用户名: 密码: 验证码:
黄土丘陵区小流域土壤有效水时空变异与动态模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雨水资源利用是缓解黄土高原水土流失和干旱缺水的有效途径,土壤有效水是黄土高原雨水资源化潜力的重要组成部分,也是该地区生态修复和农业生产的关键水资源。土壤有效水受气象、土壤、地形、植被等因素影响呈现较强的时空变异性,其动态变化规律和空间结构特征尚未深入了解。针对黄土丘陵区雨水资源高效利用的迫切需求以及土壤有效水存在时空变异的客观事实,本论文以了解黄土丘陵区小流域土壤有效水时空变异规律为主要研究目的,在水土流失严重的陕北清涧县园则沟流域进行土壤水分定位观测(2009-2012年)、土壤有效水参数测定、以及地形和植被现状调查的基础上,借助经典统计学和地统计学等方法对园则沟小流域不同尺度(坡面、沟道和小流域)土壤有效水时空变异规律、时间稳定性特征、空间结构及其季节性特征、坡沟土壤有效水关系、土壤有效水计算模型等进行了研究,并与相应土壤水分时空变异规律进行了对比分析,得到如下主要研究成果:
     (1)小流域坡面和沟道土壤有效水及土壤水分均表现出明显的季节性特征和年际特征。旱季土壤有效水和土壤水分以消耗为主,含水量较低;雨季以补充为主,含水量较高。就年际特征而言,亚表层(20cm以下)土壤有效水与土壤水分从2009年到2012年呈递减趋势。土壤有效水与土壤水分空间变异性差异明显,二者标准差虽然相似,但后者变异系数是前者的1.5-2倍。土壤有效水与土壤水分标准差随均值增加呈现先增大而后降低的趋势,标准差极值对应的土壤含水量为20%左右,对应的土壤有效含水量为10%左右。但二者均值与变异系数关系明显不同,其中土壤有效水均值与变异系数呈指数负相关关系。值得注意的是沟道微地形(坡脊、沟坡地和汇水道)显著影响土壤有效水与土壤水分空间分布,其中汇水道表层土壤含水量显著(p<0.05)高于沟坡地和坡脊。
     (2)提出时间稳定性分析新指标RMSE,结合其他指标分析了坡面和沟道土壤有效水及土壤水分时间稳定性,结果表明土壤有效水与土壤水分均表现出较高时间稳定性水平,但坡面和沟道时间稳定性特征存在差异。坡面土壤有效水与土壤水分时间稳定性相关性较高,土壤水分越稳定意味着土壤有效水也越稳定,但沟道不存在这种特征。坡面土壤有效水时间稳定性还表现出明显的尺度性。在单一土地利用尺度上,土壤有效水与土壤水分时间稳定性特征差异较小,而在流域坡面尺度上,土壤水分时间稳定性显著高于土壤有效水。沟道微地形也影响土壤有效水与土壤水分时间稳定性,坡脊土壤有效水与土壤水分时间稳定性水平显著(p<0.05)高于沟坡地和汇水道。
     (3)提出扩展时间稳定性概念,即通过研究区外单个样点数据估算研究区土壤有效水或土壤水分。然后采用此扩展时间稳定性分析,结合观测算子与随机组合等方法,定量研究了小流域坡面和沟道土壤有效水关系。其中观测算子包括三种线性算子(LRG、MRD和LRS)和一种非线性算子(CDF)。总体而言,扩展时间稳定性分析和观测算子估算精度高于随机组合方法,但不同方法具有不同的应用前提。当有前期土壤有效水数据时,扩展时间稳定性分析和观测算子法更适合该研究区;其中不同观测算子表现差异较大,非线性观测算子估算精度最高,而线性算子时间传递性好。当无前期土壤有效水数据时,随机组合方法能够获得一定精度的沟道土壤有效水,并且发现从坡面随机选取10个样点的估算误差与所有59个样点估算误差仅有微弱差异。
     (4)小流域土壤有效水半方差能够用地统计学球状模型较好拟合。半方差参数呈现明显季节性特征:对于块金值,夏季>春季>秋季;对于变程:夏季>秋季>春季;对于空间异质比,春季>秋季>夏季。表明夏季土壤有效水空间变异水平最低但其空间依赖性最强。普通克里格插值方法能够较好地反映小流域土壤有效水空间结构。空间分布特征总体表现为沟道土壤有效水高于坡面土壤有效水,阴坡高于阳坡,但这种空间分布特征随季节发生变化。在春季和夏季,土壤有效水空间分布特征主要表现为沟道高于坡面、阴坡高于阳坡;而在秋季,则主要表现为流域上下游高,而中游偏低的分布特征,并且坡向对其影响减弱。
     (5)基于数学方法与水量平衡原理分别构建了降雨-土壤有效水模型和土壤水量平衡模型,并分别对小流域坡面和沟道土壤有效水及土壤水分进行了模拟。结果表明,两类模型均能较好地模拟小流域坡面和沟道土壤有效水动态变化规律,并且估算精度相当。鉴于降雨-土壤有效水模型形式简单,所需参数较少,因此更适合研究区土壤有效水动态变化规律模拟。基于此模型,以2010年初始土壤有效储水量为初始值,分别计算25%、50%、75%和95%降雨频率下的沟道、坡面和小流域土壤有效储水量(空间平均值)。结果表明沟道各个降雨频率对应的有效储水量最低,为102.4mm-126.6mm;坡面最高,为113.9mm-138.1mm。
     本论文基于长期观测数据,分析和探讨了黄土丘陵区小流域土壤有效水时空变异规律与动态模拟的一系列科学问题,深化了对该地区小流域尺度土壤有效水时空变异规律、空间分布格局、坡沟土壤有效水关系、以及土壤有效水模型构建与模拟的科学认识。本研究将为黄土丘陵区小流域雨水资源化潜力评价、雨水资源高效利用、以及植被恢复提供科学理论依据。
Rainwater utilization is an effective means for relieving soil-water loss and watershortage on the Loess Plateau. Available soil moisture (ASM) is one of the majorcomponents of rainwater potential for the Loess Plateau, and it is also critical to theecological restoration and agriculture of this region. In fact, the ASM is highly variable inspace and time due to the influences of meteorology, soils, topography and vegetation.However, the spatial-temporal features of ASM are not fully understood. In order to meetthe need for efficient use of rainwater in the hilly areas of the Loess Plateau, thisdissertation focused on the spatial-temporal variability of ASM in a catchment namedYuanzegou catchment located in Northern Shaanxi province, based on soil moisturedatasets from2009to2012and other datasets relating to soils, topography and vegetation.By coupling methods of classical statistics, geostatistics and modeling approaches, weinvestigated:(1) the spatial-temporal variability of ASM across scales (hillslope, gully andcatchment) in the catchment;(2) the temporal stability characteristics of ASM at variousscales;(3) the spatial structure of ASM and its seasonal features at catchment scale;(4) thequantitative relations of ASM between hillslopes and gullies;(5) the modeling of thespatial-temporal variability of ASM. The main results were listed as follows:
     (1) Apparent seasonal and inter-annual features were observed for ASM and soilmoisture (SM) in hillslopes and gullies. During dry seasons, ASM and SM showedrelatively low values, while they showed relatively high values in wet seasons. Fordifferent years, ASM and SM at subsurface layers decayed gradually from2009to2012.The ASM showed different spatial variation features with SM. The coefficient of variancefor ASM was almost two times of that for SM although similar standard deviations wereobserved for them. The standard deviation for ASM and SM increased first and then decreased with the increase of mean water contents. The mean water content at whichstandard deviation peaked was~20%for SM and~10%for ASM. However, therelationship between mean water contents and coefficient of variance was different for SMand ASM. It is worth noting that the micro-topography including ridges, plane surfaces andpipes significantly affect the spatial distribution of ASM and SM, and pipes showed thesignificantly (p<0.05) high SM values as compare to ridges and plane surfaces.
