用户名: 密码: 验证码:
三峡库区三种土地利用方式优先流特征及其对硝态氮运移的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坡面土壤优先流能够造成养分深层流失、农作物减产、地下水污染、河流富营养化等一系列恶果。研究坡面土壤优先流对了解土壤养分深层流失的作用机制、优先流在农业生产上的作用、减轻地下水污染和提高环境质量均具有重要意义。
     本研究采用田间亮蓝染色示踪观测和室内土柱试验相结合的方法,以三峡库区坡面荒地、玉米地、柑橘地三种土地利用方式为对象,依据图像解析、空间点格局分析等方法对土壤优先路径数量及空间分布状态、优先流形态特征、优先流形成的影响因素、土壤水分及硝态氮优先运移特征进行了分析,系统研究三峡库区坡面土壤优先流特征及其对硝态氮运移的影响。研究主要结论如下:
     (1)采用点格局方法对三峡库区坡面土壤优先路径的空间分布规律进行研究,结果表明水平染色剖面中,荒地优先路径的总数量最大,而竖直染色剖面中柑橘地处理最大。三种土地利用方式不同影响半径的优先路径分布上表现为:≤1mm的优先路径数量最多,>10mm的优先路径数量极少,5-10mm的优先路径多分布于0-20cm表土层。水平染色剖面中,荒地除了>10mm的优先路径分布状态以随机分布为主外,其他径级优先路径多数呈聚集分布或聚集分布向随机分布发展状态,玉米地和柑橘地均以聚集分布状态为主;三种土地利用方式竖直染色剖面>10mm的优先路径均表现出显著的随机分布状态,其他径级优先路径均表现出显著的聚集分布状态,说明土壤中不同径级的优先路径竖直空间分布格局具有一致性。
     (2)通过图像解析提取染色面积比参数,进一步研究了土壤优先流的形态变化特征。三种土地利用方式水平剖面染色面积比均随着土层深度增加呈显著递减趋势,其中荒地各土层染色面积比较大,说明其水平剖面优先路径数量较多;竖直剖面染色图像表明柑橘地剖面内土壤优先流现象最为明显,最深可延伸到基岩母质层顶部,荒地次之,而玉米地10cm以下的深层土壤中无明显优先流现象。水平染色剖面内染色面积比变化趋势多数表现为多峰型,说明优先流形态存在显著分化,优先路径密集分布,土壤剖面有着较强的整体水分传导能力;竖直剖面土壤优先流形态主要以垂直方向延伸为主,部分存在一定的弯曲、侧向流动现象,这主要与根系延伸、土壤质地和结构特征随土壤深度的变化以及优先流路径连通性有关。
     (3)坡面土壤优先流的形成受到土壤基本理化性质、作物根系状况等环境因子影响。在三种土地利用方式土壤剖面染色区的染色面积比与土壤理化性质及作物根系状况等25个指标之间进行Spearman相关分析,结果表明:染色面积比与土壤密度、体积含水量、粘粒含量呈极显著负相关(p<0.01),与总孔隙度、毛管孔隙度、非毛管孔隙度、砂粒含量、>0.25mm水稳性团聚体含量、饱和导水率、有机质含量、3-5mm根长密度、根孔数量呈极显著正相关(p<0.01),与<1mm根长密度、1-3mm根长密度和根重密度呈显著正相关(p<0.05),与粉粒含量、全氮含量、碱解氮含量、全磷含量、速效磷含量、全钾含量、有效钾含量、A1元素含量、Fe元素含量和>5mm根长密度不相关(p>0.05)。说明三峡库区坡面三种土地类型土壤优先流主要受土壤基本物理性质和径级在5mm以下的细根系生长状况的影响。
     (4)分别采用三维原状和重塑土柱以及二维重塑土柱,观测大孔隙对坡面土壤水分及硝态氮运移影响。三维原状和重塑土柱试验结果表明各处理土壤中均存在优先流,相同时间内,原状土柱的累积出流量均显著高于重塑土柱,说明原状土柱与重塑土柱中水分运动存在差别。土壤优先水流出流速率具有不稳定性,水分穿透曲线具有不对称性和拖尾等特征。土壤优先流导致了硝态氮的快速大量运移,优先运移的溶质量占总运移量的40.9%-48.8%。二维重塑土柱试验结果表明O-C处理(包含大孔隙的土柱,孔隙顶部与表土连通,底部埋于土壤基质中)土柱的出流速率是CK处理(无大孔隙的土柱)的1.6倍。O-C处理土柱中水流通过大孔隙到达大孔隙底端的速度要远远大于CK处理,其早期的水流分布主要是沿水平方向,而CK处理土柱中水流分布主要是沿垂直方向。O-C处理土柱内亮蓝浓度分布图的质心在施加相同体积溶液条件下显著深于CK处理,亮蓝主要通过大孔隙底端向大孔隙两侧的土壤内扩散。
Preferential flow in slope land soils could cause lots of disastrous effect, such as nutrient loss in deep soil, crops reduction, groundwater pollution, river eutrophication and so on. The study of preferential flow in slope land soils has important significance for realizing the mechanism of nutrient loss in deep soil and the effect of preferential flow on agricultural industry, and alleviating the groundwater pollution and improving the quality of the environment.
