用户名: 密码: 验证码:
小电流接地故障定位方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外中压配电网广泛采用中性点非有效接地运行方式,主要包括中性点不接地方式和经消弧线圈接地方式。配电网结构复杂,故障多发,尤以单相接地故障为甚。发生单相接地故障(又称小电流接地故障)后,系统可以带故障运行一段时间,且瞬时故障可白行恢复,供电可靠性较高。但接地故障会产生过电压,危害系统安全,甚至导致线路跳闸,造成供电中断。为保证系统安全和供电可靠性,必须迅速确定故障点位置以采取处理措施。由于故障电流微弱、接地电弧不稳定等原因,小电流接地故障的检测(包括故障选线和故障定位)比较困难。目前,小电流接地故障选线技术已基本成熟,但小电流接地故障定位技术一直未能取得突破,已有技术大多仍处于理论研究阶段,缺乏实际的现场应用。小电流接地故障定位问题长期困扰电力部门,是制约配网自动化技术发展的严重障碍,亟待解决。
     本文在深入分析小电流接地故障特征的基础上,研究利用故障本身所产生信号的故障定位方法,主要研究工作及取得成果如下:
     1、分析了小电流接地故障定位技术现状以及存在的主要问题。目前小电流接地故障定位技术大多还处在理论研究阶段,已有方法多数只是理论上可行,现场应用的关键技术尚未能得到有效解决,未能达到实用化水平。当前存在的问题主要有方法适用范围不够广、所需信号获取困难、FTU间难以精确同步等。
     2、提出了基于区段零序导纳的小电流接地故障定位方法。定义线路区段的零序导纳为区段首端与末端分段开关零序测量导纳之差,分析了健全区段与故障区段零序导纳在幅值与相位上的差异,构造了基于区段零序导纳的故障区段判据,给出了故障定位流程。
     3、分析了故障点上游侧与故障点下游侧暂态零模电流的特征差异。采用Karrenbauer变换将三相系统变为没有耦合的模量系统,将各模阻抗进行简化等效,得到小电流接地故障简化模型。研究发现,故障点上游侧和下游侧暂态过程相互独立,两侧暂态零模电流特征由各自零模网络参数决定。
     4、提出了利用暂态线电压和暂态零模电流的小电流接地故障定位方法。分析了小电流接地故障时暂态线电压与暂态零模电流之间的相位关系;提出了利用线电压判定接地故障相的方法;定义了故障方向参数,即暂态线电压经Hilbert变换后与暂态零模电流的乘积在暂态时段内的平均值。故障点下游线路和健全线路上各FTU计算所得方向参数大于零;故障点上游各FTU计算所得方向参数小于零。定位主站分析各FTU上传的方向参数,根据该特征可确定故障区段。
     5、改进了基于暂态零模电流波形相似性原理的故障定位方法。改进后的方法考虑了相关系数极性,利用波形前后平移计算,减小FTU启动不同步的影响。利用电流信号幅值差对计算结果进行修正,根据故障线路各区段相关系数自适应设定阈值。若区段相关系数大于阈值,则为健全区段,否则为故障区段。
     6、利用仿真数据和现场试验数据进行验证。使用ATP-EMTP和Matlab软件对本文所提的故障定位方法进行了全面仿真验证。使用现场接地故障试验的数据,进一步验证所提定位方法。仿真和试验结果验证了本文所提出方法的正确性。
     7、设计了小电流接地故障定位系统,使用暂态零模电流波形相似性定位方法。通过人工接地试验对定位系统进行了验证,并将定位系统在现场投入实际运行。现场试验和运行结果表明,该系统可实现小电流接地故障的准确定位,满足现场运行要求。
     本文所提故障定位方法基于配网自动化系统实现,具有不受经消弧线圈影响、安全经济且容易实施的优点。区段零序导纳法利用稳态信号,不需要高速采样和复杂计算,对FTU的硬件处理能力要求低。利用暂态线电压与暂态零模电流的方法可靠性高,可适用于FTU安装有相间电压互感器的情况。暂态零模电流相似法只需要比较零模电流信号,适应性最广,可用于电压信号难以获得、只能测量零模电流信号的情况。具体应用中可根据现场实际情况,选择适合的定位方法。仿真和试验数据验证结果表明所提方法正确可行,具备实用化条件,其中暂态零模电流相似法已投入实际运行,满足现场定位要求。本文研究成果的推广应用可望解决小电流接地故障可靠定位的技术难题。
Non-effectively earthed system, mainly including neutral point ungrounded and grounded via arc suppression coil, is widely used for MV distribution network in many countries. Single phase-to-earth fault is the most common fault type in distribution network. The distribution network can run for a period after the single phase-to-earth fault (also known as the small current grounding fault) occurring and some instantaneous faults can recover automatically. But the single phase-to-earth fault can produce over-voltage, which will damage the system security and even lead to power interruption. The location of fault point must be determined quickly to ensure the system security and reliability of power supply. For a long time, selection of the fault line and location of the fault point are very difficult in non-effectively earthed system because fault current is very weak and fault arc is often intermittent. Now the technology of fault line selection has almost matured and achieved satisfactorily effect in field applications. But the difficulty of fault location has not yet been resolved very well. Most fault location technology is still in the phase of theoretical research and lack of actual field applications. The location difficulty of single phase-to-earth fault has plagued electric power enterprise for a long time, which restricts the development of distribution automation technology strongly and must be solved as soon as possible.
