用户名: 密码: 验证码:
重庆市农田土壤有机碳库现状、变化趋势及固碳潜力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从20世纪末起,全球变化引起了众多科学家对陆地生态系统碳循环以及碳收支的关注。土壤碳库储量约是陆地生态系统中生物碳库的三倍,大气碳库的两倍。因此土壤有机碳库是全球陆地生态系统碳循环的研究热点,也是全球变化问题研究的核心内容之一。现有的研究结果表明,全球土壤碳库大小约为2500Pg,全球有机碳库储量约占全球碳库总量的60%。中国土壤有机碳库为80~90Pg,约占全球有机碳库的5%。其中中国表层土壤有机碳库大小为38~40Pg,约为中国土壤有机碳库的42.2%~47.5%。重庆地区表土和全土的土壤有机碳库大小分别为0.27Pg和1.00Pg。但是上述土壤有机碳库的估算数据多来源于第二次全国土壤普查时期的成果,因此其估算结果不能反映现时的土壤有机碳库状况。土壤碳库的碳汇与碳源作用是可以相互转化的,因此土壤碳库在减少碳排放与缓解全球变化中具有重要作用。农田土壤碳库是陆地生态系统中最活跃和最有影响力的碳库之一,其碳储量约占全球陆地系统碳储量的1/10。具估算,中国农田土壤有机碳储量约为全国土壤有机碳总储量的14.4%~16.2%。由于农田土壤有机碳库受到人类活动的强烈影响,且其碳库储量在短期内可受到人为调控。因此农田土壤的有机碳固定是我国CO2减排压力下碳汇的重要去向。西南地区地处大江大河上源,自然环境复杂多样,地貌类型复杂多变,地质历史特殊,生物多样性丰富。同时西南丘陵区的土壤类型和农田管理措施也与平原地区有着极大差异。然而对于西南丘陵地区,特别是重庆地区农田土壤碳库的储量和潜力研究极为缺乏。随着全球农田生态系统碳循环研究的深入,为了进一步研究土壤有机碳动态变化趋势,土壤有机碳动态模型得到了较为广泛的应用。在东北地区和华北地区,DNDC模型、RothC模型、CENTUR模型等有机碳动态模型得到了学者的验证。但是在西南丘陵地区,土壤有机碳动态模型的应用较少。适用于重庆地区紫色土和水稻土的有机碳动态模型仍未从得知。
     因此本文选取重庆市为研究区域,收集了重庆地区的土地利用现状图、土壤类型分布图、2006~2011年测土配方施肥数据以及第二次土壤普查数据等资料。根据不同时间点的土壤调查与分析数据,采用土壤类型法统计出重庆市农田土壤的有机碳储量,并分析了30年来重庆地区的土壤碳库变化趋势。同时以土属为统计单元,从2006年测土配方施肥项目的土壤调查和分析数据中,筛选出同一土属耕层有机碳含量最高值,将其作为该土属的固碳限值,对比2006年重庆市农田耕层土壤碳密度和碳储量,统计求出重庆市农田耕层土壤的固碳潜力。在有机碳动态模型验证方面:利用长期定位试验多年的监测数据和研究结果,对DNDC模型进行了验证。通过上述工作,本文希望能够阐明重庆市农田土壤固碳现状及其有机碳库的演变格局,预测重庆市农田土壤的固碳潜力,为土壤有机碳库演变机理研究提供理论参考,也为该区域农业可持续发展与粮食安全战略的建立和实施,以及与我国全球变化相关的国际谈判提供科学依据。
     具体研究结果如下:
     (1)在全国范围内,重庆农田表层SOCD(土壤有机碳密度)居于中等水平。不同土壤类型的SOCD0-20差异较大。重庆地区的水稻土SOCD0-20高于其他土壤类型,而紫色土SOCD0-20则显著低于其他土壤类型。紫色土和水稻土是重庆地区分布面积最大和SOCR0-20(0-20cm土层的土壤有机碳储量)最大的两种农田土壤类型,这两种土类的SOCR0-20共占到全市总储量的75.6%。由此可见,二者应是重庆地区农田SOC库的重点监控和调控对象。
     重庆市农田0-20cm土层SOCD为3.38kg/m2。不同土类的SOCD0-20高低次序依次为:黄棕壤(4.25kg/m2)>水稻土(3.89kg/m2)>石灰岩土(3.88kg/m2)>冲积土(3.16kg/m2)>黄壤土(2.68kg/m2)>紫色土(2.44kg/m2)。冲积土、黄壤土和紫色土SOCD0-2o均低于重庆市SOCD0-20均值。重庆地区0-20cm农田SOCR为70.442Tg。其中水田SOCR0-20为37.773Tg,旱地SOCR0-20为32.669Tg,二者分别占全市农田SOCR0-20总量的53.62%和46.38%。不同土类SOCR0-20的高低顺序为:水稻土(37.773Tg)>紫色土(15.448Tg)>黄壤土(9.2030Tg)>石灰岩土(6.9400Tg)>黄棕壤(0.71140Tg)>冲积土(0.36660Tg)。在重庆地区农田中,不同土类0-20cm的AI大小次序分别为:黄棕壤>石灰岩土>水稻土>黄壤土>冲积土>紫色土。以0-20cm耕层来说,黄棕壤SOC(土壤有机碳)存储能力最强,其次为石灰岩土,紫色土最弱。可见,作为重庆地区农田土壤中分布面积第二的土壤类型,紫色土应该是全市农田增碳措施实施的重点对象。
     (2)重庆地区不同区县的农田SOCD0-20和SOCR0-20均有较大差异。在不同区县,相同土壤类型的农田SOCD0-20差异明显。且不同区县中同一类型土壤的SOCR0-20占全区/全县总SOCR0-20的百分比差异也较大。从地理区域的角度而言,渝西地区农田SOCR0-20远大于渝东北地区SOCR0-2o。这说明重庆地区的农田SOC分布较为不均。且不同土壤类型在不同地理区域土壤有机碳库中具有的重要性也有所不同。
     在重庆市的33个区县中,水稻_土SOCD0-20最高值出现在城口县,紫色土SOCD0-20最高值为酉阳县,黄壤土最大值为荣昌县,而石灰岩土和冲积土最高值则分别出现在綦江县和秀山县。五个土类(水稻土、紫色土、黄壤土、石灰岩土、冲积土)SOCD0-20的最低值分别为渝北区、云阳县、开县、梁平县和涪陵区。不同区县间SOCR0-20极差高达4.0810Tg。酉阳县的SOCR0-20最高,为4.5250Tg。万盛区的农田SOCR0-20最小,仅为0.44320Tg。大部分区县的SOCR0-20数值都位于1-2Tg范围内。对大部分区县而言,水稻土和紫色土农田SOCR0-20占全县总SOCR0-20的比例极大。但是在少数区县,黄壤土和石灰岩土也储存着比例较大的SOC。不同地理区域的SOCR0-20高低顺序为:渝西地区>渝东南地区>渝南地区>渝东地区>渝东北地区。不同土类SOCR0-20占渝东、渝南、渝西农田总SOCR0-20的百分比次序相同,均为水稻土>紫色土>黄壤土>石灰岩土>冲积土。而渝东北和渝东南地区的土类SOCR0-20百分比次序分别为:水稻土>黄壤土>石灰岩土>紫色土>黄棕壤>冲积土、黄壤土>水稻土>石灰岩土>紫色土>冲积土>红壤。
     (3)在重庆市平行岭谷区、盆边丘陵山地区和武陵山区中,30年来3个典型县的农田SOCDo-20均呈现上升的趋势。但是不同土壤类型的农田SOCD0-20变化趋势有所不同。重庆地区的水稻土和黄壤土SOCD0-20总体呈现上升的趋势,而紫色土、冲积土和石灰岩土的SOCD0-20则均有降低的趋势。重庆地区SOCRo-2。整体仍呈上升趋势。因此在过去的30年间,重庆农田表层土壤在碳循环中表现出“增汇效应”
     自1980年以来,近30年的人为扰动对重庆市不同地区的农田耕层SOC累积具有正面影响。在供试的3个典型县中,川东平行岭谷区的垫江县和武陵山区的酉阳县SOCR0-20分别增加了0.41456Tg和0.67140Tg,其上升幅度分别为26.1%和17.4%。地处盆边丘陵山地区的綦江县SOCR0-20增加值最小,为0.23149Tg,其上升幅度为9.60%。水稻土SOCR0-20的增加值分别对平行岭谷区和盆边丘陵山地区农田有机碳库增长的贡献最大,其增加的SOCR0-20分别占上述两个区域SOCR0_20总增长量的59.0%和75.8%。而武陵山区的黄壤土SOCR0-20增长量占全区总增长量的则81.4%,黄壤土对该区域有机碳库正面影响最火。紫色_土耕层有机碳储量的下降对盆边丘陵山地区的农田有机碳库负面影响极大。其中綦江县紫色土SOCR0-20下降量远高于全县SOCR0-20增长量。
     (4)重庆地区不同地形地貌的农田耕层SOC含量高低次序为:平坝缓丘>丘陵下部>山麓及坡腰平缓地>丘陵上部。而不同海拔农田SOC含量高低顺序为600-700m>500-600m>300-400m>400-500m。总体而言,不同环境因素对重庆市农田SOC含量的影响差异较小。而耕层SOC含量与土壤全氮含量相关性极显著,与其他土壤化学性质无相关性。土壤物理性质对SOC含量具有显著影响,不同质地和结构的耕层SOC含量高低次序分别为:重壤>中壤>砂壤>轻壤和微团粒>团粒>团块>粒状>块状。以耕作制度为代表的农田管理措施对SOC含量影响较大。不同耕作制度下耕层SOC含量大小次序为:一年一熟>一年两熟>常年生>一年三熟。通过T检验发现,一年一熟的SOC含量与其他耕作制度的SOC含量均具有极显著差异。
     (5)重庆地区的农田表层土壤具有极大的固碳潜力。但是固碳潜力的区域差异和土壤类型差异也较为明显。渝西地区是固碳潜力最大的地理区域。水稻土和紫色土的固碳潜力则远高于其他土壤类型。利用DNDC模型可以极好地模拟重庆地区SOC动态变化趋势,从而为重庆地区SOC演变趋势研究和固碳潜力研究提供了新的研究方法。
     若以2006年SOCD0-20和SOCR0-20为基点,保持现有耕地面积不变,重庆地区农田SOCD0-20和SOCR0-20的增加潜力分别为6.69kg/m2和227.23Tg,二者增幅分别达到198%和322%。这表明重庆地区农田耕层具有巨大的固碳潜力。其中,水稻土和紫色土固碳潜力为137.09Tg和68.714Tg,分别占全市总固碳潜力60.3%、30.2%。由此可见耕层增碳潜力主要存在于紫色土和水稻土中。利用紫色水稻土不同耕作制度下的长期定位试验数据,本文结合DNDC模型来探讨长期不同耕作措施下SOC变化趋势。采用RMSE模型检验的方法,对模拟值与实测值之间的拟合相关性进行了分析。从DNDC模拟值与实测值的RMSE值看出:DNDC模拟可以较好地模拟重庆市紫色水稻土的SOC动态变化。模拟结果表明,4种耕作制度配合秸秆还田处理的SOC含量都呈现增长的趋势。通过DNDC模型,本文模拟了北碚区未来100年水稻土耕层SOC固定潜力。该模拟值高于北碚区现实固碳潜力。这可能是由于DNDC模型未考虑水稻土有机碳库上升达到平衡的时间期限和固碳限值的原因。
     综上所述,根据重庆地区最新的土壤调查资料和分析结果,本文估算了重庆地区耕层土壤有机碳库储量现状和时空分布,从而证明农田耕层土壤有机碳库在重庆地区土壤有机碳库中占有重要地位。较前人使用第二次土壤普查数据所估算的结果,该研究成果更能反映重庆地区有机碳库现状,从而为正确评价重庆地区农田碳库在全国碳库中的地位提供数据支持。同时探明了不同土壤类型在重庆农田土壤有机碳库中的重要地位,为重庆区域农田管理措施和土壤碳库调控政策提供了参考依据;通过研究估算出重庆地区耕层土壤的固碳潜力,同时对不同土壤类型的农田固碳潜力和土壤固碳潜力的空间分布也进行了估算。上述结果为重庆地区农业固碳的战略制定与技术选择提供了理论参考,并为与重庆地区甚至全国的全球变化相关的国际谈判提供了科学依据;通过将长期定位试验与土壤有机碳动态模型分析相结合,对有机碳动态模型在重庆地区的运用进行了验证,找出适合重庆地区的土壤有机碳模型,从而为研究重庆地区的土壤有机碳变化趋势和固碳潜力提供了新的研究思路与方法。在今后的工作中,可以加强下述研究:重庆地区土壤剖面有机碳密度及储量的研究;重庆地区不同农田土壤固碳技术对固碳潜力的影响研究;为了更好地运用DNDC模型进行模拟,对重庆地区不同类型的农田固碳持续时间和固碳能力进行研究。
Since from the end of the20th century, many scientists more concerned about terrestrial ecosystem carbon cycle and carbon budget by global change. The storage of soil carbon pool was thrice the storage of biological carbon pool in terrestrial ecosystem, and twice the storage of Atmospheric carbon pool. Therefore, soil organic carbon pool was the focus of global terrestrial carbon cycle research of ecological system, and it was one of the core contents of global change research. Existing research results show the global soil carbon storage about was2500Pg, the storage of global soil organic carbon accounted for about60%of the total global carbon pool. The storage of Chain soil organic carbon pool was80-90Pg, it accounting for5%of global organic carbon pool storage. The storage of chain topsoil organic carbon pool was38-40Pg, accounted for42.2%-47.5%of Chain organic carbon pool storage. Existing data indicate that the total soil organic carbon stock of topsoil of20cm depth and of whole soils of100cm depth amounts to0.27Tg and1.00Tg. But the above research results were based on the second national soil survey results, so the estimation results couldn't reflect the present situation of the soil organic carbon pool. Soil organic carbon pool of farmland was one of the most active and influential carbon pool in terrestrial ecosystems, and its carbon stock accounted for10%of the global terrestrial carbon storage. With estimation, soil organic carbon reserves of farmland accounted for14.4%-16.2%of the total soil organic carbon storage in China. Soil organic carbon fixation of farmland was important carbon sequestration under the pressure of CO2emission reduction. Illy and mountainous regions of Southwest was located on the river source, and its natural environment was complexity and diversity, the geological history was complex and landform. The biodiversity and soil type were special and rich. But the Southwest regions, especially in Chongqing Area, were lack of research on reserves and potential of soil carbon pool of farmland. With the in-depth study on global carbon cycle of farmland ecosystem and in order to further study on dynamics of soil organic carbon change trend, soil organic carbon dynamics model had been applied widely. In the China Northeast Area and China North Area, dynamic models of organic carbon had been verified, for example DNDC model、Roth-C model、CENTUR model. But in the Southwest Hilly Area, there was lack of application of soil organic carbon dynamics model. The oil organic carbon dynamics models which could be applied to purple soil and paddy soil in Chongqing Area were not known. So it was necessary to strengthen the application of organic carbon dynamics model in Chongqing area.