     Brilliant blue dye tracing and soil column infiltration methods were applied in soils of three land use types (waste land, maze field, citrus land). Based on the image analytic, spatial point pattern analysis method, the quantity and distribution characteristics of preferential flow paths, the morphological characteristics and the influencing factors of preferential flow, characteristics of preferential flow and nitrate nitrogen transport were studied, respectively. A systematic study has been done on the characteristics of preferential flow and its effect on nitrate nitrogen transport. The main results were as follows:
     (1) Point pattern analysis was used to reveal the spatial distribution of preferential flow paths in slope land soils of the Three Gorges Reservoir area. The results showed that in the horizon dye profiles, the maximum quantity of preferential flow paths was in the waste land, and the maximum quantity was in the citrus land in the vertical dye profiles. The distribution of prefer ential flow paths with different diameter grade of the three kinds of planting patterns showed t hat the maximum quantity was the≤1mm preferential flow paths, and the minimum quantity was the>10mm preferential flow paths, and most of the5-10mm preferential flow paths distri buted in the0-20cm soil. In the horizon dye profiles, except for most of the distribution of th e>10mm preferential flow paths was random distribution, others were aggregate distribution or trended to uniform in the waste land, and the distribution of the preferential flow paths were aggregate distribution in the maze field and citrus land; In the vertical dye profiles, the distribu tion of the>10mm preferential flow paths was significant random distribution, others were wa s significant aggregate distribution. This suggests that the spatial distribution of preferential flow paths in the vertical dye profiles has consistency.
     (2) Dye coverage ratio was extracted by image analytic and the morphological characteristic of preferential flow was studied. In the horizon dye profiles, the dye coverage ratio showed significant decrease with soil depth, the dye coverage ratio in the waste land was larger than other treatments, which suggest that there are more preferential flow paths; In the vertical dye profiles, there was obvious preferential flow phenomenon in the citrus land, the water could even move to the top of the basement. But there was no significant preferential flow under the top10cm soil in the maze field. In the horizon dye profiles, most of the variation tendency of dye coverage ratio showed multi peak pattern, which suggest that there is significant differentiation of the morphological characteristics of preferential flow and the preferential flow paths show dense distribution. So the moisture conduction capacity of the soil profile. In the vertical dye profiles, the preferential flow mainly moved to the vertical direction, but there also existed curve and lateral movement. This maily related to root extension, soil texture and connectivity of the preferential flow paths.
     (3) Preferential flow occurrence in slope farmland soil was attributed to environmental factors such as soil physicochemical property and crop root system and so on.25environmental factors were selected for the spearman correlation analysis. The results showed that there was a significant negative correlation between the dye coverage ratio and soil density, volumetric water content and clay content (p<0.01), a significant positive correlation with total porosity, the3-5mm root length density and the quality of root holes (p<0.01), a significant positive correlation with the root weight density,<1and3-5mm root length density (p<0.05), but was uncorrelated with the silt content, total nitrogen, available nitrogen, total phosphorous, available phosphorous, total kalium, available kalium, aluminum content, iron content and>5mm root length density. This illustrates that the preferential flow in the soils of three land use types of the Three Gorges Reservoir Area is affected mostly by the soil basic physical properties and the crop root system with diameter less than5mm.
     (4) The three-dimensional undistributed and packed soil column and the two-dimensional packed soil column were used respectively to observe the characteristics of preferential flow and its effect on nitrate nitrogen transport. The results of the three-dimensional undistributed and packed soil column experiment showed that there existed preferential flow in all the treatments. In the same time, the cumulative outflow amount of the undistributed soil column was significant higher than the packed soil column, which illustrate that the water movement in the two columns is different from each other. The outflow velocity of the preferential flow had instability and the breakthrough curve had asymmetry and tailing phenomenon. The preferential flow resulted in mass and fast transport of nitrate nitrogen, which account for40.9%-48.8%of the total transport amount. The results of the two-dimensional packed soil column experiment showed that the outflow velocity of O-C (macropore open at the soil surface-closed at the bottom of the column) treatment was1.6times higher than CK (column without macropore) treatment. The water in the O-C treatment moved faster than CK treatment from the top of the macropore to its bottom. The water in the O-C treatment moved toward to horizontal direction in the early time, but moved toward to vertical direction in the CK treatment. The barycenter of the brilliant blue distribution map of the O-C treatment was deeper than the CK treatment, and the brilliant blue diffused to the soil on either side of the macropore through the bottom of the macropore.