     (2) A new metric for identifying time stability location, named RMSE wasintroduced. Time stability of ASM and SM for hillslopes and gullies were analyzed byusing the new metric and others. The results showed that both ASM and SM showedconsiderable time stability, whereas the time stability features for gullies and hillslopeswere different. For sampling points at hillslopes, the time stability degree of ASM waspositively correlated with that of SM, however, this was not observed at gullies. The timestability of ASM for hillslopes behaved differently at various scales. At the land use scale,ASM and SM showed very similar time stability features while SM showed stronger timestability than ASM at catchment hillslope scale. The micro-topography also significantlyaffected the time stability of ASM and SM, and ridges indicated significantly (p<0.05)higher time stability than pipes and plane surfaces.
     (3) We introduced the concept of extend time stability analysis, which denotesestimating spatial mean soil moisture contents for a study site through soil moisture valuesof one single sampling location away from the study site. Then we quantitatively analyzedthe relationship of ASM between hillslopes and gullies through extended time stabilityanalysis, observation operators and random combination analysis. In particular, three linearmethods (LRG、MRD and LRS) and one nonlinear method (CDF matching) were used fordefining observation operators. Overall, extended time stability analysis and observationoperators showed low estimation errors than random combination method. Nevertheless,extended time stability analysis and observation operators are applicable only whenprevious ASM datasets are available. For different observation operators, linear operatorsshowed better temporal transferability while nonlinear method had better estimationaccuracy. However, when no previous datasets are available, random combination methodcould estimate spatial means with certain accuracy, and found that there is a limited gain inestimation accuracy when more than10upland locations are randomly selected.
     (4) The semivariance of ASM of the Yuanzegou catchment could be well fitted bythe spherical model. The semivariance parameter showed obvious seasonal feature in termsof nugget, sill, range, and spatial heterogeneity ratio. For nugget, the decreasing order inlight of magnitude for various seasons is summer, spring and autumn; for range, thedecreasing order is summer, autumn and spring; and for spatial heterogeneity ratio, it isspring, autumn and summer. This indicated that spatial variability of ASM was relativelylow in summer but the spatial correlations were strong. The mapping of ASM showed thatordinary kriging method could relatively well characterize the spatial structure of ASM atthe catchment scale. Generally, gullies showed higher ASM than hillslopes, and forhillslopes, north-face slopes had higher ASM than south-face slopes. The spatial structurealso differed seasonally. In autumn, ASM showed apparently different spatial structure ascompare to summer and spring.
     (5) We developed two models, i.e., precipitation-ASM model and soil water balancemodel, for ASM modeling. The results showed that these two models could reproducerelatively well the temporal evolutions of ASM with similar estimation accuracies.Considering the precipitation-ASM model is needs less inputs, we recommended thismodel for ASM modeling in our study site. Based on precipitation-ASM model, wecalculated the ASM storage at different precipitation frequency for gullies, hillslopes andcatchment, with the initial ASM storage in2010as initial input. The results showed thatgullies had the lowest ASM storage independent of precipitation frequency with values of102.4–126.6mm, while hillslopes had the highest values, from113.9mm-138.1mm.
     These analyses improved the understanding of ASM spatial-temporal variations,spatial structure of ASM, the quantitative relations of ASM between gullies and hillslopes,and the modeling of ASM. The results of this dissertation could provide insights into thecalculation and evaluation of rainwater harvesting potential, the efficient use of rainwater,and vegetation reconstruction on the Loess Plateau.
引文
[1]朱显谟.重建土壤水库是黄土高原治本之道[J].中国科学院院刊,2006,21(4):320-324.
    [2]李玉山.黄土高原森林植被对陆地水循环影响的研究[J].自然资源学报,2001,16(5):427-432.
    [3]杨文治,邵明安,彭新德,等.黄土高原环境的旱化与黄土中水分关系[J].中国科学D辑:地球科学,1998,28(4):357-365.
    [4]吴普特,汪有科,冯浩,等.21世纪中国水土保持科学的创新与发展[J].中国水土保持科学,2003,1(2):84-87.
    [5]吴普特,黄占斌,高建恩.人工汇集雨水利用技术研究[M].郑州:黄河水利出版社,2002.
    [6]冯浩,吴淑芳,吴普特,等.草地坡面径流调控放水试验研究[J].水土保持学报,2005,19(6):23-25.
    [7]赵西宁,吴普特,冯浩,等.基于GIS的区域雨水资源化潜力评价模型研究[J].农业工程学报,2007,23(2):6-10.
    [8]徐学选.黄土高原土壤水资源及其植被承载力研究[D].西北农林科技大学,2001.
    [9]黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    [10] Veihmeyer, F.J. The availability of soil moisture to plants: Results of empiricalexperiments with fruit trees[J]. Soil Science,1972,56:66-78.