     In conclusion, Chongqing City was taken as the study area in this paper, and the soil utilization map of Chongqing City、soil type map of Chongqing City、the soil testing data of formula fertilization project from2006-2011、the second soil survey data were collected. According to the soil analysis data under different time points, the method of soil taxonomy was used to estimate soil organic carbon storage and analysis the change trend of soil carbon pool in Chongqing Area's farmland. Moreover, the soil genuses were taken based as a statistical unit. Form the soil testing data of formula fertilization project, this paper screened out the highest values of topsoil organic carbon content in the same soil genus. This highest values were regarded as the soil carbon sequestration limits. Compared to the Chongqing farmland soil carbon density and storage in2006, the carbon sequestration potential of farmland topsoil in Chongqing City Statistics was calculated. the DNDC model was verified by the monitoring data and research results of the long-term tests. Through the above work, this paper hoped to be able to clarify the soil organic carbon sequestration status and the evolution pattern of Chongqing farmland, and to predict the soil organic carbon sequestration potential in Chongqing City, to provide theoretical reference for research of soil organic carbon pool evolution mechanism. This paper also expected to provide scientific basis on the establishment and implementation of the regional agricultural sustainable development and grain security strategy, as well as international negotiations which related with China global changes.
     The results are as follows.
     (1) Nationwide, the SOC density of Chongqing's farmland soil was medium level in surface SOC density. But the differences of SOC density under different soil types were larger. The SOC density of paddy soil was higher than other soil types in Chongqing Area. The SOC density of purple soil was dignificantly lower than other soil types in Chongqing Area. As the most widely distributed and the most SOC storages soils in Chongqing City, the SOC storages of paddy soil and purple soil were accounted for75.55%in Chongqing city. So paddy soil and purple soil were the most important SOC stock of cropland in Chong City, and these two kinds'soils were the main object for implementation measures to improve SOC content of cropland.
     SOC density of the cultivated horizon in cropland located in Chongqing City was3.38kg/m2. The order of SOC density of the cultivated horizon in different soil groups were yellow-brown soil (4.25kg/m2)> paddy soil (3.89kg/m2)>calcareous soil (3.88kg/m2)> alluvial soil (3.16kg/m2)> yellow soil (2.68kg/m2)> purple soil (2.44kg/m2). The SOC density of alluvial soil、yellow soil and purple soil were lower than the average lever of Chongqing City. The SOC storage in0-20cm of cropland located in Chongqing City was70.442Tg. The SOC storage in paddy field was37.773Tg, and the SOC storage in dry land was32.669Tg. The SOC storages of paddy field and dry land accounted for53.62%and46.38%respectively. The order of SOC storage of the cultivated horizon in different soil groups are paddy soil (37.773Tg)> purple soil (15.448Tg)> yellow soil (9.2030Tg)>calcareous soil(6.9400Tg)>yellow-brown soil(0.71140Tg)> alluvial soil (0.36660Tg). In the cultivated horizon of Chongqing city, the order of the indexes of SOC abundance in different soil groups are yellow-brown soil(AI0-20=205)> calcareous soil(AI0-20=199)> paddy soil (AI0-20=185)> yellow soil (AI0-20=137)> alluvial soil (AI0-20=107)> purple soil (AI0-20=103). The SOC storage capability of yellow-brown soil was the strongest in0-20layer of soil, secondly for calcareous soil, and purple soil was the weakest. In different soil types, the SOC storage capability was different. As the second laggest distributed soil in Chongqing City, purple soil was the main object for implementation measures to improve SOC content of0-20cm cropland.
     (2) The SOC density and SOC storage in different county changed relatively greatly. In different counties, the SOC dendity of same soil type had siginificant difference, and the percentage of SOC storage which was same soil type also was different. Form the geographical perspective, the SOC reserve of Yuxi Region was much larger than the SOC reserve of Yudongbei Region. It showed that the SOC distribution was uneven in Chongqing Area. The importance of soil types in different geographical region's farmland carbom pool was also different.
     In different counties of Chongqing city, the maximal value of paddy soil's SOC density of the cultivated horizon in cropland appeared in Chengkou County, the maximal value of purple soil's SOC density appeared in Youyang County, the maximal value of yellow soil's SOC density appeared in Rongchang County, and the maximal values of calcareous soil's and alluvial soil's SOC density respectively appeared in Qijiang County and Xiushan County. The minimum values of different soil groups(paddy soil、purple soil、yellow soil、calcareous soil、alluvial soil)respectively appeared in Yubei District、Yunyang County、Kaixian County、Liangping County、Fuling District. The SOC storage in different county changed relatively greatly, which had the amplitude of4.0810Tg. The SOC storage in0-20cm of cropland located in Youyang County was4.5250Tg, and the SOC storage in Wangsheng District was0.44320Tg. These SOC storages respectively were the maximum and minimum values. The SOC storage of most counties were located in the1-2Tg range, and paddy soil's and purple soil's SOC storage had great proportion in total SOC storage. But In a few counties, yellow soil's and calcareous soil's SOC storage also had great proportion in total SOC storage. The thirty-three counties of Chongqing were divided into five geographical regions from the perspective of geographical area. The order of SOC storage in different geographical area were Yuxi Area> Yudongnan Area> Yudong Area> Yudongbei Area> Yunan Area. The SOC storages in different geographical area respectively accounted for28.58%、21.04%、18.80%、16.35%、15.22%in Chongqing city's total SOC storage. In Yudong Area、Yunan Area and Yuxi Area, the order of SOC storage of the cultivated horizon in different soil groups were similar, which were paddy soil> purple soil>yellow soil>calcareous soil>alluvial soil. But in Yudongbei Area and Yudongnan Area, the order respectively were paddy soil>yellow soil>calcareous soil>purple soil>yellow-brown soil>alluvial soil and yellow soil> paddy soil> calcareous soil> purple soil> alluvial soil>red soil.
