用户名: 密码: 验证码:
基于3S技术的干旱区水土资源高效利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究针对水土资源开发利用过程中产生的水土流失、水环境恶化、土地资源退化及农业面源污染等问题,以水土保持学、水资源学、分形理论及农牧平衡理论等理论为指导,采用外业调查、实验观测和系统分析法,综合运用“3S”技术,以位于干旱区的乌梁素海上游区域为研究对象,开展水土资源高效利用研究。提出了水土资源高效利用措施配置模式及关键技术,为水土流失治理及水土资源高效利用提供理论支撑和技术指导。主要结论如下:
     (1)建立了以3S技术为基础的土壤侵蚀时空动态变化评价方法。以3S技术为手段,采用马尔可夫模型构建不同土壤侵蚀面积的转移矩阵,运用分形理论研究分析了土壤侵蚀强度变化速率、空间结构分形特征及稳定性等。结果表明:1)不同土壤侵蚀强度的土地图斑破碎度复杂程度大小排序为:1985年,轻度、微度、强度;2000年,微度、轻度、中度、极强度、强度;2011年,剧烈、微度、强度、极强度、轻度、中度;2)1985-2011年间,微度侵蚀图斑稳定性指数变差,轻度侵蚀的稳定性指数值由小变大,说明图斑稳定性变好;而中度侵蚀基本保持不变,较为稳定;变化幅度较大的为强度侵蚀和极强度侵蚀,是需要重点治理的区域。
     (2)构建了基于GIS和RUSLE的土壤侵蚀模型。在GIS平台下实现了RUSLE计算过程的自动化,为土地资源的质量评价、利用规划和治理措施配置等提供科学依据与决策手段。
     (3)初步探讨了土地资源及植被退化的驱动因素及其定量分析方法。结果表明:自1985年以来,高覆盖度草地面积急剧减少,其面积由1985年的882.38km2锐减至2000年的462.55km2,降幅达47.57%;2000年至2011年面积减少了122.48km2,主要驱动因素为过度放牧及开垦;盐碱地面积呈快速增加趋势,1985至2011增加了21.93km2,主要驱动因素为不合理灌溉。
     (4)定量分析评价了研究区农牧业、工业及人畜需水量与水资源供给量的均衡性关系,结果表明:1)需水总量为9115.90×104m3/a,总补给量为4521.67×104m3,供需严重不平衡;2)地下水资源超采严重,地下水位年均下降速度为0.87m/a,局部区域达1.56m/a,地下水环境日趋恶化。
     (5)综合考虑区域内地形地貌、水土资源利用及水土流失特征及农牧面源污染等因素,将研究区划分为三个功能区,即:源头带水源涵养与土壤保持区、过程带农牧生产与防风固沙区以及滨海带污染控制与生态滤水区,针对各功能区属性特征及水土资源利用存在的问题,结合水土流失综合治理、生态修复、节水灌溉、风沙区治理及面源污染控制等技术,提出了水上资源高效利用措施配置模式及关键技术。
This thesis takes the upstream of Wuliangsuhai lake, an arid area, as the study object, and carries out the research on water and soil resources efficient use to solve the problem of soil erosion, water environmental degradation, land contamination, agricultural non-point source, etc. Based on soil and water conservation theory, water resources science, fractal theory and Feed-Animal Balance theory, this study adopts the methodology of field investigation, experimental observation, system analysis and3S techniques(Remote sensing, Geography information systems. Global positioning systems), and puts forward configuration mode and key techniques of high-efficiency utilization of water and soil resources. The findings provide a scientific reference for problem of soil and water loss control and efficient use. The main results are as follows:
     1) The evaluation method of spatial and temporal dynamic changes of oil erosion was established based on3s technology. Using3s technology and Markov models to construct transfer matrix of different soil erosion area, and applying geo-fractal theory, this study analyzes the change rate of intensity, fractal characteristic and Stability of different soil erosion intensity. The results show that, the annual erosion intensity levels in1985were ranked as light, tiny, strong. In2000. tiny, light, moderate, ultra strong, strong. In2011, intense, tiny, strong, extremely strong, light, moderate.From1985to2011, the stability of tiny-eroded soil decreased, and the stability of light-eroded increased, which indicate that plaque stability is good. While the stability of moderate erosion stayed unchanged. The sharp change takes place in the strong erosion and ultra strong erosion areas, which call for urgent treatment and protection.
     2) The soil erosion model is established based on GIS and RUSLE. The automation of RUSLE calculation process is realized on GIS platform. This will provide scientific basis for quality evaluation, utilization, planning and configuration of water and land resources.