    [11]邵明安,杨文治,李玉山.黄土高原土壤水分有效性研究[J].水利学报,1987,(8):38-44.
    [12]郭庆荣,李玉山.黄土高原南部土壤水分有效性研究[J].热带亚热带土壤科学,1995,4(2):119-124.
    [13]彭祥林,李玉山,朱显谟.关中红油土地区的轮作制[J].土壤学报,1961,9:1-2;42-55.
    [14]沈善敏,卢明远.土壤水分对大豆有效性的初步研究[J].土壤通报,1964,2:35-39.
    [15]张光灿,刘霞,贺康宁.黄土高原半干旱区刺槐和侧柏林地土壤水分有效性及生产力分级研究[J].应用生态学报,2003,14(6):858-862.
    [16]杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社,2000.
    [17] Zhang, B.Q., Wu, P.T., Zh ao, X.N., et al. Assessing the spatial and temporalvariation of the rainwater harvesting potential (1971-2010) on the Chinese LoessPlateau using the VIC model[J]. Hydrological Processes,2012, doi:10.1002/hyp.9608.
    [18]李玉山.黄土区土壤水分循环特征及其对陆地水分循环的影响[J].生态学报,1983,3(2):91-101.
    [19]胡伟,邵明安,王全九.黄土高原退耕坡地土壤水分空间异质性研究[J].水科学进展,2006,17(1):74-81.
    [20]王云强,邵明安,刘志鹏.黄土高原区域尺度土壤水分空间变异性[J].水科学进展,2012,23(3):310-316.
    [21] Brummer, E., Mardock, E.S. A neutron method for measuring satura-tion inlaboratory flow measurements [J]. Proceedings of American Institute of Mining,Metallurgical and Petroleum Engineers,1945.
    [22] Blecher, D.J. Themeasurement of soil moisture by neutron and gamma rayscattering. p.98–120. In Civil Aeronautics Administration technical developmentreport. No.127. Civil Aeronautics Administration,Wash-ington, DC.1950.
    [23] Bell, J.P. Neutron probe practice.3rd ed. Hydrology Report19. Available athttp://www.ceh.ac.uk/products/publications/hydrology.html (verified22Jan.2008).Institute of Hydrology, Wallingford, Oxon, UK.1987.
    [24] Yao, T., Wierenga, P.J., Graham, A.R., Neuman, S.P. Neutron probe calibration in avertically stratified vadose zone[J]. Vadose Zone Journal,2004,3:1400-1406.
    [25] Hu, W., Shao, M.A., Wang, Q.J., et al. Time stability of soil water storage measuredby neutr on probe and the effects of calibration procedures in a small watershed[J].Catena,79:72–82.
    [26] Ledieu, J., De Ridder, P., De Clerck, P., et al. A method of measuring soil moistureby time-domain reflectometry[J]. Journal of Hydrology,1986,88(3-4):319-328.
    [27] Malicki, M.A., Plagge, R., Roth, C.H. Improving the calibration of dielectric TDRsoil moisture determination taking into account the solid soil[J].European Journalof Soil Science,1996,47(3):357-366.
    [28] Western, A.W., Grayson, R.B. The Tarrawarra Data Set: Soil moisture patterns, soilcharacteristics, and hydrological flux measurements[J]. Water Resources Rsearch,1998,34(10):2765-2768.
    [29]Gao, X.D., Wu, P.T., Zhao, X.N., et al. Soil moisture variability along transects overa well-developed gully in the Loess Plateau, China[J]. Catena,2011,87(3):357-367.
    [30] Mittelbach, H., Lehner, I., Seneviratne, S.I., et al. Comparison of four soil moisturesensor types under field conditions in Switzerland[J]. Journal of Hydrology,2012,430-431:39-49.
    [31] Blonquist, J.M., Jones, S.B., Robinson, D.A. A time domain trans-mission sensorwith TDR performance characteristics[J]. Journal of Hydrology2005,314:235–245.
    [32] Cosh, M., Jackson, T., Moran, S., et al. Temporal persistence and stability of surfacesoil moisture in a semi-arid watershed[J]. Remote Sensing of Environment,2008,112(2):304-313.
    [33] Campbell, G.S., Calissendorff, C., Williams, J.H. Probe for mea-suring soil specificheat using a heat-pulse method[J]. Soil Science Society of America Journal,1991,55:291–293.
    [34] Bristow, K.L. Measurement of thermal properties and water content of unsaturatedsandy soil using dual-probe heat-pulse probes[J]. Agricultural and ForestMeteorology,1998,89:75–84.
    [35] Heitman, J.L., Basinger, J.M., Kluitenberg, G.J. et al. Field evaluation of thedual-probe heat pulse method for measuring soil water content[J]. VadoseZoneJournal,2003,2:552–560.
    [36]Ren, T., Noborio, K., Horton, R.,1999. Measuring soil water content, electricalconductivity, and thermal properties with a thermo-time domain reflectometryprobe[J]. Soil Science Society of America Journal,63(3),450-457.
    [37] Xu, J., Ma, X., Logsdon, D.,2012. Short, multineedle frequency domainreflectometry sensor suitable for measuring soil water content[J]. Soil ScienceSociety of America Journal,76(6):1929-1937.
    [38] Ochsner, T.E., Horton, R., Ren, T. A New Perspective on Soil Thermal Properties [J].Soil Science Society of America Journal,2001,65(6):1641-1647.
    [39]Robinson, D.A., Campbell, C.S., Hopmans, J.W., et al. Soil moisture measurementfor ecological and hydrological watershed-scale observatories: A Review[J]. VadoseZone Journal,2007,7:358-389.
    [40]Bogena, H.R., Herbst, M., Huisman, J.A., et al. Potential of wireless sensornetworks for measuring soil water content variability[J]. Vadose Zone Journal,2010,9(4):1002-1013.
    [41]Rosenbaum, U., Bogena, H.R., Herbst, et al. Seasonal and event dynamics of spatialsoil moisture patterns at the small catchment scale. Water Resources Rsearch,2012,48, W10544, DOI:10.1029/2011WR011518
    [42]Thomsen, A., Drosher, P., Steffensen, F. Mobile TDR for geo-referencedmeasurement of soil water content andelectrical conductivity. p.481–494. In J.V.Stafford (ed.) Precision agriculture’05. Wageningen Academic Publishers,Wageningen, Netherlands,2005.