     The single phase-to-earth fault location method using signals generated by the fault itself is researched. The main research works and results in this paper are as follows:
     (1)The present situation of single phase-to-earth fault location technologies and main problems are analyzed. The fault location technologies are still in the phase of theoretical research, most of the existing method is just feasible in theory, but the key technology of field application has not been effectively resolved, failed to achieve practical application level. The main problems faced by fault location method are applicable range not wide enough, difficult to acquire the required signals, difficult to synchronize precisely between FTUs, etc.
     (2)A novel fault location method based on zero-sequence admittance of section is presented. Zero-sequence admittance of section is defined as the zero-sequence measured admittance difference between the two sectionalized switches of that section. The difference of zero-sequence admittance between the sound section and fault section is analyzed. The fault section criterion based on zero-sequence admittance and process of fault location is presented.
     (3)Transient characteristic difference between upstream and downstream of fault point is analyzed. The three-phase system is transformed into module system by using Karrenbauer transformation. The circuit model of earth fault is obtained by simplifying the mode-impedance. Research results show that transient process of upstream and downstream of fault point are independent, and the transient zero-mode current characteristics is determined by parameters of the zero-mode network.
     (4)A novel fault location method using transient line-voltage and transient zero-mode current is proposed. The phase relationship between transient line voltage and transient zero-mode current is analyzed. The method to monitor earth fault and determine fault phase by using line-voltage is proposed. The mean value in transient period of the product of transient line-voltage after Hilbert transformation and transient zero-mode current is defined as the fault direction parameter. The direction parameter calculated by FTU downstream the fault point is greater than zero, but that calculated by FTU upstream the fault point is less than zero. According to this characteristic, master station can determine the fault point location by analyzing direction parameters uploaded by FTUs.
     (5)The fault location method based on transient zero-mode current waveform similarity is improved. The improved method takes into account the correlation coefficient polarity, determining section that correlation coefficient less than zero is fault section. The method calculating maximum correlation coefficient with waveform panning is adopted to reduce the effect of asynchronous sampling between FTUs. The correlation coefficient result is corrected by using difference of current signal amplitude. Correlation coefficient threshold value is set self-adaptively according to the correlation coefficients of all sections of the fault line. If the section correlation coefficient is greater than threshold value, it is sound section, otherwise it is the fault section.
     (6)The fault location methods are validated using simulation data and field fault experiment data. Simulation models are built by the ATP-EMTP software, and simulation data are processed and calculated by the Matlab software. The correctness of location methods presented in this paper is validated by the simulation and experiment results.
     (7)Location system for single phase-to-earth fault is designed to put into operation in the field. The method based on transient zero-mode current waveform similarity is adopted by the location system. The location system is validated by the artificial grounding experiment and put into practical operation in the field. Field experiment and operation results show that the location system can achieve accurate location for single phase-to-earth fault and meets the field operation requirements.
     The fault location methods proposed in this paper are realized based on the distribution automation (DA) system, with the advantage of free from influences of arc suppression coil, safe, economical and easy to implement. Section zero-sequence admittance method does not need high speed sampling and complicated calculation, with a low requirement for hardware processing ability of FTU. Method using transient line-voltage and transient zero-mode current with a high reliability, can be applied to situation that FTU has the line-voltage transformers. Transient zero-mode current similarity method only needs to compare the zero-mode currents, thus it meets the condition that only the zero-mode current signal can be measured. The validation results by simulation and experiment data show that proposed location methods are feasible and provided with the condition of practical application. Transient zero-mode current similarity method has been put into actual operation and can meet the field requirements for fault location. The application of study achievements in this paper is expected to solve the technical problem of reliable location for single phase-to-earth fault in distribution network.
引文
[1]要焕年,曹梅月.电力系统谐振接地(第二版)[M].北京:中国电力出版社,2009.