     3) The main factors that contribute to land resources and vegetation degradation are analyzed and the quantitative analysis method is discussed.The results show that. high coverage grassland area decreased sharply during1985-2000, from882.38km in1985to462.55km in2000.The area has reduced by47.57percent.From2000to2011the area declined by122.48km,the main reason is overgrazing and other unsuitable farming techniques. Saline-alkali land area showed a fast increase of122.48km from1985to2011. the main cause is unreasonable irrigation.
     4) The balance relationship between Water supply and Water demand of Agriculture, industry and human and animal in the object area was carried out with the method of quantitative analysis.The results show that, a) The total water demand is9115.90×10-m3/a. while the total recharge is4521.67×104m3,b) Water tables are falling at an average speed of0.87m/a. local area the speed of1.56m/a due to the serious exploitation of groundwater resources, which alarmed the serious deterioration of ground water environment.
     5) Considering regional topography, soil and water resources utilization and water loss and soil erosion characteristic and fanning non-point source pollution, the study area can be divided into three functional areas, they are Source water conservation and soil conservation area, Agriculture and animal husbandry production and windbreak and sand-fixation areas, Pollution control and ecological water. According to the attributes of three functional areas and the problems of soil and water resources use in areas. The measures for water and soil resources utilization configuration mode and key technology were put forward combining with the comprehensive control of soil erosion, ecological restoration, water-saving irrigation, sandstorm area management and non-point source pollution control technology.
引文
1. 北方几种节水灌溉技术模式[J].农民致富之友,2011,9:79-80.
    2. 藏淑莲,郭廷辅,陈席珍,等.美国的小流域治理[J].中国水土保持,1982,(1):19-23.
    3. 陈万辉.北京地区裸露地表及水土流失的遥感监测研究[D].北京:北京师范大学,2005.
    4. 陈艺伟,王银堂.分形理论在生态水文学中的应用综述[J].水利水电技术,2009,40(7):1-4.
    5. 成胜权.基于RS和GIS的宾县土地资源利用和土壤侵蚀的定量研究[J].水利科技与经济,2012,18(9):100-105.
    6. 杜怀玉.基于GIS的张掖市水土资源空间匹配格局及承载力研究[D].西安:西北师范大学,2008.
    7. 方荣华.日本的森林管理和水土保持[J].水上保持科技情报,1984,(1):1-2
    8. 高凡.关中地区水土资源可承载力及优化配置研究[D].西安:西北大学,2005.
    9. 高天明,张瑞强,刘昭,等.灌溉对退化草地的恢复作用[Jl.节水灌溉,2009,8:26-29.
    10.耿艳辉,庆文.西北地区水土资源优化配置问题探讨[J].水土保持研究,2004.11(3):100-102.
    11.候薇.基于GIS的关中地区水土资源优化配置研究[D]陕西杨凌:西北农林科技大学,2012.
    12.胡素杰,王亚楠,秦奋,等.GIS与RS在小流域水土保持规划中的应用[J].许昌学院学报,2008.27(3):125-128.
    13.胡媛,查轩,黄少燕.重要水源地东圳库区土地资源利用与水土流失特征空间关系分析[J].水土保持研究,2012,19(2):53-56.
    14 黄修桥.灌溉用水需求分析与节水灌溉发展研究[D].陕西杨凌:西北农林科技大学,2005.
    15.冀伟珍.农业面源污染的原理及其防治的新进展[J].中国西部科技,2008,7(36):7-9.
    16.江青龙.京津水源区生态输水型小流域水土流失治理分区与措施配置[D].陕西杨凌:西北农林科技大学,2012.
    17.赖奕卡坡面土壤侵蚀影响因子研究进展[J].亚热带水土保持,2008,20(1):12-17.
    18 李生宇,雷加强.草方格沙障的生态恢复作用——以古尔班通古特沙漠油田公路扰动带为例[J].干旱区研究,2003,20(1):7-10.
    19.李欣.科尔沁沙地铁路工程绿化技术及应用[J].科技视界,2012,(12):187-189
    20.李学玲,林慧龙,分形理论在草地科学中的应用概述[J].草地学报,2011,19(4):705-711.
    21.梁海军,刘作新,王振营.地下渗灌土壤水分运动数值模拟[J].农业工程学报,2008,24(10):11-14.
    22.刘慧平,基于遥感和GIS的城市边缘带土地资源利用变化和城市扩展模式研究:以北京市朝阳区为例[D]北京,北京师范大学,1999.
    23.刘涛.干旱半干旱地区农田灌溉节水治理模式及其绩效研究[D].南京:南京农业大学,2009.