    [43] Knight, R. Ground penetrating radar for environmental applications[J]. AnnualReview of Earth Planetary Science,2001,29:229–255.
    [44]Zhou, Q.Y., Shimada, J., Sato. A. Three-dimensional spatial and temporalmonitoring ofsoil water content using electrical resistivity tomography[J]. WaterResource Research,2001,37:273–285.
    [45]Calamita, G., Brocca, L., Perrone, A., et al. Electrical resistivity and TDR methodsfor soil moisture estimation in central Italy test-sites[J]. Journal of Hydrology,2012,454-455:101-112.
    [46]朱元骏,王云强,邵明安.利用土壤表面灰度值反演表层土壤含水率[J].中国科学D辑,2010,12:1733-1739.
    [47] Ulaby, F.T., Dubois, P.C., van Zyl, J. Radar mapping of surface soil moisture[J].Journal of Hydrology,1996,184:57–84.
    [48] Pathe, C., Wagner, W., Sabel, D., et al. Using ENVISAT ASAR global mode data forsurface soil moisture retrieval over Oklahoma, USA[J]. IEEE Transactions onGeoscience and Remote Sensing,2009,47(2):468-480.
    [49] Brocca, L., Hasenauer, S., Lacava, T., et al.Soil moisture estimation throughASCAT and AMSR-E sensors: An intercomparison and validation study acrossEurope[J]. Remote Sensing of Environment,2011,115:3390-3408.
    [50] Njoku, E.G, Jackson, T.J., Lakshmi, V., et al. Soil moisture retrieval fromAMSR-E[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(2):215-229.
    [51] Kerr, Y.H., Waldteufel, P., Wigneron, J.P., et al. Soil moisture retrieval from space:the Soil Moisture and Ocean Salinity (SMOS) mission[J]. IEEE Transactions onGeoscience and Remote Sensing,2001,39(8):1729-1735.
    [52] Liu, S., Mo, X., Zhao, W., et al. Temporal variation of soil moisture over the WudingRiver basin assessed with an eco-hydrological model, in-situ observations andremote sensing[J]. Hydrology and Earth System Sciences,2009,13:1375-1398.
    [53] Vereecken, H., Kamai, T., Harter, T., et al. Explaining soil moisture variability as afunction of mean soil moisture: a stochastic unsaturated flow perspective[J].Geophysical Research Letters,2007,34, L22402. doi:10.1029/2007GL031813.
    [54] Axley, J.H., Thomas, R.P. Soil moisture variations as influenced by vegetation[J].Soil Science Society of America Journal,1949,13(C):548-550.
    [55] Famiglietti, J. S., Rudnicki, J. W., Rodell, M. Variability in surface soil moisturecontent along a hillslope transect: Rattlesnake Hill, Texas[J]. Journal of Hydrology,1998,210:259–281.
    [56] Famiglietti, J. S., Ryu, D., Berg, A. A.,et al. Field observations of soil moisturevariability across scales[J]. Water Resources Research,2008,44, W01423.doi:10.1029/2006WR005804.
    [57] Brocca, L., Melone, F., Moramarco, T., et al. Spatial-temporal variability of soilmoisture and its estimation across scales[J]. Water Resources Research,2010,46,W02516, doi:10.1029/2009WR008016
    [58] Vachaud, G., Passerat De Silans, A., Balabanis, P., et al. Temporal stability ofspatially measured soil water probability density function[J]. Soil Science Society ofAmerica Journal,1985,49:822-828.
    [59]Jacobs, J.M., Mohanty, B.P., Hsu, E.C., et al. SMEX02: field scale variability, timestability and similarity of soil water[J]. Remote Sensingof Environment,2004,92:436–446.
    [60]Grayson, R.B., Western, A.W. Towards areal estimation of soil water content frompoint measurements: time and space stability of mean response[J]. Journal ofHydrology,1998,207:68-82.
    [61]Rodriguez-Iturbe, I., D’Odorico, P., Porporato, A., et al. On the spatial and temporallinks between vegetation, climate, and soil moisture[J]. Water Resources Research,1999,35(12):3709–3722.
    [62]Lin, H. Hydropedology: Bridging disciplines, scales and data[J]. Vadose ZoneJournal,2003,2:1-11.
    [63] Wigley, T.M.L., Briffa, K.R., Jones, P.D. On the average value of correlated timeseries, with applications in dendroclimatology and hydrometeorology[J]. Journal ofApplied Meteorology and Climatology,1984,23:201-213.
    [64] Tromp-van Meerveld, H.J., McDonnell, J.J. On the interrelations betweentopography, soil depth, soil moisture, transpiration rates and species distribution atthe hillslope scale[J]. Advances in Water Resources,2006,29(2):293-310.
    [65] Western, A.W., Bl schl, G., Grayson, R.B. Geostatistical characterisation of soilmoisture patterns in the Tarrawarra catchment[J]. Journal of Hydrology,1998,205:20-37.
    [66]Das, N.N., Mohanty, B.P. Temporal dynamics of PSR-based soil moisture acrossspatial scales in an agricultural landscape during SMEX02: A wavelet approach[J].Remote Sensing of Environment,2008,112(2):522-534.
    [67]Timm, L.C., Reichardt. K., Oliveira, J.C.M. State-Space approach for evaluating thesoil-plant-atmosphere system.Lectures given at the College on Soil Physics. Trieste,2003.
    [68]Bell, K.R., Blanchard, B.J., Schmugge, T.J., et al. Analysis of surface moisturevariations within large field sites[J]. Water Resources Research,1980,16:796–810.
    [69] Hawley, M.E., Jackson, T.J., McCuen, R.H. Surface soil m oisture variation on smallagricultural watersheds[J]. Journal of Hydrology,1983,62:179–200.
    [70] Brocca, L., Morbidelli, R., Melone,F., et al. Soil moisture spatial variability inexperimental areas of central Italy[J]. Journal of Hydrology,2007,333:356–373.
    [71]Penna, D., BorA, M., Norbiato, D., et al. Hillslope scale soil moisture variability in asteep alpine terrain[J]. Journal of Hydrology,2009,364:311-327.
    [72] Qiu, Y., Fu, B., Wang, J., et al. Spatial variability of soil moisture content and itsrelation to environmental indices in a semi-arid gully catchment of the LoessPlateau, China[J]. Journal of Arid Environments,2001,49(4):723-750.