     (3) in parallel ridge-and-valley area, the basin edge hill area and Wuling mountain area of Chongqing City, the farmland SOC densities of three typical counties showed a rising trend. But the change trends of different soil types were different. The SOC densities of paddy soil and yellow soil had overall upward trends in Chongqing Area. But the SOC density of purple soil had a trend of decline. The change trend of SOC stroage was overall upward in Chongqing City. So in the past thirty years, the farmland topsoil showed a effect of sink enchancement in the carbon cycle in Chongqing City
     Since1980, artificial disturbance had complex effect to SOC accumulation in cropland. In three typical counties, the SOC storages of Dianjiang County and Youyang county respectively increased of0.41456Tg and0.67140Tg, the growth rate was26.1%and17.4%respectively. But the SOC storages of Qijiang County rasied0.23149Tg, the rate was9.60%. In paralleled ridge-valley area and basin margin-hilly lands area, the value added of SOC storage in paddy filed had biggest effect on the growth of the county's SOC storage, and SOCR0-20volume growth of paddy soil accounted for59.0%and75.8%in regional total SOCR0-20volume growths. In Wuling Mountainous Area, the soil group was yellow soil. But the value decreased of SOC storage in purple soil had biggest effect on the decrease of basin margin-hilly lands area's SOC storage.
     (4)SOC content of cropland was relative to physical geography characteristic, for example physiognomy, climate, soil physicochemical property and so on. The SOC content of0-20cm soil layer rank as Pingba Gentle Hill> The Lower Hill> The Foothills and Slope Waist Gently> The Top Hill. The order of SOC content of the cultivated horizon in different altitude were600-700m>500-600m>300-400m>400-500m. In a word, environmental factors had a minor effect on SOC contents. The correlationof SOC content of topsoil with soil total nitrogen content was significantly, but it hadn't correlation with other soil chemical properties. Soil physical properties greatly effects on SOC content. The SOC content in different soil texture rank as, clay soil textures> loam> sandy loam> light loam. The order of SOC content in different soil structure were microaggregates> aggregates> crumb> granular> block. Cropland management, such as farming system, could significantly affect SOC of the cultivated horizon. In different farming system, the order of SOC content were One-crop> Double-crop> Perennial-crop> Three-crop. The result of T test in four kinds of farming systems showed that farm system of one-crop had the extremely significant difference with other farming systems.
     (5) The soil carbon sequestration potential of farmland topsoil was great in Chongqing Area. But the regional differences and the differences of soil types of carbon sequestration potential were obvious. The Yuxi region was the largest geographical region in carbon sequestration potential. The carbon sequestration potential of paddy soil and purple soil were much higher than other soil types. DNDC model could provide an execellent simulation of SOC dynamic change in Chongqing City. So a new method of study on carbon sequestration potential and the SOC evolution trend was offered in Chongqing City.
     The SOC density and storage in2006were used for basic point and the present area of arable area was maintained, SOC density potential and SOC storage potential in0-20cm soil layer were6.69kg/m2and227.23Tg, increased by198%and322%. It showed that there was huge potential of SOC sequestration in0-20cm cropland located in Chongqing City. The SOC storage potential of paddy soil and purple soil respectively were68.714Tg and137.09Tg, which accounted for60.3%and30.2%. It showed that the SOC storage potential of cultivated horizon mainly existed in purple soil and paddy soil. In different soil types, the soil genus of gray-grown-purple soil and purple rice soil had the highest potential of SOC sequestration in0-20cm soil layer of Chongqing City. A long-term experiment and DNDC model were conducted to study the effects of different tillage systems on accumulation and mineralization of organic carbon in purple paddy soil. The analog value of DNDC model was same as measured values of different treatments. The RMSE (root mean square error) values between the analog values and measured values were smaller than10%, and the correlativity of all treatments were extremely correlativity in0.01notable level. It indicated that the simulates results of four kinds cultivation system by DNDC model were extremely well. As displayed by the long time stimulant results:if keeping present cultivation system and cultivate pattern, soil organic carbon contents of Beibei District would stably increase during100years. The SOC storage potential of Beibei District was calculated by DNDC model. The analog value was lower than the present SOC sequestration potential. It may be caused by the DNDC model doesn't consider equilibrium time of SOC increased and the limit value of SOC sequestration potential.
     In a word, the recent soil survey data and analysis results of Chongqing region were used in this paper, soil organic carbon storage status and space-time distribution of Chongqing City were estimated. The result showed that topsoil organic carbon pool of farmland occupied an important position in the soil organic carbon pool in Chongqing Area.Compared with the previous estimated results which used the data of the second soil survey, this paper could better reflect the status of organic carbon pool in Chongqing Area, and provide data support for correctly evaluate the position of Chongqing City's farmland carbon pool in national carbon pool. At the same time, the paper proved the important status of different soil types on farmland soil organic carbon pool in Chongqing Area. It provided reference basis for the regional farmland management measures and soil carbon regulation policy; the results of this study found that farmland topsoil had a great carbon sequestration potential in Chongqing region. The different soil types of farmland had differences on carbon sequestration potential. This paper also clearly estimated spatial distribution of farmland soil carbon sequestration potential in Chongqing Area. The above results provides theoretical reference for the strategy formulation and technology selection of agriculture carbon sequestration in Chongqing region, and offered scientific basis on the international negotiations which related with global changes; through the combination of long-term located experiment with soil organic carbon dynamics model, this paper tested and verified the dynamic model of soil organic carbon. Through this works, the soil organic carbon dynamic model which suitable for Chongqing Area was found. It supplied a new research idea and method for research changes trend of soil organic carbon and prediction on soil carbon sequestration potential in Chongqing City.In the future works, the following research could be strengthen:
引文
1. Aber JD, Nadelhoffer KJ, Steudier P, et al. Nitrogen Saturation in Northern Forest. Ecosystems. Bioscience,1989,39(6):378-386
    2. BatjeS N.H. Total carbon and nitrogen in the soils of the world. EurJ. Soil Sei.,1996,47:151-163
    3. Batjes N H. Mitigation of atmospheric CO2 concentrations by increased carbon sequestration in the soil. Proeeedings 16th World Congress of soil science (CD-ROM). ISSS, Montpellier,1998
    4. BernouxM, Conceicao Santana Carvalho M, Volkoff B, et al.Brazil's soil carbons storage. Soil Sci.AM.J.,2002,66:888-896
    5. Bohn H L. Estimate of organic carbon in world soils. Soil Sci. A.M.J,1982,46:1118-1119
    6. Bellon M R, Taylor J E. Farmer soil taxonomy and technology adoption. Economic Development and Cultural Change,1993,41:764-786
    7. Bordovsky D ChoudharyM, Gerard C J. Effect of tillage, cropping, and residue management on soil properties in the Texas rolling plains. Soil Science,1999,164:331-340
    8. Bowman R A, Anderson R L. Conservation Reserve Program:Effects on soil organic carbon and Preservation when eonverting back to eropland in northeastern Colorado J.Soil Water Consery.2002,57:121-126
    9. Brush S B, Taylor J E, Bellon M R. Biologieal diversity and teehnology adoption in the Andean potato agriculture. Journal of Development Economies,1992,93:365-387
    10. Bhatia A., Pathak H., Jain N., et al.Global warming potential of manure amended soils under riee-wheat system in the Indo-Gangetic plains.Atmospheric Environment 2005,39:6976-6984
    11. Buringh P. Original carbon in soils of the world. In:Woodwell G M, ed.The Role of Terrestrial Vegetation in the Global Carbon Cycle.1984,23:247
    12. Campbell C.McConkey B.Zeniner R, et al. Long term effeets of tillage and rotations on soil organic C and total N in a elay soil in southwestern Saskatchewan, Can J Soil Sci,1996, 76:395-401.