引文
[2]陈风琴,石辉.岷江上游三种典型植被下土壤优势流现象的染色法研究[J].生态科学.2006,5(1):69-73.
    [3]陈引珍.三峡库区森林植被水源涵养及其保土功能研究[D].北京林业大学博士论文.2007:18.
    [4]程金花.长江三峡花岗岩区林地坡面优先流模型研究[D].北京林业大学博士论文.2005:9-17.
    [5]程瑞梅.三峡库区森林植物多样性研究[D].中国林业科学研究院博士论文.2008:8.
    [6]程云.缙云山森林涵养水源机制及其生态功能价值评价研究[D].北京林业大学博士论文.2007:15-20.
    [7]程竹华,张佳宝.土壤中优势流现象研究进展[J].土壤.1998(6):315-318.
    [8]崔引娣.非均质土体溶质穿透曲线试验研究[D].西北农林科技大学硕士论文.2009:5-7.
    [9]方运霆,莫江明,PerGundersen,等.森林土壤氮素转换及其对氮沉降的响应[J].生态学报.2004,24(7):1523-1531.
    [10]冯杰.水及溶质在有大孔隙的土壤中运移机制研究[D].河海大学博士论文.2001:19-41.
    [11]郭会荣.优先流影响下的入渗补给过程及溶质运移实验与模拟[D].中国地质大学博士论文.2008:4-11.
    [12]何园球,王兴祥,胡锋,等.红壤丘岗区人工林土壤水分、养分流失动态研究[J].水土保持学报.2002,16(4):91-97.
    [13]黄昌勇.土壤学[M].北京:中国农业出版社,2005:68.
    [14]黄满湘,章申,张国.北京地区农田氮素养分随地表径流流失机理[J].地理学报.2003,58(1):147-154.
    [15]贾良清,区自清.污染物在土壤-植物系统中迁移规律的数字模拟研究:Ⅱ优先路径和优先水流[J].资源生态环境网络研究动态.1995,6(2):16-19.
    [16]江晓晗.江津区土地利用/覆被变化及驱动因子研究[D].西南大学硕士论文.2010:10.
    [17]孔刚,王全九,樊军.坡度对黄土坡面养分流失的影响实验研究[J].水土保持学报.2007,21(3):14-18.
    [18]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988.66.
    [19]李保国,李韵珠,石元春.水盐运动研究30年[J].中国农业大学学报.2003,8:5-19.
    [20]李德成,Velde B, Delerue J F,等.荒地制度下耕作土壤结构演化的数字图像分析[J].土壤学报.2002,39(2):214-220.
    [21]李伟莉,金昌杰,王安志,等.长白山主要类型森林土壤大孔隙数量与垂直分布规律[J].应用生态学报.2007b,18(10):2179-2184.
    [22]李伟莉,金昌杰,王安志.长白山北坡两种类型森林土壤的大孔隙特征[J].应用生态学报.2007a,18(6):1213-1218.
    [23]李韵珠,陆景文,黄坚.蒸发条件下粘土层与土壤水盐运移[C].国际盐渍土改良学术讨论会论文集.1985:176-190.
    [24]林成谷.土壤学(北方本)[M].北京:农业出版社,1983:48.
    [25]林大仪.土壤学实验指导[M].北京:中国林业出版社,2004:75-77.
    [26]陆海明,尹澄清,王夏晖,等.华北半干旱区2个农业流域地表氮素流失特征的对比研究[J].环境科学.2008,29(10):2689-2695.
    [27]吕文星,张洪江,吴煜禾,等.基于点格局分析的林地表层土壤优先路径水平分布特征[J].水土保持学报.2012,26(6):68-74.
    [28]吕文星.三峡库区坡耕地“地埂+植物篱”结构及营建种植模式[D].北京林业大学硕士论文.2011:14.
    [29]梅莉,王政权,韩有志,等.水曲柳根系生物量、比根长和根长密度的分布格局[J].应用生态学报.2006,17(1):1-4.
    [30]倪余文,区自清,应佩峰.土壤优先水流及溶质优先迁移的研究[J].应用生态学报.2001,12(1):103-107.
    [31]牛健值,余新晓,张志强.贡嘎山暗针叶林生态系统溶质优先运移分析[J].北京林业大学学报.2009,31(5):48-53.