    24.刘贤赵,康绍忠,刘德林,等.基于地理信息的SCS模型及其在黄土高原小流域降雨-径流关系中的应[J].农业工程学报.2005,21(5):93-97.
    25.刘兴华.节水灌溉效益评价研究进展[J].中国科技信息.2006(12):100-101.
    26.吕爱民.浅谈几种节水灌溉工程技术模式的应用[J].水利科技与经济,2008,(1):41-42.
    27.马艳.典型干旱区水土资源高效利用与保护模式的理论与实践[D].乌鲁木齐:新疆大学.2007
    28.倪含斌.张丽萍,倪含辉.基于GIS的小流域水土流失综合治理研究进展[J].水土保持研究,2006,13(2):66-68.
    29.庞国伟,谢红霞,李锐.等.70多年来纸坊沟小流域土壤侵蚀演变过程[J].中国水土保持科 学,,2012,10(3):1-8.
    30. 曲志强.植物配置对土壤风蚀影响的研究[D].北京:北京林业大学,2007.
    31.申双和,张方敏.盛琼.1975-2004年中国湿润指数时空变化特征[J].农业工程学报,2009,25(1):11-15.
    32.史海滨,李仙岳,李瑞平.内蒙干旱区粮食作物综合节水集成技术与模式研究[C]:中国农业工程学会,2011.
    33.宋向阳.吴发启,赵龙山,等.基于 DEM的延河流域水文特征提取与分析[J].干旱地区农业研究.2012,30(4):200-206.
    34孙长安.香溪河流域土地资源利用与水土流失的关系研究[D].北京:北京林业大学,2008.
    35.唐浩.黄沈发.熊丽君.农业面源污染滨岸缓冲带控制技术BMPs体系研究[J].环境科学与技术,2011,34(9):195-200.
    36.唐浩,熊丽君,黄沈发,等.农业面源污染防治研究现状与展望[J].环境科学与技术,2011,34(12H):107-112.
    37.王红雷,王秀茹,王希.利用SCS-CN方法估算流域可收集雨水资源量[J].农业工程学报,2012,28(12):86-91.
    38.杨艳昭,基GIS GIS的西北地区水士资源平衡研究[D].北京:中国科学院研究生院.2005.
    39.姚志宏.基于GIS的区域水土流失过程模拟研究[D].北京:中国科学院研究生院.2010.
    40.叶碎高,王帅.水源地农业面源污染防治研究进展[J].中国水利,2008.(5):18-20.
    41.张法升.刘作新.分形理论及其在土壤空间变异研究中的[J].应用生态学报,2011,22(5):1351-1358.
    42.张宏鸣.杨勤科.刘晴蕊.等.基于GIS的区域坡度坡长因子提取算法[J].计算机程,2010,36(9):246-248.
    43.张华.地下水平衡与生态演替耦合模型研究[D].武汉:华中科技大学.2010.
    44.张立平.黄土高原小流域水土资源高效利用研究--以陕西绥德韭园沟流域为例[D].郑州:华北水利水电学院2012.
    45.张艳军,郭跃,赵纯勇.GIS和RS在水土保持规划中的应用[J].重庆师范大学学报(自然科学版),2005,22(2):61-63.
    46.赵俊芳.郭建平.徐精文.等.基于湿润指数的中国干湿状况变化趋势[J].农业工程学报.2010.26(8):18-24.
    47.张志杰.杨树青.史海滨.等内蒙古河套灌区灌溉入渗对地下水的补给规律及补给系数[J].农业工程学报,2011,27(3):61-66.
    48.赵倩,浑河上游小流域农业非点源污染负荷估算研究[D].北京:中国科学院研究生院.2010.
    49.赵秀芳.地下水埋深对额济纳绿洲植被生态需水量的影响研究[D].呼和浩特:内蒙古农业大学.2008.
    50.郑丹.李卫红,陈亚鹏.等.干旱区地下水与天然植被关系研究综述[J].资源科学.2005.27(4):160-166.
    51.周广柱.王翠珍.刘意章.等.多重分形理论在环境科学领域的研究进展[J].矿物岩石地球化学通报2012.31(6):654-663.
    52.朱丽,李广宇.魏强.等.玛曲退化草地生态修复研究[J].中国水土保持.2010.(1):28-29
    53.胡希军.城市化主导的景观结构演变机制研究—以义乌市为例[D].长沙.中南林业科技大 学,2006.
    54. Afzal Javaid, Noble D H. Optimization Model for Alternative use of Different Quality Irrigation Waters [J]. Journal of Irrigation and Drainage Engineering,1992.118(2):218-228.