    [73] Teuling, A. J., Troch, P. A. Improved understanding of soil moisture variabilitydynamics[J]. Geophysical Research Letters,2005,32, L05404. doi:10.1029/2004GL021935.
    [74] Heathman, G.C., Starks, P.J., Ahuja, L.R., et al. Assimilation of surface soil moistureto estimate profile soil water content[J]. Journal of Hydrology,2003,279(1-4):1-17.
    [75] Wilson, D.J., Western, A.W., Grayson, R.B., et al. Spatial distribution of soilmoisture over6and30cm depth, Mahurangi river catchment, New Zealand[J].Journal of Hydrology,2003,276(1-4):254-274.
    [76] Warrick, A.W., Zhang, R., Moody, M.M., et al. Kriging versus alternativeinterpolators: errors and se nsitivity to model inputs. In: Roth, K., Fluhler, H., Jury,W.A., Parker, J.C.(Eds.), Field-scale Water and Solute Flux in Soils. BirkhaüserVerlag, Basel,1990,157-164.
    [77]Bárdossy, A., Lehmann, W. Spatial distribution of soil moisture in a small catchment.Part1: geostatistical analysis[J]. Journal of Hydrology,1998,206:1-15.
    [78] Anctil, F., Mathieu, R., Parent, L.E., et al. Geostatistics of near-surface moisture inbare cultivated or ganic soils[J]. Journal of Hydrology,2002,260:30–37.
    [79] Feng, Q., Liu Y., Mikami, M. Geostatistical analysis of soil moisture variability ingrassland[J]. Journal of Arid Environments,2004,58(3):357-372.
    [80]Hu, W., Shao, M., Han, F., et al. Spatio-temporal variability behavior of land surfacesoil water content in shrub-and grass-land[J]. Geoderma,2011,162(3-4):260-272.
    [81] Western, A.W., Bl schl, G.. On the spatial scaling of soil moisture[J]. Journal ofHydrology,217,3-4:203-224.
    [82]胡伟,邵明安,王全九.黄土高原退耕坡地土壤水分空间变异的尺度性研究[J].农业工程学报,2005,21:11-16.
    [83]潘成忠,上官周平.黄土半干旱丘陵区陡坡地土壤水分空间变异性研究[J].农业工程学报,2003,19(6):5-9.
    [84] Yao, X., Fu, B., Lv, Y., et al. Comparing of four spatial interpolation methods forestimating soil moisture in a complex terrain catchment[J]. PLoSOne,2013,8(1):1-13.
    [85]Mandelbrot, B.B. How long is the coast of Britain[J]. Science,1967,156:636-638.
    [86] Burrough, P.A. Fuzzy mathematical met hods for soil survey and land evaluation[J].Journal of Soil Science,1989,40:477–492.
    [87]Armstrong, A.C. On the fractal dimensions of some transient soil properties[J].European Journal of Soil Science,1986,37(4):641-652.
    [88] Pachepsky, Y. A., Timlin, D., Varallyay, G. Artificial neural networks to estimate soilwater retention from easily measurable data[J]. Soil Science Society of AmericanJournal,1996,60:727-733..
    [89]Eghball, B., Hergert, G.W., Lesoing, G.W., et al. Fractal analysis of spatial andtemporal variability[J]. Geoderma,1999,88(3-4):349-362.
    [90] Martinez-Fernandez, J, Ceballos, A. Temporal stability of soil moisture in alarge-field experiment in Spain[J]. Soil Science Society of American Journal,2003,67:1647–1656
    [91] Famiglietti, J. S., Devereaux, J.A., Laymon, C. A., et al. Ground-based investigationof soil moisture variability within remote sensing footprints during the SouthernGreat Plains1997(SGP97) Hydrology Experiment[J]. Water ResourcesResearch,1999,35(6):1839–1851.
    [92] Hupet, F., Vanclooster, M.. Intraseasonal dynamics of soil moisturevariabilitywithin a small agricultural maize cropped field[J]. Journal of Hydrology261:86–101.
    [93] Tague, C. Band, L. Kenworthy, S., et al. Plot-and watershed-scale soil moisturevariability in a humid Piedmont watershed[J]. Water Resources Research,2010,46(2), DOI:10.1029/2009WR008078.
    [94] Gao, X.D., Wu, P.T., Zhao, X.N., et al. Estimating the spatial means and variabilityof root-zone soil moisture in gullies using measurements from nearby uplands[J].Journal of Hydrology,2013,476:28-41.
    [95] Lawrence, J.E., Hornberger, G.M.. Soil moisture variability across climate zones[J].Geophysical Research Letters,2007,34, L20402, doi:10.1029/2007GL031382.
    [96] Pan, F.F., Peters-Lidard, C.D., Sale, M.J. An analytical method for predicting surfacesoil moisture from rainfall observations[J]. Water Resources Research,2003,39,doi:1010.1029/2003WR002142.
    [97] Gao, X.D., Wu, P.T., Zhao, X.N., et al. Estimation of spatial soil moisture averagesin a large gully of the Loess Plateau of China through statistical and modelingsolutions[J]. Journal of Hydrology,2013,486:466-478.
    [98] Lebron, I., Madsen, M.D., Chandler, D.G., et al. Ecohydrological controls on soilmoisture and hydraulic conductivity within a pinyon-juniper woodland[J]. WaterResources Research,2007,43, W08422, doi:10.1029/2006WR005398.
    [99]Caylor, K. K., P. D’Odorico, and I. Rodriguez-Iturbe (2006), On the ecohydrologyof structurally heterogeneoussemiarid landscapes, Water Resources Research,42,W07424, doi:10.1029/2005WR004683.
    [100] Ca zemier, D.R, Lagacherie, P. A possibility theory approachfor estimating availablewater capacity from imprecise information contained in soil databases. Geoderma,2001,103(1-2):113-132
    [101] W sten, J.H.M., Pachepsky, Y.A., Rawls, W.J. Pedotransfer functions: bridging thegap between available basic soil data and missing soil hydraulic characteristics[J].Journal of Hydrology,2001,251:123-150.
    [102]Nemes, A., Schaap, M.G., W sten, J.H.M. Functional evaluation of pedotransferfunctions derived from different scales of data collection[J]. Soil Science Society ofAmerican Journal,2003,67:1093-1102.