    [2]肖白,束洪春,高峰.小电流接地系统单相接地故障选线方法综述[J].继电器,2001,29(4):16-20.
    [3]束洪春.配电网络故障选线[M].北京:机械工业出版社,2008.
    [4]李润先.中压电网系统接地实用技术[M].北京:中国电力出版社,2002.
    [5]李天友,金文龙,徐丙垠,等.配电技术[M].北京:中国电力出版社,2008.
    [6]李天友,赵会茹,欧大昌,等.短时停电及其经济损失的估算[J].电力系统自动化,201 2,36(20):59-62.
    [7]徐丙垠,薛永端,李天友,等.小电流接地故障选线技术综述[J].电力设备,2005,6(4):1-7.
    [8]郭清滔,吴田.小电流接地系统故障选线方法综述[J].电力系统保护与控制,2010,38(2): 146-1 52.
    [9]O. Chaari, M. Meunier, F. Brouaye. Wavelets:A New Tool for the Resonant Grounded Power Distribution System Relaying[J]. IEEE Transactions on Power Delivery,1996,11(3):1301-1308.
    [10]薛永端,徐丙垠,冯祖仁,等.小电流接地故障暂态方向保护原理研究[J].中国电机工程学报,2003,23(7):51-56.
    [11]桑在中,张慧芬,潘贞存,等.用注入法实现小电流接地系统单相接地选线保护[J].电力系统自动化,1996,20(2):11-12.
    [12]薛永端.基于暂态特征信息的配电网单相接地故障检测研究[D].西安交通大学,2003.
    [1 3]张新慧.基于Prony算法的小电流接地故障暂态选线技术[D].山东大学,2008.
    [14]薛永端,冯祖仁,徐丙垠,等.基于暂态零序电流比较的小电流接地选线研究[J].电力系统自动化,2003,27(9):48-53.
    [15]薛永端,陈羽,徐丙垠,等.利用暂态特征的新型小电流接地故障监测系统 [J].电力系统自动化,2004,28(24):83-87.
    [16]季涛,孙同景,薛永端,等.配电网故障定位技术现状与展望[J].继电器,2005,33(24):32-37.
    [17]马士聪,高厚磊,徐丙垠,等.配电网故障定位技术综述[J].电力系统保护与控制,2009,37(11):119-124.
    [18]孙波.基于暂态信息的配电网单相接地故障定位技术研究[D].山东大学,2009.
    [19]张利.中性点非有效接地系统单相接地故障定位方法的研究[D].华北电力大学,2009.
    [20]孙雅明,吕航. Petri网和冗余纠错技术结合的配网故障区段定位技术新方法[J].中国电机工程学报,2004,24(10):61-67.
    [21]费军,单渊达.配网中自动故障定位系统的研究[J].中国电机工程学报,2000,20(9):32-34.
    [22]Kurt J. Ferreira, Alexander E. Emanuel. A "Noninvasive Technique for Fault Detection and Location[J]. IEEE Transactions on Power Delivery,2010,25(4): 3024-3034.
    [23]Y. Yamagata, T. Oshi, H. Katsukawa, et al. Development of Optical Current Transformers and Application to Fault Location Systems for Substations[J]. IEEE Transactions on Power Delivery,1993,8(3):866-873.
    [24]孙波,薛永端,孙同景,等.架空线路小电流接地故障电流信息获取新方法[J].电力系统自动化,2008,32(9):74-78.
    [25]刘健,倪建立,邓永辉.配电网自动化新技术[M].北京:中国水利水电出版社,2004.
    [26]徐丙垠,李天友,薛永端.智能配电网与配电自动化[J].电力系统自动化,2009,33(17):38-41.
    [27]刘健,倪建立,杜宇.配电网故障区段判断和隔离的统一矩阵算法[J].电力系统自动化,1999,23(1):31-33.
    [28]Jun Zhu, David L. Lubkeman, Adly A. Girgis. Automated Fault Location and Diagnosis on Electric Power Distribution Feeders[J]. IEEE Transactions on Power Delivery,1997,12(2):801-809.
    [29]刘道兵,顾雪平.基于配电自动化系统的单相接地故障定位[J].电力系统自 动化,2010,34(5):77-80.
    [30]桑在中,潘贞存,李磊,等.小电流接地系统单相接地故障选线测距和定位的新技术[J].电网技术,1997,21(10):50-52.
    [3 1]王新超,桑在中.基于“S注入法”的一种故障定位新方法[J].继电器,2001,29(7): 9-12.