    13. Cambardella C A, Moorman T B, Novak J M. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of Amercia Journal,1994,68:1501-1511
    14. Cao M K, Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature,1998,393:249-252
    15. Coleman K, Jenkinson D S. A model for the turnover of carbon in soil:Model description and windows users guide [EB/OL]. http://www.iacr.bbsrc.ac.uk/aen/carbon/rothe.htm
    16. Curtis P S. A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide.PlantCellEnviron,1996,19:127-137
    17. Dale W J, Peter S C. Effects of forest management on soil C and N storage:Meta analysis. Forest Ecology and Management,2001,140:227-238
    18. Dalal R C, Chna K Y. Soil organic matter in rainfed cropping systems of the Ausrralian cereal belt. Aust.J.Soil Res.,2001,39:435-464
    19. Derseh G, E, ohm K. Effeets of agronomic practices on the soil carbon storage potential in arable farming in Austria. Nutrient Cycling in Agroecosystems,2001,60:49-55
    20. Degens B. Sparling G. Changes in affregation do not correspond with changes in labile organic C fractions in soil amended with 14-Cglucose. Soil Biology and Biochenmisty. 1996,29:453-462
    21. Dixon R K, Brown S, Houghton R A, Solomon A M, T REXLER m C, Carbon pools and flux of global forest ecosystems. Science,1994,263:185-190
    22. Doran JW, Elliott ET and Paustian K. Soil microbial activity, nitrogen cycling, and long-term changes in organic carbon pools as related to fallow tillage management. Soil and Tillage Research 1998,49(1-2):3-18
    23. Donigian AS, Patwardhan AS, Jaekson RB, et al. Modeling the impacts of agrieultural management Practices on soil carbon in the central US. Advances in soil Sciences:soil Management and Greenhouse Effeet. Boca Raton, Florida:CRC Press,1995,121-13
    24. Edwards, A.P, Bermner J.M,1967. Microgagregates insoils.J.Soil Sei.18,64-73
    25. Edmonds, R.L. (1994).Patterns of China has Lost Harmony:A Survey of the Country's Environmental Degradation and Protection. London:Routledge
    26. Eghball B, Mielke L N, Doran J W. Distribution of organic carbon and inorganic nitrogen in a soil under vario is tillage and crop sequences. Journal of Soil and Water Conservation, 1994,49:201-205
    27. Ekboir J. Cimmty 2000-2001 World Wheat Overview and Outlook Dveloping No-Till Package for Small-scale Farmers [M]. Mexico:DF,CIMMTY,2002:28-41
    28. Epstein H E, Burke I C, Lauenroth W K. Regional patterns of decomposition and primary rates in the U.S. Great Plains. Ecology,2002,83:320-327
    29. Eswaran H, Van Den Berg E, Reich P. Organic carbon in soils of the world. Soil Sci.AmJ., 1993,57:192-194
    30. Eve M D, Sperow M, Paustian K, er al. National-scale estimation of changes in soil carbon stocks on agricultural lands. Environmental Pollution,2002,116:431-438
    31. Eswaran H, Reich F, Kimble J M. Globle soil carbon stocks in:Lal R, Kimble J, and Eswarn H eds. Global Climate Change and Pedogenic Carbonates. USA:Lewis Publishes,1999,15-26
    32. FAO. Soil carbon sequestration for improved land management[R]. Rome, Italy:Wrld Soil Resources Reports,Food&Agriculture Organization,2001
    33. FAOSTAT. http://faostat.fao.org/site/418/DesktopDefault.aspx?Page ID=418(2006)
    34. Fallon P., Soith P., Smith J.U., et al., Regional estimates of Carbon sequestration Potential: linking theRothamsted Carbon Model to GIS databases. Biol. Fertil.Soils,1998,27:236-241
    35. Fallon P, and Smith P. Simulating SOC changes in long-term experiments with RothC and CENTURY:model evalution for a regional scale applieation.Soil Use and Management,2002, 18:101-111
    36. Fang J. Carbon cycle of Chinese terrestrial ecosystem and its global significance.In:Wang G, Monitiring of Greenhous Gas Concentration and Emission and Relevant Proeesses. ChinaEnvironment Scicence Press,1996.129-139
    37. Follett R F. Soil management concepts and carbon sequestration in cropland soils, Soil Tillag Research,2001,61:77-92
    38. Fortuna A, Hawrood R R, and Pau E Al. The effet of compost and corp rtations on carbon turnover and the particulate organic matter fraction. Soil science,2003,168(6):434-444
    39. Franzluebbers A J, Hons F M. Changes in soil microbial biomass and mineraliazable C and N wheat management systems soil. Biol Biochem,1987,26:1469-1475
    40. Franzluebbesr A J, Arshad M A. Particulate organic carbon content and potential mineralization as affected by tillage and textue. Soil Sci. Soe. A mer, J.1997,61:1382-1386
    41. Franko U, Oelsehlagel B, Sehenk S. Simulation of temperature,water, and nitrogen dynamic using the model CANDY. Ecological modelling,1995,81:213-222
    42. FreibauerA, Rounsevell M DA, Smith P, et al. Carbon sequestration in the agricultural soils of Europe. Geoderma,2004,122:1-23
    43. Freibauer, A.M., Rounsevell, D.A., Smith, R, Verhagen, J. Carbon sequestration in the agricultural soils of Europe.Geoderma,2004,122(1):1-23
    44. Gale W J, Cambadrella C A. Carbon dynamics of surface residue and root-derived organic matter under simulated no-till. Soil Science Society of America Jounral,2000,64:190-95
    45. Gergorieh E G, Ellert B H, Duryr C F,et al. Fertilization Eeffets on Soil organic Matter Tunrover and Com Residue C Stoarge. Soil Science Society of America Jounra.1996,60:472-476
    46. Giardina C P, Ryan M G, Hubbard R M,et al. Tree species and soil textural controls on carbon and nitrogen mineralization rates, Soil Science Society of America Journal,2001,65:1272-1279
    47. Gill R, Burke I C, Milehunas D G. Relationship between root biomass and soil organic matter Pools in the short-grass steppe of eastern Colorado. Eeosystems,1999,2:226-236
    48. Glass G V. Primary, seeondary, and meta-analysis of research, Education Research,1976,5:3-8
    49. Gleixner G, Bol R, Balesdent J. Molecular insight into soil carbon. Rpaid Communieations in Mass Spectrometry,1999,13(13):1278-1283
    50. Golehin A, Oades J M, Kjemstad J O, et al. Soil structure and carbon cycling. Aust.J Soil Res.1994,32:1043-1068
    51. Goulden M L, Wofsy S C, Harden J W et al. Sensitivity of Boreal forest carbon balances to soil thaw. Science,1998,279:214-217
    52. Gregorieh E G, Roehette P vandenBygaart A J,et al. Green house gas contributions of agrieultural soils and potential mitigation practieesin Eastern Canada, Soil and Tillage Researeh,2005,83:53-72
    53. Guo L B, Gifford R M. Soil carbon stocks and land use change:a meta analysis, Global Change Biology,2002,8:345-360
    54. Guo L P, Lin E D. Carbon sink in cropland soils and the emission of green house gases from Paddy soils:a review of work in China, Chemosphere-Global change Scienee,2001,3:413 418
    55. Gurevitch J, Curtis P S, Jones M H. Meta-analysis in ecology, Advance in Ecological Researeh,2001)32:199-247
    56. Grepperud, S. The impact of Policy on farm conservation in centives in developing countries:what can be learned from theory?. Quarterly Journal of International Agriculture, 1997,9-80
    57. Gureviteh J, Hedges L V. Meta-analysis:combining the results of independent experiments [M].in Scheiner S M, Gurevitch J. Design and Analysis of Ecological Experiments. NewYork,USA:Chapman and Hall,NewYork,1993:378-398
    58. Gijsman.A.J., Oberson A, Tiessen, H. and Friesen D.K.,1996. Limited applicability of the CENTURY model to highly weathered tropical soils. Agron.J.VoL88,894-903
    59. Halvorson A D, Wienhold B J, Black A L. Tillage, nitrogen and cropping system effects on soil carbon sequestration. Soil Science Soeiety of America Journal,2002,66:906-912
    60. Hasselmann K, Latif M, Hoossq et al. The Challenge of long-term climate change. Science, 2003,302:1923-1924
    61. Hassink J, Whitmore A P. A model of the proteetion of organic matterin soil. Soil Science Soeiety of America Journal,1997,61:131-139
    62. Hassink J. Preservation of plant residues in soils differing in unsaturated protective capacity. Soil Science Soeiety of American Journal,1996,60:487-491
    63. Hedges V, Olkns I. Statistieal Methods for Meta-Analysis [M]. NewYork:Academic Press, 1985:55-59
    64. Hellin J, Schrader K. The Incentives for alternative approaches to better use of straw in Sweden. Ecosystems and Environment,2003,9:237-245
    65. Holt J A. Grassing pressure and soil carbon, microbial biomass and enzyme activities in semiarid northeastern Australia. Applied Soil Ecology,1997,5:143-149
    66. Hook P B, Burke I C. Biogeoehemistry in a shortgrass landscape:Control by topography, soil texture, and microclimate. Eeology,2000,81(10):2686-2703
    67. Homann P S, Sollin S P, Fiorella M, et al. Regional soil organic carbon storage estimates for western Oregon by multiple approaches. Soil Sci. Am.J,1998,62:789-796
    68. Hontoria C, Rodriguez-Murillo J.C. and Saa A,1999, Relationships between soil organic carbon and site charaeteristics in Peninsular Spain.Soil Sci Am.J.63:614-621
    69. HoughtonRA, Hackler JL. Emissions of Carbon from forestry and land-use change In Tropical Asia. Global Change Biol.,1999,6:481-492
    70. Houghton RA, Hobbie JE, Melillo JM et al. Changes incarbon content of terrestrial biota and soil between 1860:A net release of CO2 to the atmosphere. Ecological Monogragh, 1983,53:235-262
    71. Huntington. Carbon sequestration in an aggdaring forest ecosystem in the southern USA. Soil Sience Society America Journal,1995,59:1459-1467
    72. IGBP Terrestrials carbon Wokring Gorup. The teerestrial carbon cycle:Implications for the Kyoto Portocol. Science,1998,280:1393-1394
    73. Insarn H, Mitehell C C, Dormaar J F. Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three Ultisols. Soil Biol.Biochem,1991,23:459-464
    74. Integorvemrental Pnael on Climate Change (IPCC), Climate Chnage2001:The Scientific Basie. Huhgton J T, Ding Y, Grigs D J, et al. (Eds). Cambridge Univesriyt Perss, Cambridge, UK.1-15.