    [103]Ghanbarian-Alavijeh, B., Millan, H. The relationship between surface fractaldimension and soil water content at permanent wilting point[J]. Geoderma,2009,151:224-232.
    [104]连纲,郭旭东,傅伯杰,等.黄土高原小流域土壤容重及水分空间变异特征[J].生态学报,2006,26(3):647-654.
    [105]王俊,刘文兆,胡梦珺.黄土丘陵区小流域土壤水分时空变异[J].应用生态学报,2008,19(6):1241-1247.
    [106] Beven, K.J., Kirkby, M.J. A physically based, variable contributing area model ofbasin hydrology[J]. Hydrological Sciences-Bulletin-des Sciences Hydrologiques,1979,24(1):43-69.
    [107] Quinn, P., Beven, K., Chevallier, P., et al. The prediction of hillslope flow paths fordistributed hydrological modeling using digital terrain models[J]. HydrologicalProcesses,1991,5:59-79.
    [108] Kim, S. Characterization of annual soil moisture response pattern on a hillslope inBongsunsa Watershed, South Korea[J]. Journal of Hydrology,2004,448-449:100-111.
    [109] Western, A.W., Grayson, R.B., Bl schl, G., et al. Observed spatial organisation ofsoil moisture and its relation to terrain indices[J]. Water Resources Research,1999,35(3):797–810.
    [110] Western, A.W., Zhou, S., Grayson, R.B., et al. Spatial corr elation of soil moisture insmall catchments and its relationship to dominant spatial hydrological processes[J].Journal of Hydrology,2004,286:113–134.
    [111] Wilson, D.J., Western, A.W., Grayson, R.B. Identifying and quantifying sources ofvariability in temporal and spatial soil moisture observations[J]. Water ResourcesResearch,2004,40(2), doi:10.1029/2003WR002306.
    [112] Grayson, R.B., Western, A.W., Chiew, F.H.S., et al. Preferred states in spatial soil moisture patterns: Local and nonlocal controls[J]. Water Resources Research,1997,33:2897–2908.
    [113] Parent, A., Anctil, F., Parent, L. Characterization of temporal variability innear-surface soil moisture at scales from1h to2weeks[J]. Journal of Hydrology,2006,325(1-4):56-66.
    [114] Hu, W., Shao, M.A., Han, F.P., et al. Watershed scale temporal stability of soil watercontent[J]. Geoderma,2010,158:181-198.
    [115] Yo o, C., Kim, S. EOF analysis of surface soil moisture field variability[J]. Advancesin Water Resources,2004,27(8):831-842.
    [116] Biswas, A., Si, B.C. Identifying scale specific controls of soil water storage in ahummocky landscape using wavelet coherency[J]. Geoderma,2011,165(1):50-59.
    [117] Te uling, A.J., Uijlenhoet, R.,Hupet, F., et al. Estimating spatial mean root-zone soilmoisture from point-scale observations[J]. Hydrology and Earth System Sciences,2006,10:755-767.
    [118] Wa ng, C., Zuo, Q., Zhang, R. Estimating the necessary sampling size of surface soilmoisture at different scales using a random combination method[J]. Journal ofHydrology,2008,352:309-321.
    [119] Brocca, L., Tullo, T.,Melone, F., et al. Catchment scale soil moisturespatial-temporal variability[J]. Journal of Hydrology,2012,422-423:71-83.
    [120]Zhao, L., Yang, K., Yang, J., et al. Spatiotemporal analysis of soil moistureobservations within a Tibetan mesoscale area and its implication to regional soilmoisture measurements[J]. Journal of Hydrology,2013, doi:10.1016/j.jhydrol.2012.12.033.
    [121] Cosh, M.H., Jackson, T.J., Bindlish, R., et al. Watershed scale temporal and spatialstability of soil moisture and its role in validating satellite estimates[J]. RemoteSensing of Environment,2004,92(4):427-435.
    [122] Jacobs, J.M., Hsu, E.C., Choi, M., Time stability and variability of ElectronicallyScanned Thinned Array Radiometer soil moisture during Southern Great Plainshydrology experiments[J]. Hydrological Process,2010,24:2807-2819.
    [123] Hu, W., Shao, M.A., Reichardt, K. Using a new criterion to identify sites for meansoil water storage evaluation[J]. Soil Science Society of America Journal,74:762-773.
    [124] Ga o, X.D., Wu, P.T., Zhao, X.N., et al. Estimating spatial mean soil water content ofsloping jujube orchards using time stability[J]. Agricultural Water Management,2011,102:66-73.
    [125]白一茹,邵明安.黄土高原雨养区坡面土壤蓄水量时间稳定性[J].农业工程学报,2011,27(7):45-50.
    [126] Pachepsky, Y.A., Guber, A.K., Jacques, D.,2005. Temporal persistence in verticaldistributions of soil moisture contents. Soil Science Society of America Journal69,347-352.
    [127] Dumedah, G., Coulibaly, P.,2011. Evaluation of statistical methods for infillingmissing values in high-resolution soil moisture data. Journal of Hydrology400,95-102.
    [128]Guber, A.K., Gish, T.J., Pachepsky, Y.A., van Genuchten, M.T., Daughtry, C.S.T.,Nicholson, T.J., Cady, R.E.,2008. Temporal stability in soil water content pattersacross agricultural field. Catena73,125-133.
    [129] Choi, M., Jacobs, J. M.,2007. Soil moisture variability of root zone profiles withinSMEX02remote sensing footprints[J]. Advances in Water Resources,2007,30:883–896.
    [130] Zh ao, Y., Peth, S., Wang, X.Y., et al. Controls of surface soil moisture spatial patternsand their temporal stability in a semi-arid steppe[J]. Hydrological Processes,2010,24(18):2507-2519.
    [131] Joshi, C., Mohanty, B.P., Jacobs, J.M., et al. Spatiotemporal analyses of soil moisturefrom point to footprint scalein two different hydroclimatic regions[J]. WaterResources Research,2011,47, W01508, doi:10.1029/2009WR009002.
    [132]Hu, W., Tallon, L.K., Si, B.C. Evaluation of time stability indices for soil waterstorage upscaling[J]. Journal of Hydrology,2012,475:229-241.
