用户名: 密码: 验证码:
浓缩风能装置流场风切变特性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选题是国家自然科学基金资助项目《浓缩风能型风力发电机叶轮系列化的风洞实验与研究》[批准号:59776033]中的一部分。风切变对大型的风电机组危害不容忽视。浓缩风能型风电机组具有提高风能的能流密度,改善风能的不稳定性作用。为研究浓缩风能装置减弱来自风切变对风电机组的危害,论文以浓缩风能装置为对象,采用仿真、车载实验和风洞实验方法,主要进行了以下工作。
     论文首先介绍了选题背景,揭示出大型风电机组的风切变问题,综述了风电机组风切变的研究情况,介绍了浓缩风能型风电机组的研究现状以及优势;其次,详细分析了浓缩风能理论基础、基本思想、技术可行性和计算流体力学的相关知识;然后,将浓缩风能装置模型置于均匀平行来流风的流场中采用数值仿真和车载实验,对浓缩风能装置进行研究;接着,将浓缩风能装置模型置于带有风速梯度的来流风的流场中采用数值仿真和风洞实验,对传统浓缩风能装置和改进浓缩风能装置进行研究。研究成果如下:
     (1)中央圆筒直径900mm的传统浓缩风能装置在均匀平行来流流场中,当流体流过浓缩风能装置首先近壁面流体被加速,在中央圆筒中间截面前0.22m截面近壁面流体流速超过中心轴流体流速,而后在中央圆筒附近达到最高值,之后随着轴向距离增加,逐渐形成中心轴流体流速大于近壁面流体流速的流场。
     (2)对实验用风洞进行均匀性和稳定性测试,并测试出风洞模拟大气边界层的风速梯度曲线;以测试过的风洞,进行传统浓缩风能装置模型、浓缩风能装置改进模型I和改进模型II的风切变风洞实验,实验证明浓缩风能装置具有减轻风切变的能力;传统浓缩风能装置使来流风速梯度由4.2/s减弱为中央圆筒流速梯度3.4/s,使来流风速梯度降低20%;改进模型I使来流风速梯度由4.2/s减弱为中央圆筒流速梯度2.08/s,使来流风速梯度降低50%;改进模型II使来流风速梯度由4.2/s减弱为中央圆筒流速梯度1.36/s,使来流风速梯度降低68%。
     (3)建立了浓缩风能装置的数值模拟模型,以风洞测试的风速梯度为来流风速梯度进行了浓缩风能装置的风切变数值模拟,计算结果显示传统风能浓缩风能装置模型、改进模型I、改进模型II减轻风切变作用的能力逐渐加大。
     (4)中央圆筒直径900mm的浓缩风能装置在距中央圆筒壁面50mm附近出现边界层效应;中央圆筒直径300mm的浓缩风能装置在距中央圆筒壁面15mm附近出现边界层效应。
     (5)仿真和实验表明风切变下浓缩风能装置具有提高风力发电质量和载荷均匀度作用。
     (6)由传统浓缩风能装置模型、浓缩风能装置改进模型I和改进模型II的实验与仿真结果可以看出,数值计算与实验相符。数值计算结果大于实验测得的数据,主要原因是数值计算模型的理想化和实验模型的模型不对称度、壁厚等没有在数值模拟中体现与约束。
The research is a part of the National Natural Science Foundation of China Project“Wind Tunnel Experiment and Research on Series Blades of Concentrated Wind EnergyTurbine”[NO:59776033]. The hazard of wind shear to large wind turbines cannot beignored. CWETS (Concentrated Wind Energy Turbine Generator Systems) can increasewind energy density and improve wind energy instability. In order to study the ability ofconcentrated equipment to weaken the hazard to the CWETS from wind shear, thecombination study method of numerical simulation, test-in-truck experiment and the windtunnel experiment are used in this thesis. The main jobs are as follows:
     At first, this paper introduces the topic background, reveals the wind shear problemof large wind turbines, summarizes the research situation of wind turbines wind shear, andpresents the research status and advantages of the CWETS. Secondly, detailed analysis ofthe concentrated wind energy theory basis, basic thought, technical feasibility and therelative knowledge of computational fluid dynamics is carried. Then, the concentratedequipment model is placed in uniform and paralleled to the wind flow in the flow field,with the methods of numerical simulation and test-in-truck experiment, the concentratedequipment model is studied. At last, the concentrated equipment model is set in flow fieldwhich with wind speed gradient, with the methods of numerical simulation and tunnelexperiment, the traditional concentrated equipment and improved concentrated equipmentare studied. Research results are as follows:
     (1) Conventional concentrated equipment with the central cylinder of900mmdiameter is fixed in uniform and paralleled flow field, when wind fluid flow through theconcentrated equipment, First of all, the close inner surface fluid is accelerated. In front0.22m of the middle section of the central cylinder, the speed of the close inner surfacefluid is faster than the speed of center axial fluid, the former speed reaches its maximumnear the middle of the central cylinder, then with the axial distance increasing, the flowfield is come into being, which with the faster speed of center axial fluid than the that ofclose inner surface fluid.
