用户名: 密码: 验证码:
黄土塬区深剖面土壤水分特征及其补给地下水过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在黄土塬区,地下水资源是居民生活和农业灌溉的重要水源,然而降水如何穿过深厚黄土层补给地下水的过程在学术上不确定;赋藏在黄土中的土壤水是该区水资源的重要组成部分,但是深层土壤水资源的研究还不够充分。本文以探明黄土塬区深剖面土壤水分特征(包括垂直分布及干燥化、时间动态、土壤水资源数量及水量平衡等)及其补给地下水过程为目的,以长期定位监测和野外调查测定相结合测定不同土地利用方式下深剖面土壤水分含量,以同位素示踪技术为手段研究黄土塬区降水—土壤水—地下水之间的转换关系,主要研究结果如下:
     1土壤水分垂直分布规律
     长武塬区0~20m黄土剖面土质大多数为中壤,部分土层为重壤,剖面田间持水量和萎蔫湿度分别为(21.39±0.13)%和(8.06±0.45)%。古土壤层物理粘粒含量较黄土层高约2%~6%,黏土化较强,同时古土壤层孔洞、孔隙发育较差。因此,与黄土层相比,古土壤层具有较强的持水能力。
     黄土深剖面水分垂直分布特征与黄土-古土壤序列有关,通常情况下黄土层内土壤湿度向下递增,至古土壤层出现最大值,古土壤层内湿度向下递减,至下一层黄土层出现最低值。这样一层黄土和一层古土壤构成一次湿度起伏,并有随剖面深度增加湿度变大的趋势。
     2土壤水资源及干燥化
     长期定位监测表明,土地利用方式能显著影响深层土壤含水量,且影响深度可达10m深度以下。2009年10月荒草地、18年苹果园地、8年和23年苜蓿草地0~20m土层平均湿度分别为18.89%、15.45%、14.77%和10.59%,休闲地、高产农田、低产农田和4年苜蓿草地0~15m土层平均湿度分别为21.59%、18.67%、19.65%和16.52%。不同土地利用方式下,黄土深剖面土壤水资源量、土壤水分有效性不同,大小依次为休闲地>低产农田>荒草地>高产农田>4年苜蓿草地>18年苹果林地>8年苜蓿草地>23年苜蓿草地。
     黄土塬区土壤干层可划分为两类:一类为发生在一年生作物地的暂时性干层,一类为发生在多年生人工林草地的持久性干层。暂时性土壤干层土壤水分在丰水年可恢复;持久性土壤干层的发展是一个由浅及深、由轻度到重度的渐进化过程,其土壤水分只有在林草被移除后才能恢复。
     3土壤水分动态特征
     研究区降水入渗深度与雨季降水量有显著的线性关系:D=a· P–b,不同土地利用方式之间,系数a、b不同。一般情况下,不同土地利用方式之间降水入渗深度大小依次为休闲地>低产农田>苹果林地>高产农田>苜蓿草地。
     土壤剖面上,浅层土壤含水量随时间变化剧烈,随深度增加,土壤水分随时间变化逐渐减小。休闲地在4m以上、低产农田在5m以上、高产农田在4m以上、苹果林地在4m以上、苜蓿草地在2m以上土层含水量具有明显的时间变化,属土壤水分可变层;但在这些深度以下土层土壤含水量动态变化较小,属土壤水分相对稳定层。
     研究区土壤储水量季节变化分为3个阶段:土壤水分消耗期(3~7月),土壤水分恢复期(7~10月)和土壤水分相对稳定期(10~翌年3月)。
     与实验初期相比,休闲地0~15m土层和低产农地下0~8m土层土壤储水量均显著增加,高产农地下土壤储水量无显著变化,苜蓿草地下土壤储水量显著减少。表明四种土地利用方式下,只有休闲地和低产农地条件下深层土壤水分能够得到降水的补给,而高产农地和苜蓿草地深层土壤水分将不能得到降水的补给。
     4土壤水量平衡中土体深度选择
     土壤水量平衡计算中土层深度的确定非常重要,这不仅与土地利用方式相关,也与林草植被的生长阶段相联。对于农田,土层深度选择不宜小于4m;对于苜蓿草地和苹果林地,在其生长旺盛期土层深度选择不宜小于15m;因深层取样困难,一般可取至10m计算。苹果林地(1993年栽植)取10m深度时ET计算结果分别为取15m计算结果的94.9%(2010年)和99.0%(2011年),苜蓿草地(2006年种植)取10m深度时ET计算结果分别为取15m计算结果的93.2%(2010年)和95.2%(2011年)。对于休闲地,土层深度也应选取降水入渗深度。长武塬区降水入渗深度可由其与雨季降水量关系式估算得出。
     5长武塬区大气降水、土壤水、地下水同位素组成特征
     大气降水δD和δ~(18)O的范围分别为142.01‰~1.98‰和19.62‰~1.17‰,其平均值分别为55.45‰和8.09‰。大气降水线方程为δD=7.39δ~(18)O+4.34(R2=0.94,n=71),研究区降水稳定同位素组成具有冬春高、夏秋低的季节变化特征,降水量较大或持续时间较长的降水事件的雨量效应显著,降水同位素值明显偏负。
     土壤水中δD值变化范围为126.47‰~46.66‰,平均值为75.13‰;δ~(18)O值变化范围为16.63‰~4.30‰,平均值为9.56‰。土壤水氢氧同位素值落于大气降水线右下侧,表明降水在补给土壤水过程中,经历了强烈的非平衡蒸发过程,分馏明显。土壤水同位素组成在浅层土层随时间变化剧烈,随深度增加,土壤水同位素组成随时间变化逐渐减小,甚至无变化。
     井水δD和δ~(18)O的范围分别为72.31‰~69.08‰和10.53‰~10.08‰,其平均值分别为71.31‰和10.31‰;泉水δD和δ~(18)O的范围分别为72.36‰~68.41‰和10.51‰~9.98‰,其平均值分别为70.68‰和10.24‰。井水和泉水氢氧同位素组成变化范围较降水和土壤水明显都小,且无明显季节变化。
     6地下水补给
     通过研究降水、土壤水、地下水氢氧同位素组成变化特征,土壤水同位素组成剖面发现,降水入渗土壤过程中,具有自上而下活塞式下渗的特征,同时部分雨水可能通过一些“快速通道”以优先流的方式快速到达深层土壤。地下水补给过程中,存在着活塞流与优先流两种形式,其中优先流形式在补给过程中占据主导地位;地下水补给具有季节性特点,7~10月份地下水补给量大于年内其它时段。但是优先流在空间上并不普遍发生,与土地利用方式下土壤剖面水分状况有关。在苹果林地、苜蓿草地等土地利用方式下,土壤干层将减小优先流发生的可能性;而在荒草地、农田等土地利用方式下土壤剖面水分含量较高,则容易发生优先流,从而对地下水形成补给。
     本文研究结果表明,在黄土塬区大面积的农田转换为果园将减小地下水的补给量,对区域水文循环产生深刻影响。
Soil water is one of the most important water resources, deep soil water is crucial formaintaining the function as “soil reservoir” in the Loess Plateau. Groundwater is usuallythe important water resource for human livings; however, the recharge mechanism ofgroundwater has not been well understood in the Loess Tableland region. Soil water storedin thick loess soil is the link between precipitation and groundwater; therefore,understanding the dynamics of soil water in deep loess profile is of great importance tounderstand the groundwater recharge for the Loess Tableland. The main objectives of thisdissertation were:(1) to investigate the characteristics of soil water in deep loess profiles inthe Loess Tableland region, including characteristics of vertical distribution, soil waterresources, soil desiccation, soil water dynamics, and soil water balance;(2) to explore themechanism of groundwater recharge. In this dissertation, soil water content in deep loessprofiles under different land use patterns were measured by both field investigation andlong term observation in situ; the isotopic composition of hydrogen and oxygen inprecipitation, soil water and groundwater were analyzed. The main results are as follows:
     1Vertical distribution characteristic of soil water in deep loess profile
     The soil texture in0~20m profile of Loess Tableland is mainly middle loam, exceptsome clayey profiles. The field capacity and wilting point is (21.39±0.13)%and(8.06±0.45)%, respectively. The content of physical clay in paleosol layers is2%~6%higher than that in loess layers, and the porosity of paleosol layers are smaller than that ofloess layers, therefore, paleosol layers has a stronger water-holding capacity than loesslayers.
     The vertical distribution characteristic of soil water in deep loess profile is related tothe loess-paleosol sequences. Generally, one paleosol layer and one loess layer constitute an up-down humidity level and there is an increasing trend in soil water content withincreased profile depth.
     2Soil water resources and soil desiccation
     Long term experiments in situ showed that land use patterns can significantly affectsoil water content in deep loess profiles, and the influence depth is deeper than the depth of10m. The amount of soil water resources and the soil water availability in deep loessprofile of different land use patterns were different. Generally, the sequence is fallow land> low-yield cropland> natural grassland> high-yield cropland>4-yr planted alfalfagrassland>18-yr apple orchard>8-yr planted alfalfa grassland>23-yr planted alfalfagrassland.
     The dried soil layer was divided into two types, one is temporary dried soil layer,which is typically formed in soils for annual crop plants, the other is persistent dried soillayer, which is typically formed in soils for perennial artificial vegetations. The temporarydried soil layer usually disappears in the wet years, while the persistent dried soil layer ismore stable and persistent. It will take several decades to recover the soil water content ofthe persistent dried soil layer after the perennial plants are removed.
     3Characteristics of soil water dynamics in deep loess profile
     The rainfall infiltration depth is linearly related to the precipitation during the rainyseason, the relationship can be described with the equation D=a· P–b,the coefficients(a, b) varied in different land use patterns. Generally, the sequence of rainfall infiltrationdepth is fallow land> low-yield cropland> apple orchard> high-yield cropland> alfalfagrassland.
     The temporal variation of soil water content was obvious in the upper part of the soilprofile; however, it decreased gradually with the depth increasing. Therefore, the shallowsoil layer can be regarded as changeable layer in soil water content. The depths of such soillayer differed with land use types, the layers in fallow land, high-yield cropland, low-yieldcropland, alfalfa grassland and apple orchard were0~4,0~4,0~5,0~2, and0~4m,respectively. The soil layers below these depths were regarded as relatively stable layer andhad little changes in soil water content.
     The seasonal variation of soil water storage can be divided in to three main periods,i.e., decreasing period (March to July), increasing period (July to October), and relatively stable period (October to March of next year).
     The soil water storage in the0~15m soil layer was significantly increased in fallowland and low-yield cropland but significantly decreased in the alfalfa grassland comparedwith that in the initial experiment. No significant change in the soil water storage wasobserved in the high-yield cropland. This result suggested that deep soil water and groundwater could be replenished in fallow land and low-yield cropland.