    [32]牛健值,余新晓,张志强.优先流研究现状及发展趋势[J].生态学报.2006,26(1):231-243.
    [33]区自清,贾良清,金海燕,等.大孔隙和优先水流及其对污染物在土壤中迁移行为的影响[J].土壤学报.1999,36(3):341-347.
    [34]饶良懿.三峡库区理水调洪型防护林空间配置与结构优化技术研究[D].北京林业大学博士论文.2005:17.
    [35]任理,毛萌.阿特拉津在饱和砂质壤土中非平衡运移的模拟[J].土壤学报.2003,40(6):829-837.
    [36]邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006:45-46.
    [37]石辉,陈凤琴,刘世荣.岷江上游森林土壤大孔隙特征及其对水分出流速率的影响[J].生态学报.2005,25(3):507-512.
    [38]时培建,刘杰,杨振,等.汶川地震的时空点格局分析[J].地震学报.2009(5):506-515.
    [39]时培建,郭世权,杨清培,等.毛竹的异质性空间点格局分析[J].生态学报,2010(16):4401-4407.
    [40]时培建.空间点格局分析和社会研究[J].社会,2009(5):187-205.
    [41]史玉虎.长江三峡花岗岩区林地管流对地表径流的影响[D].北京林业大学博士论文.2004:23.
    [42]孙龙,张洪江,程金花,等.重庆江津区柑橘地土壤大孔隙特征[J].水土保持学报.2012,26(3):194-198.
    [43]孙阳.三峡库区水环境人口容量研究[D].重庆大学博士论文.2004:15.
    [44]王大力,尹澄清.植物根孔在土壤生态系统中的功能[J].生态学报.2000,20(5):869-874.
    [45]王栋.长江三峡库区不同植被类型对降雨产流影响的研究-以重庆缙云山为例[D].北京林业大学博士论文.2007:15-25.
    [46]王伟,张洪江,程金花,等.四面山阔叶林土壤大孔隙特征与优先流的关系[J].应用生态学报.2010,21(5):1217-1223.
    [47]王伟.三峡库区紫色砂岩林地土壤优先流特征及其形成机理[D].北京林业大学博士论文.2011:31.
    [48]王贤,张洪江,程金花,等.重庆市四面山典型林分土壤饱和导水率研究[J].水土保持通报.2012,32(2):29-34.
    [49]吴杨,唐亚,许宇慧,等.植物篱种植模式下小流域退耕还草生态农业可持续发展种植模式研究[J].草业科学.2009,26(4):59-63.
    [50]夏立忠,杨林章,李运东.生草覆盖与植物篱技术防治紫色土坡地土壤侵蚀与养分流失的初步研究[J].水土保持学报,2007,21(2):28-31.
    [51]夏天翔,李文朝,冯慕华.抚仙湖流域砾质土有机及常规肥料淋溶模拟研究[J].土壤.2008,40(4):596-601.
    [52]徐勤学,王天巍,李朝霞,等.紫色土坡地壤中流特征[J].水科学进展.2010,13(2):229-234.
    [53]徐绍辉,张佳宝.土壤中优势流的几个基本问题研究[J].土壤侵蚀与水土保持学报.1999,13(6):85-93.
    [54]袁玲,王容萍,黄建国,等.三峡库区典型农耕地的氮素淋溶与评价[J].土壤学报.2010,47(4):674-683.
    [55]张洪江.长江三峡花岗岩地区优先流运动及其模拟[M].北京:科学出版社,2006:104.
    [56]张景芳,刁承泰,刘贵芬,等.江津区耕地与基本农田保护分析及预测[J].安徽农业科学.2006,34(13):3152-3154.
    [57]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978:62-169,466-524.
    [58]周虎,吕贻忠,杨志臣等.保护性耕作对华北平原土壤团聚体特征的影响[J].中国农业科学.2007,40(9):1973-1979.
    [59]Allaire L S E, Gupta S C, Moncrief J F. Water and solute movement in soil as influenced by macropore characteristics 1. Macropore continuity [J]. Journal of Contaminant Hydrology, 2000,41:283-301.
    [60]Allaire S E, Roulier S, Cessna A J. Quantifying preferential flow in soils:A review of different techniques [J]. Journal of Hydrology.2009,378:179-204.
    [61]Anderson J L, Bouma J. Water movement through pedal soils:Ⅰ. Saturated flow [J]. Soil Science Society of America Journal.1994,41:413-418.
    [62]Bachmair S, Weiler M, Nutzmann G. Controls of land use and soil structure on water movement:Lessons for pollutant transfer through the unsaturated zone [J]. Journal of Hydrology.2009,369:241-252.