     (2) Uniformity and stability are tested for the experimental wind tunnel, and the windspeed gradient for simulated atmospheric boundary layer in the wind tunnel is also tested;wind shear tests of conventional concentrated equipment model, improved for theconventional concentrated equipment model I and improved concentrated model II arecarried out in this tested wind tunnel. Tests results show that the conventional concentrated equipment has the ability to decrease the influence of wind shear. The conventionalconcentrated equipment can reduce the coming wind speed gradient from4.2/s to3.4/s ofthe central cylinder wind speed gradient and decrease the coming wind gradient by20%.The improved concentrated model I can reduce the coming wind speed gradient from4.2/s to2.08/s of the central cylinder wind speed gradient and decrease the coming windgradient by50%. The improved concentrated model II can reduce the coming wind speedgradient from4.2/s to1.36/s of the central cylinder wind speed gradient and decrease thecoming wind gradient by68%.
     (3)Wind shear numerical simulation model is set up for concentrated equipmentmodels, and the wind shear values of the concentrated equipments are calculated by takingthe wind speed gradient tested in the wind tunnel as the coming wind speed gradient.Simulated results show the ability to reduce the wind shear of the conventionalconcentrated equipment, of the improved model I and of the improved model II enhancedgradually.
     (4)Inthe central cylinder with900mm diameter, boundary layer effect appears near50mm away from the inner surface of the central cylinder. In the central cylinder with300mm diameter, boundary layer effect appears near15mm away from the inner surfaceof the central cylinder.
     (5)The results of the experiments and simulation show, that the concentratedequipment can improve the quality of wind power and load uniformity.
     (6)It can be seen through the results of the experiments and simulation for theconventional concentrated equipment model, improved concentrated model I andimproved concentrated model II, the numerical calculation results are coincide with theresults of experiments. Values obtained by the numerical calculation are always greaterthan the experimental data. The main reason is the idealized numerical simulation model,while the asymmetric degree and wall thickness of the actual experiment model can not beembodied and constrained in numerical simulation.
引文
1杜祥琬,黄其励,李俊峰,高虎.我国可再生能源战略地位和发展路线图研究[J].中国工程科学,2009,11(8):4-9
    2Kamaruzzaman, Sopian, Baharuddin, Ali, Nilofar, Asim. Strategies for renewableenergy applications in the organization of Islamic conference (OIC) countries[J].Renewable and Sustainable Energy Reviews,2011,(15):4706-4725
    3李岩.垂直轴风力机技术讲座(一):垂直轴风力机及其发展概况[J].可再生能源,2009,27(1):121-123
    4施鹏飞.21世纪风力发电前景[J].中国电力,2000,33(9):78-84