    [133] Mohanty, B.P., Skaggs, T.H. Spatio-temporal evolution and time-stablecharacteristics of soil moisture within remote sensing footprints with varying soil,slope, and vegetation[J]. Advances in Water Resources,2001,24:1051–1067.
    [134] Martinze, G., Pachepsky, Y.A., Vereecken, H., et al. Modeling local control effects onthe temporal stability of soil water content[J]. Journal of Hydrology,2013,481:106-118.
    [135] Bl schl, G., Sivapalan, M. Scale issues in hydrological modelling: A review[J].Hydrological Processes,1995,9(4):251-290.
    [136] Western, A.W., Grayson, R.B., Bl schl, G. Scaling of soil moisture: A hydrologicperspective[J]. Annual Review of Earth Planetary Science,2002,30:49-80.
    [137] Wilson, D.J. Temporal and spatial characteristics of soil moisture. Pointmeasurements to spatial patterns[J]. PhD Thesis, The University of Melbourne,2002.
    [138] Fu, B., Wang, J., Chen, L., et al. The effects of land use on soil moisture variation inthe Danangou catchment of the Loess Plateau, China[J]. Catena,2003,54:197-213.
    [139]Zhu, Q., Lin, H. Influences of soil, terrain, and crop growth on soil moisturevariationfrom transect to farm scales[J]. Geoderma,2011,163(1-2):45-54.
    [140] Manfreda, S., McCabe, M.F., Fiorentino, M., et al. Scaling characteristics of spatialpatterns of soil moisture from distributed modelling[J]. Advances in WaterResources,2007,30(10):2145-2150.
    [141] Western, A.W., Bl schl, G, Grayson, R.B. Toward capturing hydrologicallysignificant connectivity in spatial patterns[J]. Water Resources Research,2001,37(1):83-97.
    [142] Martínez-Fernández, J, Ceballos, A. Mean soil moisture estimation using temporalstability analysis[J]. Journal of Hydrology,2005,312:28-38.
    [143] St arks, P.J., Heathman, G.C., Jackson, T.J., et al. Temporal stability of soil moistureprofile[J]. Journal of Hydrology,2006,324:400-411.
    [144]Brocca, L., Melone, F., Moramarco, T., et al. Soil moisture temporal stability overexperimental areas in Central Italy[J]. Geoderma,2009,148:364-374.
    [145] Wang, Y.Q., Shao, M.A., Shao, H.B. A preliminary investigation of the dynamiccharacteristics of dried soil layers on the Loess Plateau of China[J]. Journal ofHydrology,2010,381(1-2):9-17.
    [146]Qiu, Y., Fu, B., Wang, J., et al. Spatial prediction of soil moisture content usingmultiple-linear regressions in a gully catchment of the Loess Plateau, China[J].Journal of Arid Environments,2010,47(2):208-220.
    [147]尚松浩,雷志栋,杨诗秀.冬小麦田间墒情预报的经验模型[J].农业工程学报,2000,16(5):31-34.
    [148] Wendroth, O., Jurschik, P., Giebel, A., Ni elsen, D.R. In: Roberts, P.C., Rust, R.H.,Larson, W. E.(Eds.), Spatial Statistical Analysis of On-Site-Crop Yield and SoilObservations for Site-Specific Management, Proceedings of the FourthInternational Conference on Precision Ag riculture, ASA-CSSA-SSSA, Madison,WI,1999,159–170.
    [149]贾小旭,邵明安,魏孝荣,等.黄土高原北部草地表层土壤水分状态空间模拟[J].农业工程学报,2010,26(10):38-44.
    [150]刘洪斌,武伟,魏朝富,等.土壤水分预测神经网络模型和时间序列模型比较研究[J].农业工程学报,2003,19(4):33-36.
    [151] Entekhabi, D., Rodriguez-Iturbe, I. Analytical framework for the characterization ofthe space-time variability of soil moisture. Advances in Water Resources,1994,17:35-45.
    [152]Wilson, D.J., Western, A.W., Grayson, R.B. A terrain and data-based method forgenerating the spatial distribution of soil moisture[J]. Advances in Water Resources,2005,28(1):43-54.
    [153]Brocca, L., Melone, F., Moramarco, T. On the estimation of antecedent wetnessconditions inrainfall-runoff modeling[J]. Hydrological Processes,2008,22:629-642.
    [154] Sheikh, V., Visser, S., Stroosnijder, L. A simple model topredict soil moisture:Bridging Event and Continuous Hydrological (BEACH) modeling[J].Environmental Modelling&Software,2009,24:542-556.
    [155] Zhao, R.J. The Xinanjiang modjel applied in China[J]. Journal of Hydrology,1992,135(1-4):371-381.
    [156] Vincendon, B., Ducrocq, V., Saunier, G., et al. Benefit of coupling the ISBA landsurface model with a TOPMODEL hydrological model version dedicated toMediterranean flash-floods[J]. Journal of Hydrology,2010,394(1-2):256-266.
    [157]胡伟.黄土高原小流域土壤含水量与饱和导水率的时空变异[D].北京:中国科学院地理科学与资源研究所,2009.
    [158] M oran, M.S., Peters-Lidard, C.D., Watts, J.M., et al. Estimating soil moisture at thewatershed scale with satellite-based radar and land surface models[J]. CanadianJournal of Remote Sensing,2004,30(5):805-826.
    [159]李鹏,李占斌,澹台湛.黄土高原退耕草地植被根系动态分布特征[J].应用生态学报,2005,16(5):849-853.
    [160]张洪芬,王劲松,黄斌.西峰黄土高原麦田土壤水分分的垂直分布[J].土壤通报,2006,37(6):1081-1085.
    [161]王云强,张兴昌.黄土区小尺度坡面土壤含水率时空变异性研究[J].水土保持学报,2008,22(2):32-37.
    [162]李洪建,王孟本,柴宝峰.黄土高原土壤水分分变化的时空特征分析[J].应用生态学报,2003,14(4):515-519.
    [163]穆兴民,徐学选,王文龙,等.黄土高原人工林对区域深层土壤水环境的影响[J].土壤学报,2003,40(2):210-217.
    [164]王志强,刘宝元,王旭艳,等.黄土丘陵半干旱区人工林迹地土壤水分恢复研究[J].农业工程学报,2007,23(11):77-83.
    [165]穆兴民.试论黄土区旱地土壤水资源的地带性与非地带性[J].土壤学报,1999,36(2):237-244.