    [32]张慧芬,潘贞存,桑在中.基于注入法的小电流接地系统故障定位新方法[J].电力系统自动化,2004,28(3):64-66.
    [33]杨鹏,杨以涵,司冬梅,等.配电网单相接地故障定位技术实验研究[J].电力系统自动化,2008,32(9):104-107.
    [34]张利,杨以涵,杨秀媛.配电网离线故障定位方法研究与实现[J].电力系统自动化,2009,33(1):70-74.
    [35]倪广魁,鲍海,张利,等.基于零序电流突变量的配电网单相故障带电定位判据[J].中国电机工程学报,2010,30(31):118-122.
    [36]伊贵业,杨学昌,吴振升.配电网传递函数故障定位法的判据分析[J].电力系统自动化,2000,24(10):29-33.
    [37]吴振升,杨学昌,伊贵业,等.配电网三相不换位线路接地故障定位的传递函数法[J].中国电机工程学报,2001,2 1(12):7-11.
    [38]Mora-Florez J, Melendez J, Carrillo-Caicedo G. Comparison of impedance based fault location methods for power distribution systems[J]. Electric Power Systems Research,2008,78(4).-657-666.
    [39]Zimmerman K, Costello D. Impedance-Based Fault Location Experience[C]. 58th Annual Conference for Protective Relay Engineers,2005:211-226.
    [40]季涛,薛永端,孙同景,等.配电线路行波故障测距初探[J].电力系统自动化,2005,,29(19):66-71.
    [41]葛耀中.新型继电保护与故障测距原理与技术[M].西安:西安交通大学出版社,1996.
    [42]严凤,杨奇逊,齐郑,等.基于行波理论的配电网故障定位方法的研究[J].中国电机工程学报,2004,24(9):38-43.
    [43]季涛,孙同景,徐丙垠,等.配电混合线路双端行波故障测距技术[J].中国电机工程学报,2006,26(12):89-94.
    [44]徐丙垠,李京,陈平等.现代行波测距技术及其应用[J].电力系统自动化,2001,25(23):62-65.
    [45]董新洲,葛耀中,徐丙垠,等.利用GPS的输电线路行波故障测距研究[J].电力系统自动化,1996,20(12):37-40.
    [46]邹贵彬,高厚磊.输电线路行波保护原理与研究现状[J].继电器,2007,35(20):1-6.
    [47]张利,杨以涵,司冬梅,等.基于零序电流和磁场检测故障杆的配电网故障定位[J].电力系统自动化,2008,32(14):73-76.
    [48]张利,杨以涵,杨秀媛,等.移动式比相法配电网接地故障定位研究[J].中国电机工程学报,2009,29(7):91-97.
    [49]张利,杨鹏,司冬梅,等.基于零序功率方向的中性点不接地系统在线故障定位[J].电力系统自动化,2005,32(19):79-52.
    [50]李孟秋,王耀南,王辉,等.小电流接地系统单相接地故障点探测方法的研究[J].中国电机工程学报,2001,21(10):6-9.
    [51]孙波,孙同景,薛永端,等.基于暂态信息的小电流接地故障区段定位[J].电力系统自动化,2008,32(3):52-55.
    [52]薛永端,徐丙垠,冯祖仁.基于Hilbert变换的非正弦电路无功及瞬时无功功率定义[J].电力系统自动化,2004,28(12):35-39.
    [53]孙波,薛永端,孙同景,等.架空线路小电流接地故障电流信息获取新方法[J].电力系统自动化,2008,32(9):74-78.
    [54]马士聪,徐丙垠,高厚磊,等.检测暂态零模电流相关性的小电流接地故障定位方法[J].电力系统自动化,2008,32(7):45-51.
    [55]薛永端,徐丙垠,马世聪,等.基于暂态电流相似性的馈线自动化系统接地故障分段技术[C].中国国际供电会议,2008:1-4.
    [56]Bosetti M., Nucci C. A., Paolone M., et al. Integrated Use of Time-Frequency Wavelet Decompositions for Fault Location in Distribution Networks:Theory and Experimental Validation[J]. IEEE Transactions on Power Delivery,2010, 25(4):3139-3146.
    [57]卫志农,何桦,郑玉平.配电网故障区间定位的高级遗传算法[J].中国电机工程学报,2002,22(4):127-130.
    [58]杜红卫,孙雅明,刘弘靖,等.基于遗传算法的配电网故障定位和隔离[J].电网技术,2000,24(5):52-55.
    [59]孙波,徐丙垠,孙同景,等.基于暂态零模电流近似熵的小电流接地故障定位新方法[J].电力系统自动化,2009,33(20):83-87.