    75. Integorvemrental Pnael on Climate Change:Special Report on "Carbon Dioxide Captuer and Stoarge" Expert/Government Review 10-01-2005 to 07-03-2005[EB/OL]. http://www.ipcc.ch/Last update:15/03/2005
    76. IPCC. Climate change 2007:The physical science basic[R]. Cambridge. Cambridge University Press,2007
    77. IPCC. Climate Change 2007:Mitigation of Climate Change of Working Groups III to the Fourth Assessment Report of the Inter governmental Panel on Climate Change[M].Cambridge, UK:Cambridge University Press,2007
    78. IPCC.Climateehange2001:the scientific basis.Contribution of working group 1 to the Second assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge,2001.881-883
    79. IPCC.Technical Guidelines for Assessing Climate Change impacts and Adaptations.1995
    80. IPCC. Special Report on "Carbon Dioxide Capture and Storage" Expert/Government Review 10-01-2005 to 07-03-2005[EB/OL]. http://www.ipcc.ch/Last update 2005-03-15
    81. IPCC.2006 IPCC Guidelines for National Greenhouse Gas Inventories [M]. NGGIP Publications.Vol4,2006
    82. Izaurralde R C, Williams J R, Mcgill W B, et al. simulating soil C dynamics with EPIC:Model description and testing against long-term data. Ecological Modelling,2006,192(3/4):362-384
    83. Jain A K, West T O, Yang X, et al. Assessing the impact of changes in climate and CO2 on potential carbon equestratlon in agricultural soils. Geophysical Research Letters,2005,32(19)
    84. Janzen H H, Campbell C A, Gergorieh E G, et al. Soil cabon dynamics in Canadian agroeeosystems//Lal RJ(ed.). Soil Processes and Carbon Cycles. Boca Raton:CRC Press, 1998:57-80
    85. Jarecki M K, Lai R, James R. Crop management effeets on soil carbon sequestration on selected farmers's fields in northeastern Ohio. Soil and Tillage Research,2005,81(2):265-276
    86. Jenkinson D S, Hart P B S, Rayner J H, et al. Modelling the turnover of organic matter in long-term experiments at Rothamsted. Intecol Bulletin,1987,15:1-8
    87. Jenkinson, D.S, Admas, O.E., Wild.A. Model estimates of CO2 emissions from soil in Ponseot global warming. Nature,1991,351:304-306
    88. Jeffrery E Herrick, Michelle M Wander. Relationships between soil organie carbon and soil qualityin cropped and rangeland soils:The importance of distribution, composition, and soil biological activity. In:Lal R, et al.eds. Soil Processes and the Carbon Cyele. Boca Raton:CRC Press,1997:405-425
    89. Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming. Nature,1991,351(23):304-306
    90. Jian Ni, Carbon storage in terrestrial ecosystems of China. Climatic Change,2001,49:339-358
    91. Johnson D W, Curtis P S. Effects of forest management on soil C and N storage:meta-analysis. Forest Eeology and Management,2001,140:227-238
    92. Jonas Ardo and Lennart Olsson. Assessment of soil organic carbon in semi-arid Sudan using GIS and the CENTURY model. Journal of Arid Environments,2003 (54):633-651
    93. Kandeler Ellen, Palli Sabine&Stemmer Miehael. Tillage changes microbial biomass and enzyme activities in particle-size factions of a Haplic Chenroezm. Soil Biolgoy & Biochemisty, 1999,31:1253-1264
    94. Kem J S, Johnson M G. Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Science Society of America journal,1993,57:200-210
    95. Kennedy Z J, Rangarajan M 2001. Blomass production root colonization and phosphatase activity by six VA-mycorrhizal fungi in papaya. Indian Phytopathology,54(1):72-77
    96. Kern Jeffrey S. Spatial patterns of soil organic carbon in the contiguous United States. Soil Sci.Am.J.,1994.58:439-455
    97. Khan K S. Effect of cadmium, lead, and zine pollution on microbial biomass in red soil. Ph. D Thesis of Zhejiang Agricultural University,1998.1-206
    98. KimbleJ, Cook T, Eswaran H. Organic matter in soils of the tropics. In:Proc.Symp. Charaeterization and role of organic matter in different soils. Int.Congr. Soil Sci.14th,Kyoto,Japan,1990,250-258
    99. Kirschbaum MUF. Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeoehemistry,2000,48:21-51
    100. Kirschbaum MUF, Paul K I. Modelling C and N dynamics in forest soils with a modified version of the CENTURY model. Soil Biology & Biochemistry,2002,34:341-354
    101. Kurkalova L A. Carbon sequestration in agricultural soils:diseounting for uneertainty. Canadian Journal of Agrieultural Economics,2005,53:375-384
    102. Kuzyakov Y. Effect of Plant cultivation on the deeomposition of soil organic matter//Rubio J L, eds. Man and Soil at the Third Millenium. Geoforma Ediciones Logrono,2002,1:583-593
    103. Kurz W A, Apps M J. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecological Applications,1999,9:526-547
    104. Lal R. Soil carbon sequestration in China through agricultural intensification, and restoration of degraded and desertified ecosystems. Land Degradation & Development,2002,13:469-478
    105. Lal R. Soil carbon sequestration to mitigate climate change. Geoderma,2004,123:1-22
    106. Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004,304:1623-1627
    107. Lal R, Follett R F, Kimble J M, et al. Managing U.S. cropland to sequester carbon in soil.Soil and Water Conservation,1999(54):374-380
    108. Lal R, Follett R F, Kimble J M. Achieving soil carbon sequestration in the U.S:A challenge to the poliey makers, Soil Science,2003,168:1-19
    109. Lal R, Kinble J M, Follett R F, et al. The Potential of U.S. Croplands to Sequseter Carbon and Mitigate the Greenhouse Effect [M]. Chelsea, Michigan, USA:Ann Arbor Press,1998
    110. Lal R, Kimble J, Cole V C, et al. The Potential of U.S Cropland to Sequester Carbon and Mitigate the Greenhouse Effect [M]. Michigan, USA:Ann Arbor Press,1998
    111. Lal R. World soils and greenhouse effect. IGBP Nesletter,1999,37:4
    112. Lal R. Residue managemeni, conservation tillage and soil restoration for mitigating for mitigating greenhouse effect by CO2 enriclunent. Soil Tillage Research,1997,54:382-389
    113. Land and Water Development DiVision, FAO. Soil C sequestration [EB/OL]. http://www.fao.org/ag/agl/agll/carbonsequestration/background.stm,2003.06.12
    114. Li C, Frolking S, Crocker G J. Simulating trends in soil organic carbon in long-term experim ents using the DNDC model. Geoderma,1997,81:45-60
    115. Li C, et al.2002, User's Guide for the DNDC ModeI(DNDC 7.7, A Windows Version) Institute for the Study of Earth, Oceans, and Space University of New Hampshire, Durham, NH 03824, USA
    116. Li C S, Frolking G J, Croker, et al. Simulating trends in soil organic carbon in long-term experiments using the DNDC model. Geoderma,1997,81:45-60
    117. Li Zhong, Zhao Qiguo. Organic carbon contents and distribution in soils under different land uses in tropical and subtropical China, Plant and Soil,2001,231:175-185
    118. Liang B C, Wang X L, Ma B L. Maize root induced change in soil organic carbon pools. Soil Science Society of America Journal,2002,66:845-847
    119. Liao Q L, Zhang X H, Li Z P, et al. Increase in soil organic carbon stock over the last two deeades in China's Jiang suprovince. Global change biology 2008,15(4):861-875
    120. Lindewt P H, Lu J, Wu W. Trends in the soil chemistry of South China since the 1930s. Soil scienee 1996,161(6):329-342
    121. Ling Q H. The indispensable role of rice produetion in areas of rapid economicald evelopment in SouthChina. Science and Technology Review,2004,22:42-45
    122. Loiseau P, Soussana JF. Elevated CO2, temperature increase and N Supply effeets on the turnover of belowground carbon in a temperate grassland ecosystem. Plant and Soil,1999, 210:233-247
    123. Lu F, Wang XK, Han B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw-return and no-tillage in China's cropland.Global Change Biology,2009,15(2):281-305
    124. Lugo AE, Sanehez AJ, Brown S. Land use and organic carbon content of some subtropical soils. Plant Soil,1986(96):185-196
    125. Luo Yiqi, Wan Shiqiang, Hui Dafeng, et al. Acclimatization of soil respiration to warming in a tall grass prairi, Nature,2001,413:622-625
    126. Mann LK. Changes in soil carbon storage after cultivation. Soil Scinee,1998,27:221-229
    127. Martens DA, Reedy TR,Lewi DT, Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements, Global Change Biology,2004,(10):65-78
    128. McCarl B A, Metting F B, Rice C. Soil carbon sequestration. Climatic Change,2007,80:1-3
    129. Mikhailova EA, Bryant RB, Vassenev Ⅱ, Schwagerc SJ and Post CJ. Cultivation Effects on Soil Carbon and Nitrogen Contents at Depth in the Russian Chernozem. Soil Science Society of America Journal 2000,64:738-745
    130. Miko U F K. The temperature dependence of SOM decomposition and the effect of global wanning on soil organie C storage. Soil Biology and Biochemistry,1995,27(6):753-760
    131. Missfeldt, E, Erik, H. The Potential contribution of sinks to meeting Kyoto Protoeol commitment. Environmental Science and Policy,2001,42:269-292
    132. Molina J A E, Clapp C E, Shaffer M J, et al. NCSOIL, a model of nitrogen and carbon transformations in soil:Deseription, calibration, and behavior, Soil Sci Soc Am J,1983, 47:85-91