    [63]Baker R S, Hillel D. Laboratory tests of a theory of fingering during infiltration into layered soils [J]. Soil Science Society of America Journal.1990,54:20-30.
    [64]Bear J.Dynamics of fluids in porous media[M].American Elsevier, New York.1972.
    [65]Beven K, Germann P. Macropores and water flow in soils [J]. Water Resources Research. 1982,18(5):1311-1325.
    [66]Beven K, Germann P. Water flow in soil macropores Ⅱ. A statistical approach [J]. Journal of Soil Science.1981,32:31-39.
    [67]Bjorneberg D L, Westermann D T, Aase J K. Nutrient losses in surface irrigation runoff. [J]. Journal of soil and water.2002,57(6):524-529.
    [68]Bodhinayake W, Si B C, Noborio K. Determination of hydraulic properties in sloping landscapes from tension and double-ring infiltrometers [J]. Vadose Zone Journal.2004,3: 964-970.
    [69]Booltink H W G. Field-scale distributed modeling of bypass flow in heavily textured clay soil [J]. Journal of Hydrology.1994,163:65-84.
    [70]Bouldin J D, Freeland R S, Yoder R E, et al. Nonintrusive mapping of preferential water flow paths in West Tennessee using ground penetrating radar [C]. Proceedings of the Seventh TN Water Resources Symposium, Nashville,1997:24-29.
    [71]Bouma J, Dekker L W. A case study on infiltration into dry clay soil. I:Morphological observations [J]. Geoderma.1978,20(1):27-40.
    [72]Bouma J, Wosten J H M. Characterizing ponded infiltration in a dry cracked clay soil [J]. Journal of Hydrology.1984.69:297-304.
    [73]Bouma J, Wosten J.H.M. Flow patterns during extended saturated flow in two undisturbed swelling clay soils with contrasting macrostructures [J]. Soil Science Society of America Journal.1979,43:16-22.
    [74]Brandsma R. T, Fullen M A, Hocking T J. Soil conditioner effects on soil structure and erosion [J]. Journal of soil and water.1999,54(2):485-489.
    [75]Bruggeman A C, Mostaghimi S. Simulation of preferential flow and solute transport using an efficient finite element model [J]. American Society of Agricultural Engineers.1991.3: 244-255.
    [76]Bystrom O, Bromley D W. Contracting for nonpoint-source pollution abatement. [J]. Journal of agricultural and resource economics.1998,23(1):39-54.
    [77]Crestana R., Timothy R, Albert J. et al. An improved dual porosity model for chemical transport in macroporous soils [J]. Journal of Hydrology.1993,193:270-292.
    [78]Diggle P J. Statistical analysis of spatial point patterns[M]. London:Academic Press.1983, 15.
    [79]Diment G A, Watson K K. Stability analysis of water movement in unsaturated porous media. 3. Experimental studies [J]. Water Resources Research.1985,21:979-984.
    [80]Ehlers W. Observation oil earthworm channels and infiltration on tilled and unfilled loess soil [J]. Soil Science.1993,119(3):242-249.
    [81]Fisher R F, Binklet D. Ecology and Management of Forest Soils (3rd ed) [M]. New York: John Wiley and Sons press.2000,282-284.
    [82]Fliihler H, Durner W, Flury M. Lateral solute mixing processes-a key for understanding field-scale transport of water and solutes [J]. Geoderma.1996,70,165-183.
    [83]Flury M, Fliihler H, Jury W A, et al. Susceptibility of soils to preferential flow of water:A field study [J]. Water Resources Research.1994,30(7):1945-1954.
    [84]Flury M, Fluhler H. Modeling solute leaching in soils by diffusion limited aggregation:Basic concepts and applications to conservative solutes [J]. Water Resources Research.1995. 31(10):2443-2452
    [85]Flury M, Leuenberger J, Studer B, et al. Transport of anions and herbicides in a loamy and sandy field soil [J]. Water Resour. Res.1995,31:823-835.
    [86]Franklin D H, West L T, Radcliffe D E, et al. Characteristics and genesis of preferential flow paths in a piedmont ultisol [J]. Soil Science Society of America Journal.2007,71(3): 752-758.
    [87]Gaiser R N. Root channels and roots in forest soils [J]. Soil Science Society of America Journal.1952,16(1):62-65.
    [88]Germann P, Beven K. Water flow in soil macropore I. An experimental approach [J]. Journal of Soil Science.1981,32:1-13.
    [89]Germann P, Pietro L. Scales and dimensions of momentum dissipation during preferential flow in soils [J].Water Resources Research.1999,35(5):143-1454.
    [90]Gjettermann B, Nielsen K L, Petersen C T, et al. Preferential flow in sandy loam soils as affected by irrigation intensity [J]. Soil Technology.1997,11(2):139-152.