    5Ahmet Duran S, ahin. Progress and recent trends in wind energy[J]. Progress inEnergy and Combustion Science,2004,30(5):501-543
    6J.Juul.Wind Machine[C].Wind and Solar Energy=Proceeding.Paris:New DelhiSymposium.1988,68-71
    7Robert Gasch,Jochen Twele.Wind power plants[M].Berlin:Teubner,2005,179-281
    8D.勒古里雷斯.风力机的理论与设计[M].施鹏飞译.北京:机械工业出版社,1987.31-33
    9Tony Burton,David Sharpe,el at.Wind Energy Handbook[M].UK:Wiley,2001,42-208
    10GL Wind2003.Guideline for the certification of wind turbines[S]
    11Liu xiong,Li gangqiang,chen Yan,Yezhequan.Dynamic response analysis of the bladeof horizontal axis wind turbines[J].Journal of Mechanical Engineering,2010.6(12):128-130
    12Caselitz,P.et al.Reduction of fatigue loads on wind energy converters by advancedcontrol methods.Proceeding of the European wind energy conference,1997,555-558
    13Ochoay O.O,Reddy,J.N.Fintie element analysis of composite laminates.KluwerAcademic Publishers,Dordrecht,1992
    14施鹏飞.从世界发展趋势展望我国风力发电前景[J].中国电力,2003,(09):54-62
    15迟永宁,李群英,李琰,王真,石文辉,王跃峰.大规模风电并网引起的电力系统运行与稳定问题及对策[J].电力设备,2008,(11):16-19
    16张丽英,叶廷路,辛耀中,韩丰,范高锋.大规模风电接入电网的相关问题及措施[J].中国电机工程学报,2010,(5):1-9
    17雷亚洲,Gordon Lightbod.风力发电与电力市场[J].电力系统自动化,2005,29(10):1-5
    18郑照宁,刘德顺.中国风电投资成本变化预测[J].中国电力,2004,37(7):77-80
    19中华新能源网.欧洲风电发展及对我国的启示.[EB/OL].http://www.cnecc.org.cn/dispArticle.aspid=883,2007-6-2011:48:00
    20Global Wind Energy Council. global wind statistics[J]. GWEC,2013,02,1-4
    21中国可再生能源学会风能专业委员会(CWEA).2012年中国风电装机容量统计[J].风能WindEnergy).2013,34-36
    22国家能源局.中国风电装机容量2050年目标将提高到1000GW [J].变压器,2012,49(3):14-14
    23叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2002:4-5
    24杨秀媛,梁贵书.风力发电的发展及其市场前景[J].电网技术,2003,27(7):78-79
    25徐大平,张新房,柳亦兵.风力发电控制问题综述[J].中国电力,2005,38(4):70-74
    26赵久占.我国风力发电开发与管理研究[D].天津:天津大学博士学位论文,2004.2-4
    27Paul Harborne,Chris Hendry.Pathways to commercial windpower in the US, Europ andJapan:The role of demonstration projects and field trials in the innovationprocess[J]. Energy Policy,2009,(37):3580-3595
    28程兆雪,李仁年,杨从新,胡文瑞.大型近海水平轴风力机转轮的空气动力学性能优化判据[J].应用数学和力学,2010,31(1):12-18
    29李晓燕,余志.海上风力发电进展[J].太阳能学报,2004,25(1):78-83
    30Sahin A D.Progress and recent trends in wind energy [J].Progress in Energy andCombustion Science,2004,30(5):501—543
    31我国首台6兆瓦风机出产[EB/OL].中国网络电视台.http://news.cntv.cn/20110531/106586.shtml发布时间:2011年05月31日13:55
    32风电叶片大型化成为趋势.中国机经网http://www.mei.net.cn/industry/utility/news.jsp?cd=328578&edittime=2010-10-18&trade=行业动态.2010.10
    33T.Ekelund. Speed control of wind turbines in the stall region. Proceedings of theIEEE Conference on Control Applications,1994,1(8):227-232
    34ROLF H.A comparison of control concepts for wind turbines in terms of energycapture[D].Technology University Darmstadt,2002
    35叶杭冶.风电机组的控制技术[M].机械工业出版社,2006.132-181
    36Leithead W E, ConnorB.Control of Variable Speed Wind Turbines:DynamieModels[J].IntemationalJournal of Control,2000,73:1173-1188