    133.Moraes J F, Seyler F, Cerri F, et al. Land cover maooing and carbon pools estimates in Rondonia, Brazil. International Journal of Remote Sensing,1998,19(5):921-934
    134. Mosier A R, Soil proeesses and global change. Biol. Fertil. Soils,1998,27:221-229
    135. Mueller T G, Pierce F J. Soil Carbon MapS:Enhancing Spatial Estimates with Simple Terrain Attributes at Multiple Scales. Soil Sci. Soc. Am.J.2003,67:258-267
    136. Oelbermann M, Voroney RP, Gordon AM. Carbon sequestration in tropical and temperate agroforestry systems:are review with examples from Costa Rica and southern Canada. Agriculture Ecosystems and Environment,2004,104:359-377
    137. Ogle S M, Breidt F J, Paustian K. Agricultural management impactson soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry,2005,72:87-121
    138. Olk D C, Cassman K G, Randall E W, et al. Changes in chemical properties of organic matter with intensified rice cropping in tropical lowland soil. Eur J Soil Sci,1996,47:293-303
    139. Osenberg C W, Samelle O, Cooper S, et al. Resolving ecological questions through meta-analysis:goals, metries and models, Ecology,1999,80:1105-1117
    140. Pan G X, Li L Q, Wu L S, et al. Storage and sequestration potential of topsoil organic carbon in China's paddy soils, Global Change Biology,2003,10:79-92
    141. Pan G X, Li L Q, Wang X K, et al. Organic Carbon stock in topsoil of Jiangsu Provinee, China.and the recent trend of carbon sequestration, Journal of Environmental Sciences, 2005,2:1-7
    142. Pan G X, Zhou P, Zhang X H, et al. Effect of different fertilization practices on crop carbon assimilation and soil carbon sequestration:A case of a paddy under a long-term fertilization trial from the TaiLake region in China, Acta Eeologiea Sinica,2006,26(11):3704-3710
    143. Parton, WJ, Rasmussen, RE. Long-term effeets of crop management in wheat-fallow:Ⅱ CENTURY model simulations. Soil Science Society of America,1994, (58):530-536
    144. Parton W J, Sehimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci Soe Am J,1987,51:1173-1179
    145. Parshotam A, Saggar S, Searle P L, et al. Carbon residence times obtained ftom labeled ryegrass decomposition in soils under contrasting environmental conditions. Soil Biology&Biochemistry, 2000,32:75-83
    146. Panstian K, Six J, Elliott E T, et al. Management potions for reducing CO2 emissions from agricultural soil, Biogeochemistry,2000,48:147-163
    147. Paustian K, Andxen O, Janzen H, et al. Agricultural soil as a C sink to offset CO2 emission, Soil Use Man,1997,13:230-244
    148. Paustian K, Levine E, Post W M, Ryzhoval M. The use of models to integrate information and understanding of soil C at the regional scale, Geoderma,1997,79:227-260
    149. Pete Smith. Carbon sequestration in croplands:The Potential in Europe and the global context. Europe Agronomy,2004,20:229-236
    150. Pickett S T A, Cadenasso M L. Landscape ecology:Spatial heterogeneity in ecological systems, Science,1995,269:331-334
    151. Ping C L, Michaelson G J, Kimble J M. Carbon storage along alatitudinal transect in Alaska, Nutrient Cycling in Agroeeosystems,1997, (49):235-242
    152. Plant Roel A J. Gis-based extrapolation of landuse-related nitrous oxide flux in the atlantic zone of Costa Riea, Water Air and Soil Pollution,1998,105:131-141
    153. Post W M, Emanuel W R, Zinke P, et al. Soil carbon pools and world life zones, Nature, 1982,298(8):156-159
    154. Post W M, Izaurralde R C, Mann L K, Bills N,2001. Montoring and verifying changes of organic carbon in soil. Climatic Change 51:73-99
    155. Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and life zones, Nature,1982,298:156-159
    156. Price D T, Peng C H, Apps M J, et al. Simulating effects of climate change on boreal ecosystem carbon pools in central Canada, Journal of Biogeography,1999,26:1237-1248
    157. Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles,1995,9:23-36
    158. Rasmussen PE, Albrecht SL and Smiley RW. Soil C and N changes under tillage and cropping systems in semi-arid Pacific Northwest agriculture. Soil and Tillage Research 1998,47(3-4): 197-205
    159. Reeder JD, Schuman GE and Bowman RA. Soil C and N changes on conservation reserve program lands in the Central Great Plains. Soil and Tillage Research 199847(3-4):339-349
    160. Roscoe R and Buurman P. Tillage Effects on Soil Organic Matter In Density Fractions Of A Cerrado Oxisol.,Soil and Tillage Research,2003,70(2):107-119
    161. Smith P, Smith JU, Powlson DS et al. A comparison of performance of nine soil organic matter models using datasets from seven long term experiment. Geoderma,1997,81:153-225
    162. Smith P, Martino D, Cai Z, et al. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystem & Environment,2007, 118:6-28
    163. Song G, Li L, Pan G, and Zhang Q. Top soil SOC storage of China agricultural soils and its loss by cultication. Biogeochemistry.2005,74:47-62
    164. Somebroek WG, Naehtergaele FO, Hebel A. Amounts.Dynamics and sequestration of carbon in tropic and subtropical soil.Ambio,1993,22:417-426
    165. Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter:Implications for C-saturation of soils. Plant and Soil,2002,241:155-176
    166. Valentini R., Mattenucci G, Dolman A.J., et al. Respiration as the main determinant of carbon balance in European forest. Nature,2000,404:862-864
    167. Vleeshouwers LM, Verhagen A. Carbon emission and sequestration by agrieultural landuse:a model study for Europe. Global Change Biology,2002,8:519-530
    168. West TO, Pose WM. Soil organic carbon sequestration rates by tillage and crop rotation:a global data analysis.Soil Science Society of American Journal,2002,66:1930-1946
    169. Witt C, Cassman K G, Olk D C, et al. Corporation and residue management effeets on carbon sequestration, itrogen cycling and productivity of irrigated rice systems. Plant Soil,2000, 225:263-278
    170. Wu, J., A.G.O'Donnell, J.K.Syers, M.A.Adey and P.Vityakon,1998.Medelling soil organic Matterchanges in ley-arable rotations in sandy soils of Northeast Thailand.European Journal of Soil Seienee.49:463-470
    171. Yan H, Cao M, Liu J, et al. Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China. Agriculture, Ecosystems and Environment, 2007,121(4):325-335
    172. Zhang W, Feng J, Parker K. Differences in soil microbial biomass and activity for six groeeosystems with a management disturbance gradient[J].Pedosphere,2004, (4):441-417
    173.陈朝,吕昌河,范兰,等.土地利用变化对土壤有机碳的影响研究进展[J].生态学报,2011,31(18):5358-5371
    174.陈长青,胡清宇,孙波,等.长期施肥下石灰性冲积土有机碳变化的DNDC模型预测[J].植物营养与肥料学报,2010,16(6):1410-1417.
    175.陈晨,梁银丽,吴瑞俊,等.黄土丘陵沟壑区坡地土壤有机碳变化及碳循环初步研究[J]. 自然资源学报,2010,25(4):668-676
    176.陈建国,田大伦,闫文德,等.鄂西南区域土壤有机碳储量、密度及其影响因子[J].中南林业科技大学学报,2011,31(5):57-62
    177.陈尚洪,朱钟麟,吴婕,等.紫色土丘陵区秸秆还田的腐解特征及对土壤肥力的影响[J].水土保持学报,2006,20(6):141-144
    178.陈仕栋,方晰.湖南省土壤有机碳库及其空间分布格局[J].中南林业科技大学学报,2011,31(5):146-152
    179.陈鲜妮,岳西杰,葛玺祖,等.长期秸秆还田对填土耕层土壤有机碳库的影响[J].自然资源学报,2012,27(1):25-32
    180.重庆土壤普查办公室.重庆土壤,1984
    181.程先富,史学正,于东升,等.兴国县森林土壤有机碳库及与环境因子的关系[J].地理研究,2004,23(2):211-217
    182.邓良基,何鹏,高雪松,等.川中丘陵区紫色土表层土壤有机碳分布及影响因素[J].山地学报,2006,24(S1):1-5
    183.邓详征,姜群鸥,林英志,等.中国农田土壤有机碳贮量变化研究[J].地理研究,2010,29(1):93-101
    184.方精云,刘国华,徐高龄.中国陆地生态系统的碳循环及其全球意义[M],温玉璞主编.温室气体浓度和排放监测及相关过程.北京:中国环境科学出版社,1996:129-139
    18.5.方华军,杨学明,张晓平,等.耕作及水蚀影响下坡耕地土壤有机碳动态模拟[J].土壤学报,2006,5(43):730-735
    186.范如芹,梁爱珍,杨学明,等.耕作与轮作方式对黑土有机碳和全氮储量的影响[J].土壤学报,2011,48(4):788-796
    187.傅清,赵小敏,袁芳.江西省农田耕层土壤有机碳量分析[J].土壤通报,2010,41(4):835-838
    188.甘海华,吴顺辉,范秀丹.广东土壤有机碳储量及空间分布特征[J].应用生态学报,2003,14(9):1499-1502
    189.高崇升,杨国亭,王建国,等.利用Century模型模拟不同农业经营模式下黑土农田土壤有机碳的演变[J].生态学杂志,2008,27(6):911-915
    190.高建峰,潘剑君,刘绍贵,等.土地利用变化对吴江市水田土壤有机碳储量的影响分析[J].地球信息科学学报,2011,13(2):164-179
    191.高鲁鹏,梁文举,姜勇,等.利用CENTURY模型研究东北黑土有机碳的动态变化·自然状态下土壤有机碳的积累[J].应用生态学报,2004,15(5):772-776
    192.耿彩英,高明,陈晨.土壤有机碳对土地利用方式变化的响应[J].西南大学学报(自然科学版),2011,33(11):125-130
    193.郭树平.黑龙江省碳储量及碳汇潜力分析[J].森林工程,2011,27(3):9-12
    194.郝翠,李洪远,李姝娟,等.天津滨海湿地土壤有机碳储量及其影响因素分析[J].环境科学研究,2011,24(11):1276-1282
    195.韩冰,王效科,欧阳志云,等,辽宁省农田土壤碳库分布及变化的模拟分析[J].生态学报,2003,23(7):1321-1327
    196.韩冰,王效科.中国东北地区农田生态系统中碳库的分布格局及其变化[J].土壤通报,2004,35(4):401-407
    197.何大斌,何建州,何顺民.贵池区主要类型土壤养分动态分析及施肥建议[J].安徽农学通报,2002,8(2):55-56
    198.韩新辉,佟小刚,杨改河,等.黄土丘陵区不同退耕还林地土壤有机碳库差异分析[J].农业工程学报,2012,28(12):223-229
    199.何云峰,徐建民,侯惠珍,等.有机无机复合作用对红壤团聚体组成及腐殖质稳定性的影响[J].浙江农业学报,1998,10(4):197-200
    200.侯鹏程,俞平高,曾蕊,等.上海松江耕层土壤有机碳空间分布及影响因素[J].西南农业学报,2012,25(1):208-211
    201.侯鹏程,陈佳妮.上海耕层土壤有机碳空间差异及影响因素[J].环境科学与技术,2010,33(12F):102-105
    202.侯晓瑞,薛志婧,程曼,等.黄土丘陵区纸坊沟小流域土壤有机碳储量研究[J].水土保持通报,2012,32(2):21-25
    203.胡诚,乔艳,李双来,等.长期不同施肥方式下土壤有机碳的垂直分布及碳储量[J].中国生态农业学报,2010,18(4):689-692
    204.胡宏祥,洪天求,樊丽莉.巢湖马鞍山土壤有机质和N、P变化研究[J].中国水土保持,2006,11:24-26
    205.胡卫国,曹军骥,韩永明,等.青海湖环湖区表土有机碳氮储量估算[J].干旱区资源与环境,2011,25(9):85-88
    206.黄耀,刘世粱,洗其荣,等.农田土壤有机碳动态模拟模型的建立[J].中国农业科学,2001,34(5):532-536
    207.黄耀,刘世梁,沈其荣.环境因子对农业土壤有机碳分解的影响[J].应用生态学报,2002,13(6):709-711
    208.黄耀,孙文娟.近20年来中国大陆农田表土有机碳含量的变化趋势[J].科学通报,2006,51(7):750-763
    209.黄雪夏,唐晓红,魏朝富,等.利用方式对紫色水稻土有机碳与颗粒态有机碳的影响[J].生态环境,2007,16(4):1277-1281
    210.黄雪夏,倪九派,高明,等.重庆市土壤有机碳库的估算及其空间分布特征[J].水土保 持学报,2005,19(1):54-58
    211.姜勇,梁文举,闻大中.免耕对农田土壤生物学特性的影响[J].土壤通报,2004,(3):348-351.