     4The selection of soil depths for soil water balance calculations
     The selection of soil thickness is very important for the calculation of soil waterbalance on the Loess Tableland, which is determined by both the land uses and the growthstages of the vegetations. The calculated soil thickness should be at least the depth ofrainfall infiltration in fallow land. The calculated soil thicknesses should be at least4m incropland, and15m in alfalfa grassland and apple orchard during the vigorous growth stageof planted woodland and grassland. Because of the difficulty in collecting samples in deepsoil layers, the calculated soil thicknesses should be at least10m under planted woodlandand grassland. The calculated evapotranspiration of0~10m soil layer account for94.9%(2010) and99.0%(2011) of0~15m soil layer in apple orchard (planted in1993),respectively. The calculated evapotranspiration of0~10m soil layer account for93.2%(2010) and95.2%(2011) of0~15m soil layer in alfalfa grassland (planted in1993),respectively. The depth of rainfall infiltration in the study region can be estimated by thelinearly relationship between the depth and rainfall during rainy season.
     5The isotope compositions of precipitation, soil water and groundwater
     The δD values of precipitation range from142.0‰to2.0‰, with the arithmeticmean of55.4‰. The δ~(18)O values of precipitation range from19.6‰to1.2‰, withthe arithmetic mean of8.1‰. The equation of the Local Meteoric Water Line (LMWL)for the tableland was δD=7.39δ~(18)O+4.34(R2=0.94,n=71). The seasonal variation of theisotope compositions of precipitation was obvious, with high values in winter and springand low values in summer and autumn. The amount effect of isotopes in precipitation wasobvious, and the lighter isotopes values were observed in heavy rainfall events or afterlong duration rainfall.
     The δD values of soil water range from126.5‰to46.7‰, with the arithmeticmean of75.1‰. The δ~(18)O values of soil water range from16.6‰to4.3‰, with the arithmetic mean of9.6‰. The values of stable isotopes in soil water fall in the right-sideof the LMWL, implying that soil water originates from precipitation, and evaporationoccurs during the rainfall infiltration. The isotope composition in soil water changesgreatly with time in shallow soil layers, with the increase of soil depth, the temporalchange in the isotope contents was decreased.
     The δD values of well water range from72.3‰to69.1‰, with the arithmeticmean of71.3‰. The δ~(18)O values of well water range from10.5‰to10.1‰, with thearithmetic mean of10.3‰. The δD values of spring water range from72.4‰to68.4‰,with the arithmetic mean of70.7‰. The δ~(18)O values of spring water range from10.5‰to10.0‰, with the arithmetic mean of10.2‰. The seasonal variation of the isotopecompositions in groundwater was not obvious, and the variation of isotopic compositionsin groundwater is much smaller than those of precipitation and soil water.
     6Recharge of groundwater
     Through comparing the variations of isotopic composition in precipitation, soil waterand groundwater, it can be found that the piston-type flow occurred in soil layer in theprocess of rainfall infiltration. Meanwhile, part of the rainwater can move to deeper soillayers quickly by the preferential type flow. There was a seasonal groundwater recharge,and the recharge rates during July to October should be greater than other time of the yearon the Loess tableland. The groundwater was likely recharged by piston flow andpreferential flow through the unsaturated zone, and the recharge was dominated by thepreferential flow. However, the occurrence of preferential flow is not a commonphenomenon spatially, and it has a certain relationship with land use patterns. Generally,soil desiccation caused by negative water balance can reduce the probability of preferentialflow occurrence in apple orchard and alfalfa grassland, whereas preferential flow easilyoccurs in farmland or nature grassland.
     The result indicates that the conversion from a large area of farmland to apple orchardcan affect the natural mode of water cycle and reduce the recharge of groundwater on theLoess Tableland.
引文
[1]杨文治.黄土高原土壤水资源与植树造林[J].自然资源学报,2001,16(05):433-436.
    [2]李玉山,韩仕峰,汪正华.黄土高原土壤水分性质及其分区[J].中国科学院西北水土保持研究所集刊,1985(02):1-17.
    [3]长武耕地保育与持续高效现代农业试点工程小麦又获丰产. Available from:http://www.iswc.ac.cn/xwzx/zhxw/201007/t20100720_2907505.html.
    [4]黄明斌,党廷辉,李玉山.黄土区旱塬农田生产力提高对土壤水分循环的影响[J].农业工程学报,2002,18(06):50-54.
    [5]李玉山.黄土高原森林植被对陆地水循环影响的研究[J].自然资源学报,2001,16(05):427-432.
    [6]黄明斌,杨新民,李玉山.黄土区渭北旱塬苹果基地对区域水循环的影响[J].地理学报,2001,56(01):7-13.
    [7]程立平,刘文兆.黄土塬区土壤水分分布特征及其对不同土地利用方式的响应[J].农业工程学报,2011,27(09):203-207.
    [8]陈云明,刘国彬,侯喜录.黄土丘陵半干旱区人工沙棘林水土保持和土壤水分生态效益分析[J].应用生态学报,2002,13(11):1389-1393.
    [9]程积民,万惠娥,王静.黄土丘陵区紫花苜蓿生长与土壤水分变化[J].应用生态学报,2005,16(03):435-438.
    [10]侯庆春,韩蕊莲.黄土高原植被建设中的有关问题[J].水土保持通报,2000,20(02):53-56.
    [11]孙长忠,黄宝龙,陈海滨,等.黄土高原人工植被与其水分环境相互作用关系研究[J].北京林业大学学报,1998,20(03):10-17.