    37Jianzhong Zhang,Ming Cheng,Zhe Chen,Xiaofan Fu.Pitch Angle Control for VariableSpeed Wind Turbines.DRPT2008[C].2008
    38T.Senjyu,R.Sakamoto,N.Urasaki,H.Higa,K.Uezato,T.Funabashi.Output Power Controlof Wind turbine Generator by Pitch Angle Control Using Minimum VarianceControl.Electrical Engineering in Japan[C].2006
    39B.Boukhezzar.L Lupu,H.Siguerdidjane,M.Hand.Multivariable control strategy forvariable speedvariable pitch wind turbines[J].Renewable Energy,2007,(32):1273-1287
    40刘细平,于仲安,梁建伟.风力发电技术研究及发展[J].微电机,2007,40(4):76-79
    41Thom as Ackerm ann,Lennart Soder. Wind en ergy technology and current status areview[J].Renew able and Sustainab le En ergy Revie w s,2000,(4):315-374
    42安占国.3MW风机变桨距驱动系统设计.[D].沈阳工业大学硕士学位论文,2011:6-7
    43范忠瑶,康顺,赵萍.2.5兆瓦风力机气动性能数值模拟研究[J].工程热物理学报,2010,31(2):287-291
    44张玉良,李仁年,巫发明.下风向风力机的塔影效应研究[J].山东建筑大学学报,2008,23(3):243-246
    45SEZER-UZOL N, LYLE N L.3-D Time-accurateCFD simulations of wind turbine rotor flowfields[C]//4th AIAA Aerospace Sciences Meeting Exhibit(2006-394).Long Beach, USA:AIAA,2006:5-14
    46陈小波,陈健云,李静.海上风力发电塔脉动风速时程数值模拟[J].中国电机工程学报,2008,28(32):111-116
    47曹人靖,胡骏.水平轴风力机风轮尾迹与圆柱型塔架的相互干涉[J].太阳能学报,2006,27(4):326-330
    48魏慧荣.风电场微观选址的数值模拟[D].北京:华北电力大学能源动力与机械工程学院硕士学位论文,2007:17-19
    49Leishman J G. Challenges in modeling the unsteady aerodynamics of windturbines[J].Wind Energy,2002,5(2-3):85-132
    50DDOLAN D S L,LEHN P W.Simulation model of wind tur-bine3p torque oscillationsdue to wind shear and tower shad-ow[J].IEEE Transactions on Energy Conversion,2006,21(3):717-724
    51H.Armaris, C.Vilar,et a.l,Frequency domain analysis of flicker produced bywindenergy conversions systems,Paper ac-cepted for presentation at the8thinternationalconference on har-monics and quality of power ICHQP’98, jointly organizedbyIEEE/PES and NTUA, Athens, Greece, October14-16,1998
    52Carolina VilarMoreno,Hortensia Amaris Duarte,Julio Usaola Carcia,Propagation offlicker in electric power networks due to wind energy conversions systems, IEEETransactions on energy conversion,Vol17, No2,June2002
    53FadaeinedjadR, MoallemM.TheImPaetofTowerShadow, YawError, andWindShearsonPowerQualityinaWind-ieselSystem[J].IEEETransactionsonEnergyConversion,2009,24(l):102-111
    54SmithK, RandallG, MalcolmD.EvaluationofwindShearPatternsatMidwestWindEnergy[R].NREL,2002
    55AnguloA, Moren0P, MaduenoD.Miero-ScaleEffeetsoveranOPerationalWindFarmCFDWindShearStudy[A].ProeeedingsoftheEuroPeanWindEnergyConferenee&Exhibition[C〕.Marseille,Franeuska:EWEC,2009
    56Hughes F M,Anaya-Lara O,Ramtharan G,et al,Influ-ence of tower shadow and windturbulence on the perform-ance of power system stabilizers for DFIG-Based windfarms[J].IEEE Transactions on Energy Conversion,2008,23(2):519-528
    57Datta R,Ranganathan V T. Variable-speed wind power generation using doubly fedwound rotor induction ma-chine-A comparison with alternative schemes[J].IEEETransactions on Energy Conversion,2002,17(2):414-421