    212.姜勇,庄秋丽,梁文举.农田生态系统土壤有机碳库及其影响因子[J].生态学杂志,2007,26(2):278-285.
    213.贾十军,梁红霞,邢润华,等.安徽省江淮流域表层土壤有机碳储量历史变化探讨[J].安徽地质,2012,22(1):40-42
    214.李随民,栾文楼,宋泽峰,等.河北省南部平原区土壤有机碳储量估算[J].中国地质,2010,37(2):525-529
    215.李忠佩,林心雄,车玉萍.中国东部主要农田土壤有机碳库的平衡与趋势分析[J].土壤学报,2002,39(3):351-360
    216.李忠,孙波,林心雄.我国东部土壤有机碳的密度及转化的控制因素[J].地理科学,2001,21(4):301-307
    217.李长生.土壤碳储量减少:中国农业之隐患—中美农业生态系统碳循环对比研究[J].第四纪研究,2000,20(4):345-350
    218.李天杰,郑应顺,王云.土壤地理学[M].北京:高等教育出版社.1983,30-40
    219.李凌浩,刘先华,陈佐忠.内蒙古锡林河流域羊草草原生态系统碳素循环研究[J].植物学报,1998,40(10):955-961
    220.李凌浩.土地利用变化对草原生态系统土壤碳贮量的影响[J].植物生态学报,1998,22(4):300-302
    221.李甜甜,季宏兵,孙媛媛,等.我国土壤有机碳储量及影响因素研究进展[J].首都师范大学学报(自然科学版),2007,25(2):93-96
    222.李新宇,唐海萍,赵云龙,等.怀来盆地不同土地利用方式对土壤质量的影响分析[J].水土保持学报,2004,18(6):103-107
    223.李跃林,彭少麟,赵平,等.鹤山几种不同土地利用方式的土壤碳储量研究[J].山地学报,2002,20(5):548-552
    224.李泽,郭胜利,张芳,等.退耕还果对黄土高原沟壑区坡地土壤和植被碳、氮储量的影响[J].植物营养与肥料学报,2011,17(4):919-924
    225.梁启鹏,余新晓,庞卓,等.不同林分土壤有机碳密度研究[J].生态环境学报,2010,19(4):889-893
    226.梁二,蔡典雄,代快,等.中国农田土壤有机碳变化:Ⅱ土壤固碳潜力估算[J].中国土壤与肥料,2010,(6):87-92
    227.刘定辉,蒲波,陈尚洪,等.秸秆还田循环利用对土壤碳库的影响研究[J].西南农业学报,2008,21(5):1316-1319
    228.刘欢瑶,周萍,朱捍华,等.红壤丘陵景观土地利用变化对稻田土壤有机碳储量的影响[J].农业现代化研究,2012,33(3):359-362
    229.刘京,常庆瑞,陈涛,等.陕西省土壤有机碳密度空间分布及储量估算[J].土壤通报,2012,43(3):656-661
    230.刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997,17:469-476
    231.刘世梁,黄耀,沈其荣,等.农田土壤有机碳动态模拟模型的检验与应用[J].中国农业科学,2001,31(6):644-648
    232.刘勋,赖庆旺,黄欠如.江西红壤地区土壤有机质循环及农业调控研究[J].江西农业学报,1999,11(增刊):14-23
    233.刘清,孙波,解宪丽,等,县域尺度红壤丘陵区水稻土有机碳模拟[J].土壤学报,2009,46(6):1059-1067
    234.刘莎,任红艳,史学正,等.水稻土有机碳密度的空间预测分析——以浙江省长兴县为例[J].地球信息科学学报,2010,12(2):180-185
    235.刘伟玲,张林波,叶有华,等.深圳市不同土地利用类型土壤有机碳与密度特征[J].生态科学,2011,30(5):486-492
    236.刘迎春,王秋凤,于贵瑞,等.黄土丘陵区两种主要退耕还林树种生态系统碳储量和固碳潜力[J].生态学报,2011,31(15):4277-4286
    237.路翔,项文化,刘聪.中亚热带4种森林类型土壤有机碳氮贮量及分布特征[J].水土保持学报,2012,26(3):169-173
    238.逯非,王效科,韩冰,等.农田土壤固碳措施的温室气体泄漏和净减排潜力[J].生态学报,2009,29(9):4993-5006
    239.栾文楼,宋泽峰,李随民,等.河北平原土壤有机碳含量的变化[J].地质学报,2011,85(9):1528-1535
    240.鲁如坤.土壤农业化学分析方法[M].北京,中国农业科技出版社,1999
    241.吕家珑,张一平,王旭东,等.农田生态系统对土壤肥力的影响[J].生态学报,2001,21(4):613-616
    242.罗怀良,王慧萍,陈浩.川中丘陵地区近25年来农田土壤有机碳密度变化——以四川省盐亭县为例[J].山地学报,2010,28(2):212-217
    243.马玉芳,蔡立群,张仁陟.黄土高原丘陵沟壑区农业生态系统碳循环模拟研究[J].生态环境学报,2010,19(12):2875-2880
    244.马玉芳,蔡立群,张仁陟.不同耕作措施下土壤有机碳含量的模拟研究[J].自然资源学报,2011,26(9):1546-1554
    245.潘根兴.中国土壤有机碳无机碳库量研究[J].科技通报,1999,15(5):330-332
    246.潘根兴,孙玉华,滕永忠,等.湿润亚热带峰丛洼地岩溶土壤系统中碳分布及其转移[J].应用生态学报,2000,11(1):69-72
    247.潘根兴,曹建华,周运超.中国碳及其在地球表层生态系统碳循环中的意义[J].第四纪研究,2000,20(4):325-334
    248.潘根兴,曹建华,何师意,等.桂林丫吉岩溶土壤转移与水排碳作用[J].自然科学进展,2001,11(7):704-709
    249.潘根兴,赵其国,蔡祖聪.《京都议定书》生效后我国耕地土壤碳循环研究若干问题[J].中国基础科学,2005a,2:12-18
    250.潘根兴,赵其国,我国农田土壤碳库演变研究:全球变化与国家粮食安全[J].地球科学进展,2005b,20(4):384-383
    251.彭娟,符卓旺,朱洁,等.耕作制度对紫色水稻土有机碳累积及矿化动态的影响[J].水土保持学报,2011,25(4):175-182
    252.全国土壤普查办公室.中国土壤普查数据.北京:中国农业出版社,1996.
    253.全国土壤普查办公室.中国土种志(1-6卷).北京:中国农业出版社,1993,1994a,1994b,1995a,1995b,1996
    254.邱建军,王立刚,唐华俊,等.东北三省耕地土壤有机碳储量变化的模拟研究[J].中国农业科学,2004,37(8):1166-1171
    255.苏永中,赵哈林.土壤有机碳储量、影响因素及其环境效应的研究进展[J].中国沙漠,2002,22(3):220-28
    256.申广荣,葛晓烨,黄秀梅.上海崇明岛表层土壤有机碳密度的空间分布特征及碳储量估算[J].上海交通大学学报(农业科学版),2011,29(6):61-66
    257.沈宏,曹志洪,王志明.不同农田生态系统土壤碳库管理指数的研究[J].自然资源学报,1999,14(3):206-213
    258.沈雨.内蒙古锡林河流域羊草草原生态系统碳素循环研究[J].植物学报,1998,40(10):951-961
    259.苏永中,赵哈林.土壤有机碳储量影响因素及其环境效应的研究进展[J].中国沙漠,2002,22(3):220-228
    260.孙国峰,徐尚起,张海林,等.轮耕对双季稻田耕层土壤有机碳储量的影响[J].中国农业科学,2010,43(18):3776-3783
    261.孙文义,郭胜利.黄土丘陵沟壑区小流域土壤有机碳空间分布及其影响因素[J].生态学报,2011,31(6):1604-1616
    262.童成立,吴金水,向万胜,等.长江中游稻田土壤有机碳计算机模拟[J].长江流域资源与环境,2002,11(3):229-233
    263.唐晓红,邵景安,黄雪夏,等.垄作免耕下紫色水稻土有机碳的分布特征[J],土壤学报, 2007,44(2):235-243
    264.唐晓红,邵景安,黄雪夏,等.保护性耕作对紫色水稻土团聚体组成和有机碳储量的影响[J].应用生态学报,2007,18(5):1027-1032
    265.汤洁,李娜,毛子龙,等.白城地区近50年土壤有机碳动态变化研究[J].生态环境学报,2011,20(5):865-868
    266.覃章才,黄耀.基于模型的农田土壤固碳潜力估算[J].中国科学,2010,40(7):658-676
    267.涂夏明,曹军骥,韩永明,等.黄土高原表土有机碳和无机碳的空问分布及碳储量[J].干旱区资源与环境,2012,26(2):114-118
    268.王铭,刘子刚,马学慧,等. 中国泥炭地有机碳储量分区[J].湿地科学,2012,10(2):156-163
    269.吴金水,刘守龙,童成立.土壤有机质周转计算机模拟原理[J].土壤学报,2003,40(5):768-774
    270.汪景宽,李双异,张旭东,等.20年来东北典型黑土地区土壤肥力质量变化[J].中国生态农业学报,2007,(1):19-24
    271.王飞,李锐,杨勤科,等.水土流失研究中尺度效应及其机理分析[J].水土保持学报,2003,17:167-169
    272.王根绪,程国栋.西北干旱区土壤资源特征与可持续发展[J].地球科学进展,1999,14(5):492-497
    273.王洪岩,王文杰,邱岭,等.兴安落叶松林生物量、地表枯落物量及土壤有机碳储量随林分生长的变化差异[J].生态学报,2012,32(3):833-843
    274.王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究,1999,18(4):349-355
    275.武俊喜,程序,焦加国,等.1940-2002年长江中下游平原乡村景观区域中土地利用覆被及其土壤有机碳储量变化[J].生态学报,2010,30(6):1397-1411
    276.王绍强,刘纪远.土壤碳蓄积量变化的影响因素研究现状[J].地球科学进展,2002,17(4):528-534
    277.王世航,史学正,赵永存,等.推荐管理措施情景下黄淮海地区旱地土壤固碳潜力模拟研究—以河南省获嘉县为例[J].生态环境学报,2011,20(3):403408
    278.王金州,卢昌艾,张金涛,等RothC模型模拟华北冲积土区的土壤有机碳动态[J].中国土壤与肥料,2010(6):16-22