    [12]杨建伟,梁宗锁,韩蕊莲.不同土壤水分状况对刺槐的生长及水分利用特征的影响[J].林业科学,2004,40(05):93-98.
    [13]杨建伟,梁宗锁,韩蕊莲,等.不同干旱土壤条件下杨树的耗水规律及水分利用效率研究[J].植物生态学报,2004,28(05):630-636.
    [14]杨新民.黄土高原灌木林地水分环境特性研究[J].干旱区研究,2001,18(01):8-13.
    [15]赵忠,李鹏.渭北黄土高原主要造林树种根系分布特征及抗旱性研究[J].水土保持学报,2002,16(01):96-99+107.
    [16]陈洪松,邵明安,王克林.黄土区荒草地和休闲地土壤水分的循环特征[J].应用生态学报,2005,16(10):1853-1857.
    [17]王孟本,李洪建.晋西北黄土区人工林土壤水分动态的定量研究[J].生态学报,1995,15(2):178-184.
    [18]卢宗凡,张兴昌,苏敏,等.黄土高原人工草地的土壤水分动态及水土保持效益研究[J].干旱区资源与环境,1995,9(01):40-49.
    [19]李洪建,王孟本,柴宝峰.黄土高原土壤水分变化的时空特征分析[J].应用生态学报,2003,14(04):515-519.
    [20]王云强,黄土高原地区土壤干层的空间分布与影响因素.2010,中国科学院研究生院(教育部水土保持与生态环境研究中心).
    [21]侯庆春,韩蕊莲,韩仕锋.黄土高原人工林草地“土壤干层”问题初探[J].中国水土保持,1999(05):13-16.
    [22]王力,邵明安,侯庆春.土壤干层量化指标初探[J].水土保持学报,2000,14(04):87-90.
    [23]王志强,刘宝元,路炳军.黄土高原半干旱区土壤干层水分恢复研究[J].生态学报,2003,23(09):1944-1950.
    [24]王锐,刘文兆,赵小鹏.长武塬区地下水位动态特征分析[J].干旱地区农业研究,2010,28(03):48-52.
    [25]徐学选,张北赢,田均良.黄土丘陵区降水-土壤水-地下水转化实验研究[J].水科学进展,2010,21(01):16-22.
    [26]王锐,基于环境同位素黄土塬区降水-土壤水-地下水转换关系研究.2007,中国科学院教育部水土保持与生态环境研究中心.
    [27]苏人琼,黄土高原水资源问题及对策[M].北京:中国科学技术出版社,1990.
    [28]杨文治,邵明安,黄土高原土壤水分研究[M].北京:科学出版社,2000.
    [29]穆兴民,徐学选,王文龙,等.黄土高原人工林对区域深层土壤水环境的影响[J].土壤学报,2003,40(02):210-217.
    [30]李玉山.黄土区土壤水分循环特征及其对陆地水分循环的影响[J].生态学报,1983,3(02):91-101.
    [31]董大学,郭民航,李玉山.渭北旱塬农田水分状况与提高小麦水分利用途径的研究[J].水土保持通报,1990,10(06):13-20.
    [32]韩仕峰,李玉山,张孝中,等.黄土高原地区土壤水分区域动态特征[J].中国科学院水利部西北水土保持研究所集刊,1989(01):161-167.
    [33]李玉山.苜蓿生产力动态及其水分生态环境效应[J].土壤学报,2002,39(03):404-411.
    [34]樊军,郝明德,邵明安.黄土旱塬农业生态系统土壤深层水分消耗与水分生态环境效应[J].农业工程学报,2004,20(01):61-64.
    [35]王志强,刘宝元,张岩.不同植被类型对厚层黄土剖面水分含量的影响[J].地理学报,2008,63(07):703-713.
    [36] Wang ZQ, Liu BY, Liu G, et al. Soil water depletion depth by planted vegetation on the LoessPlateau[J]. Science in China Series D-Earth Sciences,2009,52(6):835-842.
    [37]余新晓,陈丽华.黄土地区防护林生态系统水量平衡研究[J].生态学报,1996,16(03):238-245.
    [38]中科院西北水土保持所土壤水分组.陕西省东旱塬农田墒情调查[J].土壤,1975(6):279-285.
    [39]黄明斌,杨新民,李玉山.黄土高原生物利用型土壤干层的水文生态效应研究[J].中国生态农业学报,2003,11(03):119-122.
    [40]李裕元,邵明安.黄土高原气候变迁、植被演替与土壤干层的形成[J].干旱区资源与环境,2001,15(01):72-77.
    [41]王国粱,刘国彬,周生路.黄土高原土壤干层研究述评[J].水土保持学报,2003,17(06):156-159.
    [42]王力,邵明安,张青峰.陕北黄土高原土壤干层的分布和分异特征[J].应用生态学报,2004,15(03):436-442.
    [43]赵景波,周旗,侯甬坚.黄土高原土壤干层对生态环境建设的影响[J].陕西师范大学学报(自然科学版),2003,31(04):93-97+109.
    [44] Wang YQ, Shao MA, Liu ZP. Large-scale spatial variability of dried soil layers and relatedfactors across the entire Loess Plateau of China[J]. Geoderma,2010,159(1-2):99-108.
    [45] Wang YQ, Shao MA, Shao HB. A preliminary investigation of the dynamic characteristics ofdried soil layers on the Loess Plateau of China[J]. Journal of Hydrology,2010,381(1-2):9-17.
    [46]何福红,黄明斌,党廷辉.黄土高原沟壑区小流域土壤干层的分布特征[J].自然资源学报,2003,18(01):30-36.