    [91]Glass R J, Nicholl M J. Physics of gravity fingering of immiscible fluids within porous media: an overview of current understanding and selected complicating factors [J]. Geoderma.1996, 10:133-163.
    [92]Glass R J, Steenhuis T S, Parlarge J Y. Wetting front instability as a rapid and far-reaching hydrologic process in the vadose zone [J]. Journal of Contaminant Hydrology,1988,3(2-4): 207-226.
    [93]Goreaud F, Pelissier R. On explicit formulas of edge effect correction for Ripley's K-function [J]. Journal of Vegetable Science.1999,10:433-438.
    [94]Green R D, Askew G P. Observations on the biological development of macropores in soils of Tomney Marsh [J]. Journal of Soil Science.1965,16(2):342-349.
    [95]Hangen E, Buczko U, Bens O, et al. Infiltration patterns into two soils under conventional and conservation tillage:influence of the spatial distribution of plant root structures and soil animal activity [J]. Soil and Tillage Research.2002,63(3-4):181-186.
    [96]Haws N, Das B S, Rao P S C. Dual-domain solute transfer and transport processes: evaluation in batch and transport experiments [J]. Journal of Contaminant Hydrology.2004, 75:257-280.
    [97]Helling C S, Gish T J. Physical and chemical processes affecting preferential flow [J]. American Society of Agricultural Engineering.1991,77:50-63.
    [98]Hillel D. Environmental soil physics:Fundamentals, applications, and environmental considerations[M]. San Diego:Academic Press,1998,243-268.
    [99]Isensee A R, Helling C S, Gish T J, et al. Grounwater residues of atrazine, alachlor and cyanazine under no-tillage practices [J]. Chemosphere.1988,17:165-174.
    [100]Kamau PA, Ellsworth T R, Boast C W, et al. Tillage and cropp ing effects on p referential flow and solute transport [J]. Soil Science.1996,161(9):549-561.
    [101]Keith B J, Robin C T. On the variation of infiltration into a Homogeneous soil matrix containing a population of macropores [J]. Water Resources Research.1986,22:383-388.
    [102]Koh I T. X-ray stereoradiographs using new contrast media on soil macropores [J]. Soil Science,1988,146(3):199-207.
    [103]Kohne J M, Kohne S, Simunek J. A review of model applications for structured soils:a) Water flow and tracer transport [J]. Journal of Contaminant Hydrology.2009,104(1-4):4-35.
    [104]Kung K J S, Donohue S V. Improved solute-sampling protocol in a sandy vadose zone using ground-penetrating radar [J]. Soil Science Society of America Journal.1991,55:1543-1545.
    [105]Kung K J S. Preferential flow in a sandy vadose zone soil 1:Field observation [J]. Geoderma. 1990,46:51-58.
    [106]Ladislan M N, Ramon R, Garrison S. Correlation of spectroscopic indicators of humification with mean annual rainfall along a temperate grassland climosequence [J]. Ceoderma,1998, 81(3-4):305-311.
    [107]Lamande M, Hallaire V, Curmi P, et al. Changes of pore morphology, infiltration and earthworm community in a loamy soil under different agricultural managements [J]. Catena. 2003,54:637-649.
    [108]Logsdon S D. Transient variation in the infiltration rate during measurement with tension infiltrometers [J]. Soil Science.1997,162:233-241.
    [109]Luxmoore R J, Jardine P M, Wilson G V, et al. Physical and chemical controls of preferred path flow through a forested hillslope [J]. Geoderma.1990,46:139-154.
    [110]Marina B J, Christian B H. Phosphate sorption to macropore wall materials and bulk soil [J]. Water, Air, and Soil Pollution.2002,137:141-148.
    [111]McCuen R H, Rawls W J, Brakensiek D L. Statistical analysis of the Brooks-Corey and the Green-Ampt parameters across soil textures[J]. Water Resources Research.1981,17(4): 1005-1013.
    [112]Montagne D, Cornu S, Forestier L, et a. Soil drainage as an active agent of recent soil evolution:A review [J]. Pedosphere.2009,19(1):1-13.
    [113]Moore I D, Burch G J, Wallbrink P J. Preferential flow and hydraulic conductivity of forest soils [J]. Soil Science Society of America Journal.1986,50:876-881.
    [114]Mosley M P. Streamflow generation in a forested watershed, New Zealand [J].Water Resources Research,1979,15(4):795-806.
    [115]Murphy B W, Kocn T B, Jones B A, et al. Temporal variation of hydraulic properties for some soils with fragile structure [J]. Australian Journal of Soil Research.1993,31:179-197.
