萍,徐林波,王宁.亚洲小车蝗飞行能力及其与种群密度的关系.草业科学.2012,29(012):1915-1919.
    212.张云慧,程登发,姜玉英,张跃进,孙京瑞.北京地区越冬代旋幽夜蛾迁飞的虫源分析.中国农业科学.2010,43(9):1815-1822.
    213.苗进,武予清,郁振兴,陈华爽,刘顺通,蒋月丽,段云.麦红吸浆虫随气流远距离扩散的轨迹分析.昆虫学报.2011,54(4):432-436.
    214.张富满,王越人,王宝春.稻水象甲的扩散原因及治理对策.吉林农业科学.2006,31(5):42-44.
    215.郭文超,吐尔逊,郭利娜,何江,许建军.营养对马铃薯甲虫迁飞能力的影响.新疆农业科学.2012,49(3):461-469.
    216.张华普,沈瑞清,郭成瑾,张丽荣,刘浩,康萍芝.马铃薯甲虫入侵宁夏的风险分析.植物检疫.2012,2:015.
    217.张正坤,鲁新,李建平,张有才,丁毅弘,徐文静,杜茜,李启云,郭文超.东北地区马铃薯甲虫监测与入侵风险分析.吉林农业科学.2012,37(2):42-44.
    218. Sang, W, Zhu, L, Axmacher, J C. Invasion pattern of Eupatorium adenophorum Spreng in southern China. Biological Invasions.2010,12 (6):1721-1730.
    219. Wang, R, Wang, Y. Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China. Diversity and Distributions.2006,12 (4):397-408.
    220. Anderson, T M, McNaughton, S, Ritchie, M. Scale-dependent relationships between the spatial distribution of a limiting resource and plant species diversity in an African grassland ecosystem. Oecologia.2004,139 (2):277-287.
    221. Lu, Z, Ma, K. Scale dependent relationships between native plant diversity and the invasion of croftonweed (Eupatorium adenophorum) in southwest China2009.
    222.阿不力克木·阿不力孜,商思臣.新疆河流径流特征分析.干旱环境监测.2003,16(02):112-1 16.
    223.左然玲,强胜,李儒海.稻作区灌溉水流传播的杂草种子与稻田土壤杂草种子库的关系.中国水稻科学.2007,(04):417-424.
    224.张生芳.马铃薯甲虫.植物检疫.1988,2(1):59-68.
    225.包云轩,严明良,袁成松,李金建.“海棠”台风对褐飞虱灾变性迁入影响的个例研究.气象科学.2008,28(4):450-455.
    226.王翠花,翟保平,包云轩.“海棠”台风气流场对褐飞虱北迁路径的影响.应用生态学报.2009,20(10):2506-2512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700