    [47]李军,陈兵,李小芳,等.黄土高原不同降水类型区林地、草地与农田土壤干燥化效应比较[J].土壤学报,2008,45(01):40-49.
    [48]万素梅,贾志宽,韩清芳,等.黄土高原半湿润区苜蓿草地土壤干层形成及水分恢复[J].生态学报,2008,28(03).
    [49]王美艳,李军,孙剑,等.黄土高原半干旱区苜蓿草地土壤干燥化特征与粮草轮作土壤水分恢复效应[J].生态学报,2009,29(08):4526-4534.
    [50]张春霞,郝明德,魏孝荣,等.黄土高原沟壑区苜蓿地土壤水分剖面特征研究[J].植物营养与肥料学报,2004,10(06):604-607.
    [51]侯庆春,韩蕊莲,李宏平.关于黄土丘陵典型地区植被建设中有关问题的研究Ⅰ、土壤水分状况及植被建设区划[J].水土保持研究,2000,7(02):102-110.
    [52]侯庆春,韩蕊莲,李宏平.关于黄土丘陵典型地区植被建设中有关问题的研究Ⅲ、乡土树种在造林中的意义[J].水土保持研究,2000,7(02):119-123.
    [53]程积民,万惠娥,王静,等.半干旱区柠条生长与土壤水分消耗过程研究[J].林业科学,2005,41(02):37-41.
    [54]李玉山.旱作高产田产量波动性和土壤干燥化[J].土壤学报,2001a,38(03):354-356.
    [55]宋献方,夏军,于静洁,等.应用环境同位素技术研究华北典型流域水循环机理的展望[J].地理科学进展,2002,21(06):527-537.
    [56] Friedman I. Deuterium content of natural waters and other substances[J]. Geochimica etCosmochimica Acta,1953,4:89-103.
    [57] Dansgaard W. The abundance of18O in the atmospheric water and water vapor[J]. Tellus,1953,5:436-468.
    [58] Craig H. Isotopic Variations in Meteoric Waters[J]. Science (New York, N.Y.),1961,133(3465):1702-3.
    [59] Rozanski K, Araguás-Araguás L, Gonfiantini R, Isotopic patterns in modern globalprecipitation[A], in:Continental Isotope Indicators of Climate[C].1993, American GeophysicalUnion Monograph.1-36.
    [60]张应华,仵彦卿,温小虎,等.环境同位素在水循环研究中的应用[J].水科学进展,2006(05):738-747.
    [61] Ingraham N L, Taylor B E. Light stable systematic of large-scale hydrologic regimes inCalifornia and Nevada [J]. Water Resource Research,1991,27:77-90.
    [62]章申,于维新,张青莲,等.我国西藏南部珠穆朗玛峰地区冰雪水中氘和重氧的分布[J].中国科学A辑,1973(04).
    [63]郑淑蕙,侯发高,倪葆龄.我国大气降水的氢氧稳定同位素研究[J].科学通报,1983(13):801-806.
    [64]刘进达,赵迎昌,刘恩凯,等.中国大气降水稳定同位素时—空分布规律探讨[J].勘察科学技术,1997(03):34-39.
    [65]王锐,刘文兆,宋献方.长武塬区大气降水中氢氧同位素特征分析[J].水土保持学报,2008,22(03):56-59.
    [66]徐庆,刘世荣,安树青,等.卧龙地区大气降水氢氧同位素特征的研究[J].林业科学研究,2006(06):679-686.
    [67]田立德,姚檀栋,孙维贞,等.青藏高原南北降水中δD和δ~(18)O关系及水汽循环[J].中国科学(D辑:地球科学),2001(03):214-220.
    [68]于津生,虞福基,刘德平.中国东部大气降水氢、氧同位素组成[J].地球化学,1987(01):22-26.
    [69]章新平,姚檀栋.我国降水中δ~(18)O的分布特点[J].地理学报,1998,53(04):70-78.
    [70] Clark ID, Fritz P, Environmental isotopes in hydrogeology. Boca Raton,FL: Lewis Publishers,1999.
    [71] Dansgaard W. Stable isotopes in precipitation[J]. Tellus,1964,16:436-468.
    [72]李政红,张发旺.全球降水氢氧同位素研究进展[J].勘察科学技术,2004(01):3-6+32.
    [73]章新平,姚檀栋,田立德,等.湿度效应及其对降水中δ~(18)O季节分布的影响[J].冰川冻土,2004(04):420-425.
    [74] Hubert P, Marin E, Meyback M, et al. Aspects hydrelogiques et sedimentologiques de la crueex ceptionnelle de la Dranse du Chablais du22Septembre1968[J]. Arch. Sci. Geneve,1969,22(3):581-604.
    [75] Fritz P, Cherry J A, Weyer K U, et al. Storm runoff analyses using environmental isotopes andmajor ions[A]. Interpretation of Environmental Isotope and Hydrochemical Data inGroundwater Hydrology,Panel Proc. Ser[C]. IAEA, Vienna,1976,111-130.
    [76] Dincer T, Payne B R, Florkowski T, et al. Snowmelt runoff from measurements of tritium andoxygen-18[J]. Water Resource Research,1970,6(1):110-124.
    [77] Bottomley D J, Craig D, Johnston L M. Neutralization of acid runoff by groundwater dischargeto stream in Canadian Precambrian Shield watersheds[J]. Journal of Hydrology,1984,75(1-26).
    [78] Buttle J M. Isotope hydrograph separations and rapid delivery of pre-event water from drainagebasins[J]. Progress in Physical Geography,1994,18(1):16-41.