    [116]Murphy C P, Banfield C F. Pore space variability in a subsurface horizon of tow soils [J]. Journal of Soil Science.1978,29:156-166.
    [117]Muskat, M. The flow of homogeneous fluids through porous media [M]. San diego:Ann Arbor Press.1946,546-558.
    [118]Nieber J L, Warner G S, Soil pipe contribution to steady subsurface stormflow [J]. Hydrological processes.1991,5(4):329-344.
    [119]Nieber J L. Modeling finger development and persistence in initially dry porous media [J]. Geoderma.1996,70:207-229.
    [120]Ohrstrom P, Persson M, Albergel J, et al. NasriField-scale variation of preferential flow as indicated from dye coverage [J]. Journal of Hydrology.2002,257(1-4):164-173.
    [121]Omoti U, Wild A. Use of fluorescent dyes to mark the pathways of solute movement through soils under leaching conditions:2. Field experiments [J]. Soil Science.1979,128(2):98-104.
    [122]Penman H L, Schofield R K. Drainage and evaporation from fallow soil at Rothamsted. The Journal of Agricultural Science.1941,31:74-109.
    [123]Perret J, Prasher S O, Kantzas A, et al. Preferential solute flow in intact soil columns measured by SPECT scanning [J]. Soil Science Society of America Journal,2000,64: 469-477.
    [124]Perret J, Prasher S O, Kantzas A, et al. Three-dimensional quantification of macropore networks in undisturbed soil cores [J]. Soil Science Society of America Journal.1999,63(6): 1530-1543.
    [125]Peter G F. preferential flow and the generation of runoff I. Bounday layer flow theory [J]. Water Resources Research.1990,26:3055-3063.
    [126]Priebe D L, Blakmer A M. Preferential movement of oxygen-18 labeled water and nitrogen-15-labeled urea through macropore in a nicollet soil [J]. Journal of environmental quality.1989,18:66-72.
    [127]Prieksat M A, Kaspar T C, Ankeny M D. Positional and temporal changes in ponded infiltration in a corn field [J]. Soil Science Society of America Journal.1994,58:181-184.
    [128]Pruess K. The TOUGH codes-A family of simulation tools for multiphase flow and transport proeesses in permeable media [J]. Vadose Zone Journal.2004,3:738-746.
    [129]Qii Z Q, Jia L Q, Jin H Y. Formation of soil macropores and preferential migration of linear alkylbenzene sulfonate (LAS) in soils [J]. Chemosphere.1999,38(9):1985-1996.
    [130]Radulovich R, Solorzano E, Sollins P. Soil macropore size distribution from water breakthrough curves [J]. Soil Science Society of America Journal.1989,53:556-559.
    [131]Reeves M J. Recharge of the English Chalk, A possible mechanism [J]. Engineering Geology. 1980,14:231-240.
    [132]Reynolds W D, Elrick D E. Measurement and characterization of soil hydraulic properties [A]. In:Alvarez-Benedi J, Munz-Carpena R.(Eds.). Soil-Water-Solute Process Characterization, An Integrated Approach [C]. CRC Press, Boca Raton, FL, USA,2005: 197-252.
    [133]Risler P D, Wraith J M, Gaber H M. Solute transport under transient flow conditions estimated using time domain reflectometry [J]. Soil Science Society of America Journal. 1996,60:1297-1305.
    [134]Ritsema C J, Dekker L W. Distribution flow-a general process in the top layer of water repellent soils [J]. Water Resources Research.1995,31,1187-1200.
    [135]Roulier S, Jarvis N. Modeling macropore flow effects on pesticide leaching:inverse parameter estimation using microlysimeters [J]. Journal of Environmental Quality.2003, 32(6):2341-2353.
    [136]Shipitalo M J, Edwards W M, Redmond C E. Comparison of water movement and quality in earthworm burrows and pan lysimeters. Journal of environmental quality.1994,23: 1345-1351.
    [137]Simunek J, van Genuchten M T, Sejna M, et al. The STANMOD Computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation [C]. International Ground Water Modeling Center, Colorado School of Mines.1999,32.
    [138]Simunek J, van Genuehten M T, Sejna M. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes Invariably-saturated media, Version3.0, HYDRUS Software Seriesl [D]. Ph.D. Dissertation University of California,2005,270.
    [139]Singh P, Kanwar R S. Preferential solute transport through macropores in large undisturbed saturated soil column [J]. Journal of environmental quality.1991,20:295-300.
    [140]Singh P, Rameshwar K S, Thompson M L. Measurement and characterization of macropores by using AUTOCAD and automatic image analysis[J]. Journal of Environmental Quality. 1991,20:289-294.