    279.王加恩,郑洁,康占军,等.浙北典型稻作区近30年表层土壤碳氮含量变化[J].生态环境学报,2010,19(5):1191-1196
    280.王立刚,邱建军.高产粮区农业生态系统土壤碳氮循环的模拟研究—以河北省曲周县为例[J],中国农业大学学报,2003,8(增刊):31-35
    281.王立刚,邱建军,马永良,等.应用DNDC模型分析施肥与翻耕方式对土壤有机碳含量 的长期影响[J].中国农业大学学报,2004,9(6):15-19
    282.王世航,史学正,赵永存,等.推荐管理措施情景下黄淮海地区旱地土壤固碳潜力模拟研究——以河南省获嘉县为例[J].生态环境学报,2011,20(3):403-408
    283.王义祥,王峰,翁伯琦,等.果园生草模式土壤固碳潜力——以福建省为例[J].亚热带农业研究,2010,6(3):189-192
    284.王云琦,王玉杰.三峡库区林地土壤有机碳含量特征及效应[J].长江流域资源与环境,2010,19(12):1448-1455
    285.魏朝富,谢德体,陈世正.紫色水稻土有机无机复合与土粒团聚的关系[J].土壤学报,1996,33(1):70-77
    286.魏迎春,王加恩,曲颖,等.浙江省主要农作区土壤有机碳储量[J].上海国土资源,2012,33(2):39-42
    287.文雅,邓南荣,刘晓南,等.粤北山区近25年来耕地表层土壤有机碳变化分析[J].生态环境学报,2011,20(8-9):1247-1252
    288.文雅,黄宁生,匡耀求.广东省山区土壤有机碳密度特征及空间格局[J].应用基础与工程科学学报,2010,18:10-18
    289.夏雪,车升国.陆地生态系统有机碳储量和碳排放的研究进展[J].中国农学通报,2011,27(29):214-218
    290.夏学齐,杨忠芳,余涛,等.中国东北地区20世纪末土地利用变化的土壤碳源汇效应[J].地学前缘,2011,18(6):56-63
    291.谢德体,陈绍兰,著.水田自然免耕的理论与技术[M].重庆:重庆出版社,2002,65-168
    292.许祯,陈先刚,罗明忠,杨寿荣. 滇西山地土壤有机碳储量及其分布特征[J].福建林学院学报,2010,30(1):82-87
    293.许乃政,张桃林,王兴祥,等.长江三角洲地区土壤有机碳库研究[J].长江流域资源与环境,2010,19(7):790-796
    294.徐秋芳,姜培坤.不同森林植被下土壤水溶性有机碳研究[J].水土保持学报,2004,18(6):84-87
    295.徐艳,张凤荣,汪景宽,等.20年来中国冲积土区与黑土区土壤有机质变化的对比研究[J].土壤通报,2004,35(2):102-105
    296.徐阳春,沈其荣,冉炜.长期免耕与使用有机肥对土壤微生物生物量碳!氮!磷的影响[J].土壤学报,2002,39(1):89-96
    297.徐胜祥,史学正,赵永存,等.不同耕作措施下江苏省稻田土壤固碳潜力的模拟研究[J].土壤,2012,44(2);253-259
    298.许信旺,潘根兴,孙秀丽,等.安徽省贵池区农田土壤有机碳分布变化及固碳意义[J].农业环境科学学报,2009,28(12):2551-2558
    299.解丽娟,王伯仁,徐明岗,等.长期不同施肥下黑土与灰漠土有机碳储量的变化[J].植物营养与肥料学报,2012,18(1):98-105
    300.解宪丽,孙波,潘贤章.红壤丘陵区土壤有机碳储量模拟[J].中国人口.资源与环境,2010,20(9):146-152
    301.解宪丽,孙波,周慧珍,等.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报,2004,41(1):35-43
    302.杨学明,张晓平,方华军,等,用RothC-26.3模型模拟玉米连作下长期施肥对黑土有机碳的影响[J].中国农业科学,2003,36(11):1318-1324
    303.杨景成,韩兴国,黄建辉,等.土地利用变化对陆地生态系统碳贮量的影响[J].应用生态学报,2003,14(8):1385-1390
    304.杨寿荣,王龙.云南南涧县土壤有机碳储量研究[J].亚热带水土保持,2011,23(2):28-32
    305.杨学明,张晓平,方华军,等.用RothC-26.3模型模拟玉米连作下长期施肥对黑土有机碳的影响[J].中国农业科学,2003,36(11):1318-1324
    306.严毅萍,曹建华,杨慧,等.岩溶区不同土地利用方式对土壤有机碳碳库及周转时间的影响[J].水土保持学报,2012,26(2):145-150
    307.严宁珍,杨剑虹,屈明,等.渝东南岩溶山地土地利用方式对土壤有机碳时空分布特征的影响[J].中国岩溶,2012,31(1):36-39
    308.易淑棨,王立德,等编著.土壤学(农学类专业)[M].南京:江苏科学技术出版社,1985
    309.袁道先.现代岩溶学与全球变化[J].地学前缘,1997,4(1-2):17-24
    310.袁芳,赵小敏,乐丽红,等.江西省表层土壤有机碳库储量估算与空间分布特征[J].生态环境,2008,17(1):268-272
    311.于贵瑞主编.全球变化与陆地生态系统碳循环和碳蓄积[M].北京:气象出版社.2003,1-460
    312.于建军,杨锋,吴克宁,等.河南省土壤有机碳储量及空间分布[J].应用生态学报,2008,19(5):1058-1063
    313.于成广,杨晓波,刘明华,等.辽河流域土壤碳密度分布特征和碳储量研究[J].地质与资源,2011,20(4):272-277
    314.尤孟阳,李海波,韩晓增.土地利用变化与长期施肥对黑土有机碳密度的影响[J].水土保持学报,2010,24(2):155-159
    315.杨景成,韩兴国,黄建辉,等.土地利用变化对陆地生态系统碳贮量的影响[J].应用生态学报,2003,14(8):1385-129
    316.杨尚斌,温仲明,张佳.基于自然植被的延河流域农田生态系统土壤固碳潜力评估[J].干旱地区农业研究,2010,28(5):211-217
    317.张固成,傅杨荣,何玉生,等.海南岛土壤有机碳空间分布特征及储量[J].热带地理,2011,31(6):554-558
    318.张伟,莫江明,方运霆,等.氮沉降度森林土壤主要温室气体通量的影响[J].生态学报,2008,28(5):2309-2319
    319.张国盛,黄高宝,YIN Chan.农田土壤有机碳固定潜力研究进展[J].生态学报,2005,25(2):351-357
    320.张佳华,,徐永福,徐祥德.利用生物地球化学模型研究草地生态系统土地变化对生态环境的影响[J].水土保持学报,2003,17(1):166-169
    321.张明园,魏燕华,孔凡磊,等.耕作方式对华北农田土壤有机碳储量及温室气体排放的影响[J].农业工程学报,2012,28(6):203-209
    322.张琪,李恋卿,潘根兴,等.近20年宜兴市域水稻土有机碳动态及其驱动因素[J].第四纪研究,2004,24(2):236-242
    323.张俊华,李国栋,南忠仁,等.黑河中游不同土地利用类型下土壤碳储量及其空间变化[J].地理科学,2011,31(8):982-988
    324.张四海,曹志平,张国,等.保护性耕作对农田土壤有机碳库的影响[J].生态环境学报,2012,21(2):199-205
    325.张世熔,黄元仿,李保国,等.黄淮海冲积平原区土壤有机质时空变异特征[J].生态学报,2002,22(12):2041-2047
    326.张旭辉,李恋卿,潘根兴.不同轮作制度对淮北白浆土团聚体及有机碳的积累和分布的影响[J].生态学杂志,2001,20(2):16-19
    327.张修玉,许振成,曾凡棠,等.珠江三角洲森林生态系统碳密度分配及其储量动态特征[J].中国环境科学,2011,31(Suppl.):69-77
    328.张秀芝,赵相雷,李宏亮,等.河北平原土壤有机碳储量及固碳机制研究[J].地学前缘,2011,18(6):41-55
    329.张学明,张晓平,方华军,等.用RothC-26.3模型模拟玉米连作下长期施肥对黑土有机碳的影响[J].中国农业科学,2003,36(11):1318-1324
    330.赵莉敏,太湖地区水稻土有机碳空间分异及其影响因素的研究[D].南京:南京农业大学,2009
    331.赵兰坡,马晶,杨学明,等.耕作白浆土有机无机复合体腐殖质组成及类型[J].土壤学报,1997,34(1):28-41
    332.赵婷,王义祥,徐国忠,等.农田表土有机碳含量变化特征及其研究进展[J].福建农业学报,2011,26(3):498-503
    333.赵鑫,宇万太,李建东,等.不同经营管理条件下土壤有机碳及其组分研究进展[J].应用生态学报,2006,17(11):2203-2209
    334.中国土壤普查办公室.中国土壤.北京:中国农业出版社,1998
    335.周广胜,王玉辉,蒋延玲,等.陆地生态系统类型转变与碳循环[J].植物生态学报,2002,26(2):250-254
    336.周广胜.全球碳循环[M].北京:气象出版社,2003
    337.周继良.信阳土壤有机碳分布特点与储量估算[J].南阳理工学院学报,2010,2(4):74-76
    338.周慧珍,龚子同,LampL土壤空间变异性研究[J].土壤学报,1990,33(3):232-241
    339.周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-105
    340.周世厥,牛海燕.安徽省土壤有机质含量分布及影响因素[J].农业环境与发展,1997,52(2):31-34
    341.周涛,史培军,王绍强.气候变化及人类活动对中国土壤有机碳储量的影响[J].地理学报,2003,58(5):727-734
    342.朱超,赵淑清,周德成.1997-2006年中国城市建成区有机碳储量的估算[J].应用生态学报,2012,23(5):1195-1202
    343.朱利群,杨敏芳,徐敏轮,等.不同施肥措施对我国南方稻田表土有机碳含量及固碳持续时间的影响[J].应用生态学报,2012,23(1):87-95
    344.朱学谦,王伟中,汪明.稻麦复种条件下麦秸还田的产量效应和应用技术[J].江苏农业学报,1988,4(3):19-23
    345.庄恒扬,刘世平,沈新平,等.长期少免耕对稻麦产量及土壤有机质与容重的影响[J].中国农业科学,1999,32(4):39-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700