    [79] Pearce A J, Stewart M K, Sklash M G. Storm runoff generation in humid headwater catchments1.Where does the water come from [J]. Water Resource Research,1986,22:1263-1272.
    [80] DeWalle D R, Swistock B R, Sharpe W E. Three component trace model for stormflow on asmall Appalachian forest catchment[J]. Journal of Hydrology,1988,104:301-310.
    [81] McDonnell J J, Stewart M K, Owens I F. Effect of Catchment-Scale Subsurface Mixing onStream Isotopic Response[J]. Water Resource Research,1991,27(12):3065-3073.
    [82]顾慰祖,陆家驹,唐海行,等.水文实验求是传统水文概念——纪念中国水文流域研究50年、滁州水文实验20年[J].水科学进展,2003,14(03):368-378.
    [83] zimmermann U, Ehhalt D, Munnich KO. Soil-water moverment and evapotranspiration:changes in the isotopic composition of water. Proc. Symp. Isotopes in Hydrology. Vienna: Int.At. Energy Agency,1966:567-585.
    [84] Zimmermann U, Munnich KO, Roether W. Downward movement of soil moisture traced bymeans of hydrogen isotopes[J]. American Geophysical Union Geophysics Monograph Series,1967,11:28-36.
    [85] Zimmermann U, Munnich KO, Roether W, et al. Tracers determine movement of soil moistureand evapotranspiration[J]. Science,1966,152(3720):346-347.
    [86] Allison GB. The relations between o-18and deuterium in water in sand columns undergoingevaporation[J]. Journal of Hydrology,1982,55(1-4):163-169.
    [87] Allison GB, Barnes CJ, Hughes MW. The distribution of deuterium and o-18in dry soil2experimental[J]. Journal of Hydrology,1983,64(1-4):377-397.
    [88] Allison GB, Hughes MW. The use of natural traces as indicators of soil-water movement in atemperate semi-arid region[J]. Journal of Hydrology,1983,60(1-4):157-173.
    [89] Barnes CJ, Allison GB. The distribution of deuterium and o-18in dry soils.1. theory[J].Journal of Hydrology,1983,60(1-4):141-156.
    [90] Brooks JR, Barnard HR, Coulombe R, et al. Ecohydrologic separation of water between treesand streams in a Mediterranean climate[J]. Nature Geoscience,2010,3(2):100-104.
    [91] DePaolo DJ, Conrad ME, Maher K, et al. Evaporation effects on oxygen and hydrogen isotopesin deep vadose zone pore fluids at Hanford, Washington[J]. Vadose Zone Journal,2004,3(1):220-232.
    [92] Gazis C, Feng XH. A stable isotope study of soil water: evidence for mixing and preferentialflow paths[J]. Geoderma,2004,119(1-2):97-111.
    [93] Gehrels JC, Peeters JEM, De Vries JJ, et al. The mechanism of soil water movement as inferredfrom O-18stable isotope studies[J]. Hydrological Sciences Journal-Journal Des SciencesHydrologiques,1998,43(4):579-594.
    [94] Izbicki JA, Radyk J, Michel RL. Movement of water through the thick unsaturated zoneunderlying Oro Grande and Sheep Creek Washes in the western Mojave Desert, USA[J].Hydrogeology Journal,2002,10(3):409-427.
    [95] Song XF, Wang P, Yu JJ, et al. Relationships between precipitation, soil water and groundwaterat Chongling catchment with the typical vegetation cover in the Taihang mountainous region,China[J]. Environmental Earth Sciences,2011,62(4):787-796.
    [96] Song XF, Wang SQ, Xiao GQ,等. A study of soil water movement combining soil waterpotential with stable isotopes at two sites of shallow groundwater areas in the North ChinaPlain[J]. Hydrological Processes,2009,23(9):1376-1388.
    [97] Hsieh JCC, Chadwick OA, Kelly EF, et al. Oxygen isotopic composition of soil water:Quantifying evaporation and transpiration[J]. Geoderma,1998,82(1-3):269-293.
    [98] Mathieu R, Bariac T. An isotopic study (H-2and O-18) of water movements in clayey soilsunder a semiarid climate[J]. Water Resource Research,1996,32(4):779-789.
    [99]田立德,姚檀栋, TSUJIMURA M,等.青藏高原中部土壤水中稳定同位素变化[J].土壤学报,2002,39(03):289-295.
    [100]徐庆,刘世荣,安树青,等.四川卧龙亚高山暗针叶林土壤水的氢稳定同位素特征[J].林业科学,2007(01):8-14.
    [101]许士国,刘盈斐,孙万光.扎龙湿地包气带土壤水分垂直运移的稳定同位素研究[J].水文,2006,26(05):1-6.
    [102]王仕琴,宋献方,肖国强,等.基于氢氧同位素的华北平原降水入渗过程[J].水科学进展,2009,20(04):495-501.
    [103]田日昌,陈洪松,宋献方,等.湘西北红壤丘陵区土壤水运移的稳定性同位素特征[J].环境科学,2009,30(09):2747-2754.
    [104] White JW, Cook ER, JR. L. The D/H ratios of sap in trees:implications of water sources andtree ring D/H ratios[J]. Geo-chimicaet Cosmochimica Acta,1985,49:237-246.
    [105]李嘉竹,刘贤赵.氢氧稳定同位素在SPAC水分循环中的应用研究进展[J].中国沙漠,2008,28(04):787-794.