    55. Ajaykumar K Kadam, Sanjay S Kale, Nagesh N Pande, et al. Identifying potential rainwater harvesting sites of a semi-arid, basaltic region of western India using SCS-CN method [J]. Water Resour Manage,2012,26(9):2537-2554.
    56. Aladenola OO, Adeboye OB. Assessing the potential for rainwater harvesting [J]. Water Resour Management,2010,24(10):2129-2137.
    57. Amarante D. Applying in situ chemical oxidation several oxidizero provide an effective first step in groundwater andsoil remediation [J]. Pollut Eng,2000,32(2):40-42.
    58. Barber G M. Land-use planning via interactive multi-objective programming [M].Envir. and Plang. A,1976, (8):625-636.
    59. Burch G J, Moore I D.Physical basis of the length-slope factor in the universal soil loss equation [J]. Soil Science Society of America,1986,50(5):1294-1298.
    60. Charnes A, Homes K E, Hazleton J E. et al. A hierarchical goal programming approach to CHEN Yaning, LI Weihong, CHEN yapeng, et al. WaterResources and Ecological Problems in Tarim River Basin, Xinjiang, China [M]. Water and Environmental Management Series (Water in China). 2003 IWA Publishing, UK.1-12.
    61. Cheng Q, Koa C, Yuana Y, et al. GIS modeling for predicting river runoff volume in ungauged drainages in the Greater Toronto Area. Canada[J]. Computers and Geosciences,2006,32(8): 1108-1119.
    62. Cosh M H, Jackson T J, Bindlish R, et al. Watershed scale temporal and spatial stability of soil moisture and its role in validating satellite estimates [J]. Remote Sensing of Environment,2004. 92(4):427-435.
    63. De Winnaar G, Jewitt G P W, Horan M. GIS-based approach for identifying potential runoff harvesting sites in the Thukela River basin. South Africa [J]. Physics and Chemistry of the Earth. 2007,32(15/18):1058-1067.
    64. Dean Sinder hydrlic Engineer. Section 4 Hydrology Chapter 16 Hydrographs [M]. United States Department of Agriculture Soil Conservation Service, Washington DC:Washington:Govt. Print. Off,1972:16.1-16.24.
    65. Dunn M, Hickey R. The effect of slope algorithms on slope estimates within a GIS [J]. Cartography,1998,27(1):9-15.
    66. Eamu s D. Froen d R. Groundwater dependent ecosystems:The where, what and why of GDEs [J]. Australian Journal of Botany,2006,54:91-96.
    67. El-Awar F A, Makke M K, Zurayk R A, et al. A hydro-spatial hierarchical method for siting water harvesting reservoirs in dry [J]. Applied Engineering in Agriculture,2000,16(4):395-404.
    68. Enciso J, J ifon J, Wiedenfeld B. Subsurface dripirrigation of Onions:Effects of drip tape emitter spacing on yield and quality [J]. AgriculturalWaterManagement,2007,92:126-130.
    69. Garbrecht J. Martz L W. The assignment of drainage direction over flat surfaces in raster digital elevation Models [J]. Journal of Hydrology.1997,193(1/4):204-213.
    70. Geetha K, Mishra SK, Eldho TI, et al. Modifications to SCS-CN method for long-term hydrologic simulation|J]. J. Irrig. Drain Eng,2007,133(5):475-486.
    71. George P A. Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by theconjunction of peroxymonosulfate with cobalt[J]. Environ Sci Technol.2003, 37:4790-4797.
    72. Ghurye G Clifford D. Tripp A. Iron coagulation and direct microfiltration to remove arsenic from groundwater[J]. AmWater Works Assoc,2004,96:84-89.
    73. Gorden.Analyse dun echantillonnage en ligne dans la savane de Lamto (Cote d'lovire) [J]. AnnUniv Abidjan, Serie E,1973.6(2):25-31.
    74. h. i. abdel-shafy. a. a. eIL-saharty, m, regelsberger, et al. Rainwater in Egypt:Quantity, distribution and harvesting[J]. Mediterranean Marine Science,2010,11(2):245-257.
    75. Haimes Y Y. HALL W A. Multi-objectives in water resources systems anaiy sis:the surrogate worth trade off method Water Resources Research,1975.10(4):615-624.
    76. Hancock P J. Hunt R J, Boulton A J. Pr ef ace:Hydrogeo ecology. the interdisciplinary study of groundwater dependent ecosystems[J]. Hydrogeology Journal,2009,17(1):1-3.