    58贺德馨.风工程与工业空气动力学[M].北京:国防工业出版社,2006
    59Stephen B. Bayne, MichaelG. Giesselmann, Effect of blade passing on a wind turbineoutput, Release A: Copyright(2000by theAmerican Institute ofAeronautics andAstronautics
    60M. Davidson, Interaction of a wind farm with the distribution network and its effecton voltage quality,(1996the institution of electricalengineers, Printed andpublished by the IEE, Savoy Place, LondonWC2R OBL. UK
    61MICHAEL HUGHES F,ANAYA-LARA O,RAMTHARANG,et al.Influence of tower shadow andwind turbulence on the performance of power system stabilizers for DFIG-based windfarms[J].IEEE Transactions on Energy Conversion,2008,23(2):519-528
    62FADAEINEDJAD R,MOSCHOPOULOS G,MOALLEM M.The impact of tower shadow,yaw error,and wind shears on power quality in a wind-diesel system[J].IEEE Transactionson Energy Conversion,2009,24(1):102-111
    63EGGERS A J,DIGUMARTHI R,CHANEY K.Wind shear and turbulence effects on rotor fatigueand loads control[J].ASME Journal of Solar Energy Engineering,2003,125(4):402-409
    64贺德馨.风工程与工业空气动力学[M].北京:国防工业出版社,2006:21-29
    65范忠瑶.风力机定常与非定常气动问题的数值模拟研究[D].北京:华北电力大学博士学位论文,2011.70-71
    66Giovanni Gualtieri, Sauro Secci.Wind shear coeffcients, roughness length andenergy yield over coastal locations in Southern Italy[J]. Renewable Energy,2011,(36):1081-1094
    67Rehman,AI-AbbadiN.M.Wind Shear Coffieients and Their Effect onEnergy Produetion[J].Energy Conversion and Management,2005,46(15-16):2578-2591
    68R N FARRUGIA. The wind shear exponent in a Mediterranean island climate [J].Renewable Energy,2003,28:647-653
    69SHAFIQUR RENMANA,NAIF M,AI-ABBADI. Wind shear coefficients and energy yield forDhahran, Saudi Arabia [J]. Renewable Energ,200732738-749
    70J ENSEN N O. Atmospheric boundary layers and turbulence [A]. Proceedings of TenthInternational Conference on Wind Engineering [C].Copenhagen, Denmark,1999
    71R.N.Farrugia.The wind shear exponent in a Mediterranean island climate[J].Renewable Energy,2003,(28):647-653
    72杜燕军,冯长青.风切变指数在风电场风资源评估中的应用[J].电网与清洁能源,2010,26(5):62-66
    73马惠群,曲宁,李超,等.风电场风切变指数研究[J].电网与清洁能源,2012,28(6):88-96
    74刘磊,石可重,杨科,徐建中.风切变对风力机气动载荷的影响[J].工程热物理学报,2010,31(10):1667-1670
    75吴永忠,王欢欢.风切变对大直径风力机风轮输出功率影响的初探[J].能源工程,2011,(6):33-35
    76张舜德等.风场风速特性的研究[J].机械设计与制造,2010,8:150-151
    77韩中合等.考虑风切变的1.3MW风力机整机三维定常流动数值研究[J].动力工程学报2011,31(10):779-783
    78孔屹刚等.基于风切变和塔影效应的大型风力机独立变桨控制研究[J].华东电力,2010,39(4):0641-0645
    79Xin Shen,Xiaocheng Zhu,Zhaohui Du.Wind turbine aerodynamics and loads control inwind shear fow[J].Energy,2011,(36):1424-1434
    80张迪等.适用于独立变桨控制方式的风机气动模型和风模型的研究[J].水力发电,2010,37(4):90-94
    81应有,许国东.基于载荷优化的风电机组变桨控制技术研究[J].机械工程学学报,2011,47(16):106-111
    82孔屹刚等.基于风切变和塔影效应的大型风力机载荷分析与功率控制[J].东南大学学报(自然科学版),2010,40(I):228-233
    83孔屹刚,王杰,顾浩,等.基于风切变和塔影效应的风力机风速动态建模[J].太阳能学报,2011,32(8):1237-1244
    84田德.大容量风力发电机组的设计.[J].内蒙古农牧学院学报,1993,14(2),80-89