    [106]段德玉,欧阳华.稳定氢氧同位素在定量区分植物水分利用来源中的应用[J].生态环境,2007,16(02):655-660.
    [107]孙双峰,黄建辉,林光辉,等.稳定同位素技术在植物水分利用研究中的应用[J].生态学报,2005(09):2362-2371.
    [108]王平元,刘文杰,李金涛.西双版纳绞杀植物斜叶榕的水分利用策略[J].应用生态学报,2010,21(04):836-842.
    [109]聂云鹏,陈洪松,王克林.石灰岩地区连片出露石丛生境植物水分来源的季节性差异[J].植物生态学报,2011,35(10):1029-1037.
    [110]周雅聃,陈世苹,宋维民,等.不同降水条件下两种荒漠植物的水分利用策略[J].植物生态学报,2011,35(08):789-800.
    [111]巩国丽,陈辉,段德玉.利用稳定氢氧同位素定量区分白刺水分来源的方法比较[J].生态学报,2011,24(24):7533-7541.
    [112] McCarthy K A, McFarland W D, Wilkinson J M, et al. The dynamic relationship betweenground water and the Columbia River: using deuterium and oxygen-18as tracers[J]. Journal ofHydrology,1992,12:1-12.
    [113] Krabbenhoft D P, Bowser C J, Anderson M P, et al. Estimating groundwater exchange withlakes1: The stable isotopes mass balance method [J]. Water Resource Research,1990,26:2445-2453.
    [114] Stichler W, Moser H. An example of exchange between lake and groundwater[A]. Isotopes inLake Studies[C]. Vienna, IAEA,1979,115-119.
    [115] Fontes J Ch, Bortolami G C, Zuppi G M. Hydrologie Isotopique du Massif du Mont-Blanc[A].Isotope Hydrology[C]. IAEA, Vienna,1978,411-440.
    [116]苏小四,林学钰.包头平原地下水水循环模式及其可更新能力的同位素研究[J].吉林大学(地球科学版),2003,33(4):503-509.
    [117]马致远,高文义.平凉大岔河隐伏岩溶水补给的环境同位素研究[J].西北地质,1997,1:53-57.
    [118] Adomako D, Maloszewski P, Stumpp C, et al. Estimating groundwater recharge from waterisotope (delta H-2, delta O-18) depth profiles in the Densu River basin, Ghana[J]. HydrologicalSciences Journal-Journal Des Sciences Hydrologiques,2010,55(8):1405-1416.
    [119] Gaye CB, Edmunds WM. Groundwater recharge estimation using chloride, stable isotopes andtritium profiles in the sands of northwestern Senegal[J]. Environmental Geology,1996,27(3):246-251.
    [120]张应华,仵彦卿,丁建强,等.运用氧稳定同位素研究黑河中游盆地地下水与河水转化[J].冰川冻土,2005(01):106-110.
    [121]顾慰祖,陆家驹,谢民,等.乌兰布和沙漠北部地下水资源的环境同位素探讨[J].水科学进展,2002,13(03):326-332.
    [122]宋献方,夏军,于静洁,等.应用环境同位素技术研究华北典型流域水循环机理的展望[J].地理科学进展,2002(06):527-537.
    [123]宋献方,刘鑫,夏军,等.基于氢氧同位素的岔巴沟流域地表水—地下水转化关系研究[J].应用基础与工程科学学报,2009(01):8-20.
    [124]宋献方,刘相超,夏军,等.基于环境同位素技术的怀沙河流域地表水和地下水转化关系研究[J].中国科学(D辑:地球科学),2007(01):102-110.
    [125] Araguas-Araguas L, Rozanski K, Gonfiantini R, et al. Isotope effects accompanying vacuumextraction of soil water for stable isotope analyses[J]. Journal of Hydrology,1995,168(1-4):159-171.
    [126] UC Davis Stable Isotope Facility. Oxygen (18O) and Hydrogen (D/H) Analysis of Water.2012;Available from: http://stableisotopefacility.ucdavis.edu/18owater.html.
    [127]刘东生,黄土与环境[M].北京:科学出版社,1985.
    [128]赵景波,阴雷鹏,刘护军.陕西长武黄土剖面S_1—L_4土层入渗率与成因[J].海洋地质与第四纪地质,2009,29(05):123-130.
    [129]王锐,刘文兆,李志.黄土塬区10m深剖面土壤物理性质研究[J].土壤学报,2008,45(03):550-554.
    [130]王文焰,张建丰,汪志荣,等.砂层在黄土中的阻水性及减渗性的研究[J].农业工程学报,1995,11(01):104-110.
    [131]王文焰,张建丰,汪志荣,杨志威.黄土中砂层对入渗特性的影响[J].岩土工程学报,1995,17(05):33-41.
    [132]王德潜.洛川黄土潜水补给特征[J].水文地质工程地质,1982(05):1-8.
    [133]邵明安,杨文治,李玉山.黄土区土壤水分有效性研究[J].水利学报,1987(08):38-44.
    [134]姚贤良,程云生,土壤物理学.北京:农业出版社,1986.
    [135]李玉山.(土娄)土水分状况与作物生长[J].土壤学报,1962(03):289-304.
    [136]杨文治,田均良.黄土高原土壤干燥化问题探源[J].土壤学报,2004,41(01):1-6.
    [137] Chen HS, Shao MA, Li YY. The characteristics of soil water cycle and water balance on steepgrassland under natural and simulated rainfall conditions in the Loess Plateau of China[J].Journal of Hydrology,2008,360(1-4):242-251.