    77. Hickey R. Smith A. Jankowski P. Slope length calculations from a DEM within ARC/INFO GRID [J]. Computers. Environment and Urban Systems,1994,18(5):365-380.
    78. Hickey R. Slope angle and slope length solutions for GIS [J].Cartography.2000,29(1):1-8.
    79. Jasrotia S. Abinash Majhi, Sunil Singh. Water balance approach for rainwater harvesting using remote sensing and GIS techniques, jammu himalaya. India [J]. Water Resour Manage,2009, 23(14):3035-3055.
    80. Jonathan L. Horton. Physiological response to groundwater depth varies among species and with river flow regulation [J], Ecological Applications,2001,11 (4):1046-1059.
    81. Kahinda JM, Taigbenu AE, Sejamoholo BBP. et al. A GIS-based decision support system for rainwater harvesting[J]. Phys Chem Earth,2009,34(13/16):767-775.
    82. Li Y S. Effects of forest on water circle on the Loess Ptanteau [J] Natural Resources,2001.16(5): 427-432.
    83. Liang C, Bruell C J, Marley M C. et al. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrousion with and without a persulfate thiosulfate redox couple [J].Chemosphere, 2004.55:1213-1223.
    84. Mackay H. Protect ion and management of groundwater dependent ecosystems:Emerging challenges an d potential approaches for policy and management [J]. Australian Journal of Botany. 2006.54:231-237.
    85. Marsik M, Waylen. An application of the distributed hydrologic model CASC2D to a tropical montane watershed [J]. Hydrol,2006,330(3/4):481-495.
    86. McKinney D C. Cai X. Linking GIS and Water Resources Management Models.An Object-Oriented Method.Environmental Modeling and Software,2002.17(5):413-425.
    87. Michel C. Vazken A. Perrin C. Soil conservation service curve number method:How to mend a wrong soil moisture accounting procedure [J]. Water Resources Research.2005,41(11):1-6.
    88. Mishra S K. Tyagi J V. Singh V P. et al. SCS-CN-based modeling of sediment yield [J]. Hydrol. 2006.324(1/4):301-322.
    89. Mishra SK. Pandey RP. Jain MK. et al. A rain duration and modified AMC-dependent SCS-CN procedure for long duration rainfall-runoff events[J]. Water Resour Manage,2008.22(7):861-876.
    90. R Ri. Soil salinity modeling over shallow water tables. Ⅱ:application of LEACHC [J]. Journal of Irrigation and Drainage Engineering.2000.126 (4):234-242.
    91. Rao K N. Narendra K. Latha P S. An integrated study of geospatial information technologies for surface runoff estimation in an agricultural watershed India[J]. Photonirvachak.2010.38(2): 255-267.
    92. Ravishankar M N. Mohan G. A GIS based hydro geomorphic approach for identification of site-specific artificial-recharge techniques in the Deccan Volcanic Province[J]. Earth Syst.2005. 114(5):505-514.
    93. Renard K G, Foster G R, Weeies G A, et al. Predicting Soil Erosion by Water:A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE)[M]. Washington D C:U.S. Department of Agriculture,1997:537.
    94. Sahu R K, Mishra S K, Eldho T I, et al. An advanced soil moisture accounting procedure for SCS curve number method [J]. Hydrol. Process,2007,21(21):2872-2881.
    95. Sante R I, Crecente M R, Miranda B D. Gis-based planning support system for rural land-use allocation.Computers and Electronics in agriculture,2008. (63):257-273.
    96. Schluter M,Savitskv A G,McKinney D C, et al. Optimizing Long-term Water Allocation in the Amudarya River delta:A Water Management Model for Ecological Impact Assessment. Environmental Modelling & Software,2005. (20):529-545.
    97. StephenCNewbold. Integrated modeling for watershed management Multiple objectives and spatial effects. Journal of the AmericanWater Resources Association, Middleburg,2002.41 (3):38-341.
    98. Van Remortel R D. Hamilton M E. Hickey R J. Estimating the LS factor for RUSLE through iterative slope length processing of digital elevation data [J]. Cartography,2001,30(1):27 - 35.
    99. Walsh M R. Toward spatial decision support systems in water resources[J].Water Resources Planning,1992.109(2):158-169.
    100. Wan L, Cao W B, H u F S, et al. Eco-hydrology and eco-hydrogeology [J]. Geological Bullet in of China,2005,24(8):700-703.
    101. Wischmeier W H. Smith D D. Predicting Rainfall Erosion Losses:A Guide to Consevation Planning, Agriculture Handbook No.537 [M]. Washington,D C:U.S. Department of Agriculture,1978:17-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700