    [141]Skopp J, Gardner W R, Tyler E J. Solute movement in saturated soils:two region model with small interaction [J]. Soil Science Society of America Journal.1981,45:837-842.
    [142]Smettem K R J, Collis G N. Statistical characterization of soil biopores using a soil peel method [J]. Geoderma 1985,36:27-36.
    [143]Southwick L M, Willis G H, Johnson D C, et al. Leaching of nitrate, atrazine and metribuzin from sugarcane in Southern Louisiana [J]. Journal of Environmental Quality.1995,24: 684-690.
    [144]Trojan M D, Linden D R. Tillage, residue, and rainfall effects on movement of an organic tracer in earthworm-affected soils [J]. Soil Science Society of America Journal.1994,58: 1489-1494.
    [145]Vanclooster M, Mallants D, Diels J, et al. Determining local-scale solute transport parameters using time domain refleetometry (TDR) [J]. Journal of Hydrology,1993,148(1-4):93-107.
    [146]Vermeul V R, Istok J D, Flint A L, et al. An improved method for quantifying soil macroporosity [J]. Soil Science Society of America Journal.1993,57:809-816.
    [147]Vervoort R W, Cattle S R, Minasny B. The hydrology of vertosols used for cotton production: I. Hydraulic, structural and fundamental soil properties [J]. Australian Journal of Soil Research.2003,41:1255-1272.
    [148]Villholth K G. Field and numerical investigation of macropore flow and transport processes [D]. PhD thesis, Technical University of Denmark. Lyngby, Denmark.1994.
    [149]Vincent L, Soille P. Watersheds in digital spaces:an efficient algorithm based on immersion simulations [J]. IEEE transactions on pattern analysis and machine intelligence.1991,13(6): 583-598.
    [150]Wagner L E, Vidon P, Tedesco L P, et al. Stream nitrate and DOC dynamics during three spring storms across land uses in glaciated landscapes of the Midwest [J]. Journal of Hydrology.2008,362:177-190.
    [151]Walker P J C, Trudgill S T. Quantimet image analysis of soil pore geometry:comparison with tracer breakthrough curves [J]. Earth Surface Processes and Landforms.1983,8:465-472.
    [152]Wang W, Zhang H J, Li M, et al. Infiltration characteristics of water in forest soils in the Simian mountains, Chongqing City, southwestern China [J]. Frontiers of Forestry in China. 2009,4(3):338-343.
    [153]Ward J S, Parker G R, Ferrandino F J. Long-term spatial dynamics in an old growth deciduous forest[J]. Forest Ecology and Management.1996,83:189-202.
    [154]Watson K W, Luxmoore R J. Estimating macroporosity in a forest watershed by use of a tension infiltrometer [J]. Soil Science Society of America Journal.1986,50,578-582.
    [155]Wei S R. Pestieide transport and significance of macropore flow in the coastal plain Soils [D]. Ph.D. Dissertation University of Maryland.1999:45-46.
    [156]Weiler M, Fluhler H. Inferring flow types from dye patterns in macroporous soils [J]. Geoderma.2004.120,137-153.
    [157]Wesley W S, John T W. Preferential flow estimates to an agricultural tile drain with implications for glyphosate transport [J]. Journal of Environmental Quality.2006,35(5): 1825-1835.
    [158]White R E. Transport of chioride and non-diffusible solutes in soils [J]. Irrigation Science. 1985,6:3-10.
    [159]William H S, Ritsema C J, Boesten J J, et al. Simulation of water flow and bromide transport in a water repellent sandy soil using a one-dimensional convection-dispersion model [J]. Journal of Hydrology.1999,215:172-187.
    [160]Williams A G, Dowd J F, Scholefield D. Preferential flow variability in a well-structured soil [J]. Soil Science Society of America Journal.2003,67:1272-1281.
    [161]Wilson G V, Luxmoore R J. Infiltration macroporosity distribution on two watersheds [J]. Soil Science Society of America Journal.1988,52:329-335.
    [162]Wuest S B. Comparison of preferen al flow paths to bulk soil in a weakly aggregated silt loam soil [J]. Vadose Zone Journal.2009,8(3):623-627.
    [163]Yao T, Hendrickx J M H. Stability of wetting fronts in dry homogeneous soils under low infiltration rates [J]. Soil Science Society of America Journal.1996,60:20-28.
    [164]Zaslavsky D, Kassif G. Theoretical formulation of piping mechanism in cohesive soils [J]. Geotechnique.1965,15(3):305-316.
    [165]Zhang H J, Cheng J H, Shi Y H, et al. The distribution of preferential paths and its relation to the soil characteristics in the three gorges area, China [J]. International Journal of Sediment Research.2007,22(1),39-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700