    [138]陈洪松,邵明安,王克林.黄土区深层土壤干燥化与土壤水分循环特征[J].生态学报,2005(10):2491-2498.
    [139] Li J, Chen B, Li XF, et al. Effects of deep soil desiccation on artificial forestlands in differentvegetation zones on the Loess Plateau of China[J]. Acta Ecologica Sinica,2008,28(4):1429-1445.
    [140] Liu WZ, Zhang XC, Dang TH, et al. Soil water dynamics and deep soil recharge in a recordwet year in the southern Loess Plateau of China[J]. Agricultural Water Management,2010,97(8):1133-1138.
    [141]杨文治,余存祖,黄土高原区域治理与评价.北京:科学出版社,1992.
    [142]孙剑,李军,王美艳,等.黄土高原半干旱偏旱区苜蓿-粮食轮作土壤水分恢复效应[J].农业工程学报,2009,25(06):33-39.
    [143] Huang MB, Gallichand J. Use of the SHAW model to assess soil water recovery after appletrees in the gully region of the Loess Plateau, China[J]. Agricultural Water Management,2006,85(1-2):67-76.
    [144]王孟本,李洪建.柠条林蒸腾状况与土壤水分动态研究[J].水土保持通报,1990,11(4):313-317.
    [145]陈洪松,邵明安.黄土区坡地土壤水分运动与转化机理研究进展[J].水科学进展,2003(04):413-420.
    [146] Wang ZQ, Liu BY, Zhang Y. Soil moisture of different vegetation types on the Loess Plateau[J].Journal of Geographical Sciences,2009,19(6):707-718.
    [147] Wang YQ, Shao MA, Liu ZP, et al. Regional spatial pattern of deep soil water content and itsinfluencing factors[J]. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques,2012b,57(2):265-281.
    [148] Li YS, Huang MB. Pasture yield and soil water depletion of continuous growing alfalfa in theLoess Plateau of China[J]. Agriculture, Ecosystems&Environment,2008,124(1-2):24-32.
    [149]胡梦珺,刘文兆,赵姚阳.黄土高原农、林、草地水量平衡异同比较分析[J].干旱地区农业研究,2003,21(4):113-116.
    [150]李开元,李玉山.黄土高原农田水量平衡研究[J].水土保持学报,1995,9(2):39~44.
    [151] Liu Wenzhao, Li Yushan. Crop yield response to water and fertiliazer in loess tableland ofChina: a field research [J]. Pedosphere,1995,5(3):259-266.
    [152]李佩成.关于“内在水”补给土壤水的假设与初证[J].地下水,2010,32(02):1-3+42.
    [153]柳鉴容,宋献方,袁国富,等.西北地区大气降水δ~(18)O的特征及水汽来源[J].地理学报,2008(01):12-22.
    [154] Barnes CJ, Allison GB. The distribution of deuterium and o-18in dry soils.3. theory fornon-isothermal water-movement[J]. Journal of Hydrology,1984,74(1-2):119-135.
    [155] Braud I, Bariac T, Biron P, et al. Isotopic composition of bare soil evaporated water vapor. PartII: Modeling of RUBIC IV experimental results[J]. Journal of Hydrology,2009,369(1-2):17-29.
    [156] Braud I, Biron P, Bariac T, et al. Isotopic composition of bare soil evaporated water vapor. PartI: RUBIC IV experimental setup and results[J]. Journal of Hydrology,2009,369(1-2):1-16.
    [157] Melayah A, Bruckler L, Bariac T. Modeling the transport of water stable isotopes in unsaturatedsails under natural conditions.1. Theory[J]. Water Resources Research,1996,32(7):2047-2054.
    [158] Melayah A, Bruckler L, Bariac T. Modeling the transport of water stable isotopes in unsaturatedsoils under natural conditions.2. Comparison with field experiments[J]. Water ResourcesResearch,1996,32(7):2055-2065.
    [159] Yamanaka T, Yonetani T. Dynamics of the evaporation zone in dry sandy soils[J]. Journal ofHydrology,1999,217(1-2):135-148.
    [160] Barnes CJ, Allison GB. Water movement in the unsaturated zone using stable isotopes ofhydrogen and oxygen[J]. Journal of Hydrology,1988,100(1-2):143-176.
    [161]程立平,刘文兆.黄土塬区几种典型土地利用类型的土壤水稳定同位素特征[J].应用生态学报,2012,23(3):651-658.
    [162] Bristow KL, Horton R. Modeling the impact of partial surface mulch on soil heat and waterflow[J]. Theoretical and Applied Climatology,1996,54(1-2):85-98.
    [163] Horton R, Bristow KL, Kluitenberg GJ, et al. Crop residue effects on surface radiation andenergy balance-Review[J]. Theoretical and Applied Climatology,1996,54(1-2):27-37.
    [164] Darling WG, Bath AH. A stable isotope study of recharge process in the English chalk[J].Journal of Hydrology,1988(101):31-46.
    [165]石辉,刘世荣.森林土壤大孔隙特征及其生态水文学意义[J].山地学报,2005,23(5):533-539.
    [166]时忠杰,王彦辉,徐丽宏,等.六盘山典型植被下土壤大孔隙特征[J].应用生态学报,2007,18(12):2675-2680.
    [167]薛根良.黄土地下水的补给与赋存形式探讨[J].水文地质工程地质,1995(01):39-40.
    [168] Lin RF, Wei KQ. Tritium profiles of pore water in the Chinese loess unsaturated zone:Implications for estimation of groundwater recharge[J]. Journal of Hydrology,2006,328(1-2):192-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700