    [166]刘春利,邵明安.六道沟流域典型坡面不同土地利用方式下土壤水分动态变化研究[J].中国生态农业学报,2006,14(4):54-56.
    [167]王军,傅伯杰,邱扬.黄土丘陵区土地利用与土壤水分的时空关系[J].自然资源学报,2001,16(6):521-524.
    [168]黄奕龙,陈利顶,傅伯杰,等.黄土丘陵小流域地形和土地利用对土壤水分分时空格局的影响[J].第四纪研究,2003,23(3):334-314.
    [169]黄奕龙,陈利顶,傅伯杰.黄土丘陵区小流域土壤水分空间格局及其影响因素[J].自然资源学报,2005,20(4):483-492.
    [170]穆兴民.黄土高原土壤水分与水土保持措施相互作用[J].农业工程学报,2000,16(2):41-45.
    [171]张北赢,徐学选,刘文兆.黄土丘陵沟壑区不同水保措施条件下土壤水分状况[J].农业工程学报,2009,25(4):54-58.
    [172]张玉斌,曹宁,武敏,等.黄土高原南部水平梯田的土壤水分特征分析[J].中国农学通报,2005,21(8):215-220.
    [173] Gao, L., Shao, M.A. Temporal stability of soil water storage in diverse soillayers[J]. Catena,2012,95:24-32
    [174] Jia, Y.H., Shao, M.A. Temporal stability of soil water storage under four types ofrevegetation on the northern Loess Plateau of China[J]. Agricultural WaterManagement,2013,117:33-42.
    [175]姚志宏,杨勤科,王春梅,等.基于GIS的黄土丘陵区小流域土壤水分模拟[J].草地学报,2011,19(3):525-530.
    [176]傅伯杰,杨志坚,王仰麟,等.黄土丘陵坡地土壤水分空间分布数学模型[J].
    [177]张秀英,冯学智,赵传燕.基于GIS的黄土高原小流域土壤水分时空分布模拟—以定西安家沟为例[J].自然资源学报,2005,20(1):132-139.
    [178]李忠武,蔡强国,曾光明,等.基于GIS的黄土丘陵沟壑区土壤水分模型研究[J].水利学报,2004,3(3):123-128.
    [179]成向荣,黄明斌,邵明安.基于SHAW模型的黄土高原半干旱区农田土壤水分分动态模拟[J].农业工程学报,2007,23(11):1-7.
    [180]樊军,王全九,邵明安.黄土高原水蚀风蚀交错区土壤剖面水分动态的数值模拟研究[J].水科学进展,2007,5:683-688
    [181]李明星,马柱国,杜继稳.区域土壤湿度模拟检验和趋势分析—以陕西省为例[J].中国科学:地球科学,2010,40(3):363-379.
    [182]魏霞,李占斌,李勋贵.黄土高原坡沟系统土壤侵蚀研究进展[J].中国水土保持科学,2012,10(1):108-113.
    [183]王云强.黄土高原地区土壤干层的空间分布与影响因素[D].杨凌:中科院教育部水土保持与生态环境研究中心,2010.
    [184] v an Genuchten, M. A closed-form equation for predicting the hydraulic conductivityof unsaturated soils. Soil Science Society of American Journal,1980,44:892-898.
    [185]邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006.
    [186] Nielsen, D.R., Bouma, J. Soil spatial variability[M]. Pudoc Wageningen,1985.
    [187] Mittelbach, H., Seneviratne, S.I. A new perspective on the spatio-temporal variabilityof soil moisture: temporal dynamics versus time-invariant contributions [J].Hydrology and Earth System Sciences,2012,16:2169-2179.
    [188]唐克丽.中国水土保持[M].北京:科学出版社,2004.
    [189]杨明义,田均良,刘普灵.应用~(137)Cs研究小流域泥沙来源[J].水土保持学报,1996,3:49-53.
    [190] Melliger, J. J., Niemann, J, D. Effects of gullies on space-time patterns of soilmoisture in a semiarid grassland[J]. Journal of Hydrology,2010,389:289–300.
    [191]Van den Elsen, E., Xie, Y., Liu, B.Y., et al. Intensive water content and dischargemeasurement system in a hillslope gully in China[J]. Catena,2003,54(1-2),93-115.
    [192] Heathman, G.C., Cosh, M.H., Han, E., et al. Field scale spatiotemporal analysis ofsurface soil moisture for evaluating point-scale in situ networks[J]. Geoderma,2012,170:195-205.
    [193]霍竹,邵明安.黄土高原水蚀风蚀交错带沟岸灌木林地土壤水分变化[J].农业工程学报,2005,21(6):45-49.
    [194] Reichle, R.H., Koster, R.D. Bias reduction in short records of satellite soil moisture.Geophysical Research Letters,2004,31, doi:10.1029/2004GL020938.
    [195] Drusch, M., Wood, E.F., Gao, H. Observation operators for the direct assimilation ofTRMM microwave imager retrieved soil moisture. Geophysical Research Letters,2005,32, doi:10.1029/2005GL023623.
    [196] De Lannoy, G.J.M., Houser, P.R., Verhoest, N.E.C., et al. Upscaling of point soilmoisture measurements to field averages at the OPE3test site[J]. Journal ofHydrology,2007,343:1-11.
    [197] Han, E.J., Heathman, G.C., Merwade, V., et al. Application of observation operatorsfor field scale soil moisture averages and variances in agricultural landscapes[J].Journal of Hydrology,2012,444-445:34-50.
    [198] Cambardella, C., Mooman, T.B., Novak, J. M., et al. Field scale variability of soilproperties in central Iowa soil[J]. Soil Science Society of Amer ica Journal,1994,47:1501-1511.
    [199] Wang, J., Fu, B.J., Qiu, Y., et al. Geostatistical analysis of soil moisture variability onDa Nangou catchment of the loess plateau, China[J]. Environmental Geology,2001,41:11.-120.
    [200]Bi, H.X., Li, X.Y., Liu, X., et al. A case study of spatial heterogeneity of soilmoisture in the Loess Plateau, western China: A geostatistical approach[J].International Journal of Sediment Research,2009,24(1):63-73.
    [201]王文焰,汪志荣,王全九,等.黄土中Green-Ampt入渗模型的改进与验证[J].水利学报,2003,34(5):30-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700