    85韩巧丽,田德等.浓缩风能型风力发电机改进模型流场与功率输出特性.[J]农业工程学报,2009,25(3)93-96
    86张文瑞.浓缩风能型风力发电机气动与功率输出特性实验研究.[D].呼和浩特:内蒙古农业大学硕士学位论文,2006:4-10
    87康燕茹.浓缩风能型风力发电机相似模型的功率输出特性对比实验研究.[D].呼和浩特:内蒙古农业大学硕士学位论文,2008:3-5
    88盖晓玲.小型浓缩型风力发电机叶轮功率特性试验研究.[D].呼和浩特:内蒙古农业大学硕士学位论文,2007:5-6
    89田德,辛海升.浓缩风能型风力发电机叶片的风洞实验(日文)[C].日本金泽:2000年度日本太阳能日本风能协会学术年会论文集.2000.235-238
    90刁明光.浓缩风能型风力发电机系列叶轮的理论设计与风洞实验[D].呼和浩特:内蒙古农业大学硕士学位论文,1999.9-20
    91盖晓玲,田德,王海宽,等.风力发电机叶片技术的发展概况与趋势[J].农村牧区机械化.2006,4:53-56
    92时燕.小型风力发电机失速调节型叶轮的实验研究[D].呼和浩特:内蒙古农业大学硕士学位论文,2008.13-21
    93田德,刁明光,王海宽.浓缩风能型风力发电机三与四叶片叶轮的风洞实验研究[J].太阳能学报.2007,28(1):74-80
    94张春莲.浓缩风能型风力发电机叶轮风洞实验与研究.[D].呼和浩特:内蒙古农业大学硕士学位论文,2001:4-5
    95赵慧欣.浓缩风能型风力发电机螺旋桨叶式叶轮的特性实验研究.[D].呼和浩特:内蒙古农业大学硕士学位论文,2005:3-6
    96田德.浓缩风能型风力发电机.[J].太阳能,2006,5,29-30
    97王永维.600W浓缩风能型风力发电机性能实验研究.[D].呼和浩特:内蒙古农业大学硕士学位论文,2001:4-6
    98田德,陈松利,王海宽.200W浓缩风能型风力发电机的研究与实证试验[C].日本东京:第22届风能利用学术研讨会论文集.2000.150-153
    99陈松利,田德等.200W浓缩风能型风力发电机的应用及运行效果[J].农业工程学报,2012,28(8):225-229
    100郭新生.风能利用技术[M].北京:化学工业出版社,2007.7
    101吴正泳.低风速条件风力发电机组的初步研究[D].北京:华北电力大学,2008.5-5
    102韩巧丽.大容量浓缩风能型风力发电机模型气动特性的实验研究[D].呼和浩特:内蒙古农业大学博士学位论文,2006.69-73
    103Tian De,Wang Haikuan,Chen Songli,etc.The Theoretical Analysis and The Test ofThe Concentrated Wind Energy Turbine[C].Beijing:Proceedings of InternationalConference on Agricultural Engineering.1999.Ⅱ157-Ⅱ161
    104田德,郭凤祥,刘树民等.浓缩风能型风力发电机的整体模型风洞实验(第五报对扩散管边界层进行的喷射抽吸实验)[J].农业工程学报,1997,13(3):189-192
    105田德,王海宽,韩巧丽.浓缩风能型风力发电机的研究与进展[J].农业工程学报,2004,13(3):189-192
    106Tian D,Liu S,Guo F,etc.The Wind Tunnel Test on the Complete Model of ConcentratedWind Energy Turbine(Report No.4A test for hydrodynamic performance underthe condition of the flow-passage being masked with screen)[C].Beijing China:Proceedings of the International Symposium on Fluid Machinery and FluidEngineering.1996.89-97
    107陈克城.流体力学实验技术[M].北京:机械工业出版社,1983.1—26
    108李勇,刘志友,安亦然.介绍计算流体力学通用软件——Fluent[J].水动力学研究与进展,2001,(2):3-5
    109张福成.基于FLUENT的风力发电机流场仿真研究[D].大连:大连理工大学,2012.8-12
    110孙勇,王伟.基于Fluent的掘进工作面通风热环境数值模拟[J].煤炭科学技术,2102,40(7):31-34
    111李同卓,毕鹏飞,蒋楠.基于FLUENT的多翼离心风机内部流场的数值模拟与参数优化[J].河南理工大学学报(自然科学版),2013,31(6):702-704
    112余江洪,肖金生,朱宗柏. Fluent软件的多重网格并行算法及其性能[J].武汉理工大学学报(交通科学与工程版),2009,33(1):133-136
    113黄钰期.非结构网格差分求解方程和商用软件Fluent的应用[D].杭州:浙江大学,2003
    114徐伟祖.叶轮机CFD网格预处理研究[D].南京:南京航空航天大学,2008
    115Yasushi,Ito.Challenges in unstructured mesh generation for practical and effcientcomputational fuid dynamics simulations[J]. Computers&Fluids,2012,(11):1-6
    116南京工学院编.工程流体力学实验[M].北京:电力工业出版社,1982.6
    117中国科学院卫生研究所防护研究室编.烟气测试技术[M].北京:人民卫生出版社,1982.1-4
    118杜沦聪,白汝娴,秦耀祖,等.气象学与气侯学原理[M].上海:中华书局出版社,1953.45-46
    119Dolan D S L, Lehn P W. Simulation model of wind tur-bine3p torque oscillationsdue to wind shear and tower shadow[J」.IEEE Transactions on Energy Conversion,2006,21(3):717-724
    120Spera D A. Wind turbine technology[M].New York:ASME Press,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700