    [60]Sousa Martins L, Martins J. F., Fernao Pires V. The Application of Neural Networks and Clarke-Concordia Transformation in Fault Location on Distribution Power Systems[J]. IEEE/PES Transmission and Distribution Conference and Exhibition,2002:2091-2095.
    [61]刘文轩,严凤,田霖,等.基于LVQ神经网络的配电网故障定位方法[J].电力系统保护与控制,2012,40(5):90-95.
    [62]徐岩,刘金生,张亚刚,等.基于模糊聚类理论的电网故障元件定位[J].电网技术,2010,34(8):188-193.
    [63]王林川,李庆鑫,刘新全,等.基于改进蚁群算法的配电网故障定位[J].电力系统保护与控制,2008,36(22):29-33.
    [64]李超文,何正友,张海平,等.基于二进制粒子群算法的辐射状配电网故障定位[J].电力系统保护与控制,2009,37(7):35-39.
    [65]贺家李,宋从矩.电力系统继电保护原理(增订版)[M].中国电力出版社,2004.
    [66]要焕年,曹梅月.论城乡中压电网的中性点接地方式[J].电力设备,2001,2(3): 5-21.
    [67]范春菊,郁惟镛.配电网补偿方式的商榷[J].电力自动化设备,2001,21(1):11-1 3.
    [68]曾祥君,尹项根,张哲,等.零序导纳法馈线接地保护的研究[J].中国电机工程学报,2001,21(4):5-10.
    [69]唐轶,陈奎,陈庆,等.馈出线测量导纳互差求和法小电流接地选线研究[J].电力系统自动化,2005,29(11):69-73.
    [70]唐轶,陈奎,陈庆,等.导纳互差之绝对值和的极大值法小电流接地选线研究[J].中国电机工程学报,2005,25(6):49-54.
    [71]林湘宁,高艳,刘沛,等.基于零序补偿导纳的小电流接地系统单相故障保护新方法[J].中国电机工程学报,2006,26(10):45-49.
    [72]ZHANG Linli. XU Bingyin, GAO Houlei, et al. Fault Location Method Based on Zero Sequence Admittance in Non-effectively Earthed System[C]. IEEE Innovative Smart Grid Technologies — Asia,2012:1-4.
    [73]张林利,高厚磊,徐丙垠,等.基于区段零序导纳的小电流接地故障定位方法[J].电力系统自动化,2012,36(20):94-98.
    [74]蔡旭,李仕平、杜永忠,等.变阻尼调匝式消弧线圈及接地选线综合控制器[J].电力系统自动化,2004,28(5):85-89.
    [75]陈少华,叶杰宏,郑帅.中性点经消弧线圈并联中值电阻接地方式的研究[J].继电器,2006,34(11):17-20.
    [76]王吉庆,沈其英.中性点经消弧线圈接地系统的单相接地故障选线[J].电网技术,2003,27(9):78-79.
    [77]杜丁香,徐玉琴.消弧线圈接地电网的有功选线[J].继电器,2002,30(5):33-36.
    [78]蔡旭.基于偏磁消弧线圈的综合增量法单相接地保护[J].电力系统自动化,2003,27(20):68-72.
    [79]齐郑,刘宝柱,王璐,等.广域残流增量选线方法在辐射状谐振接地系统中的应用[J].电力系统自动化,2006,30(3):84-88.
    [80]陈振生,陈俊丽.配网自动化、智能化配电开关[J].电气开关,2002,(3):1 8-23.
    [81]Hermann W. Dommel. EMTP Theory Book[M]. Microtran Power System Analysis Corporation,1996.
    [82]李广凯,李庚银.电力系统仿真软件综述[J].电气电子教学学报,2005,27(3):61-65.
    [83]吴文辉,曹祥麟.电力系统电磁暂态计算与EMTP应用[M].北京:中国水利水电出版社,2012.
    [84]律方成,杜兴伟,刘云鹏,等.基于ATP-EMTP对中性点直接接地系统铁磁谐振的仿真和消谐措施研究[J].华北电力大学学报,2006,33(2):1-4.
    [85]顾丹珍,艾芊,陈陈,等.基于ATP-EMTP的大型电力系统暂态稳定仿真[J].电力系统自动化,2006,30(21):54-56.
    [86]徐政.免费使用的ATP-EMTP暂态分析程序[J].电网技术,1999,23(7):64-65.
    [87]庄秋月,刘明光,李凡红,等.基于ATPDraw的高铁线路合闸过电压研究[J].电力自动化设备,2010,30(6):80-82.
    [88]张智星.MATLAB程序设计与应用[M].北京:清华大学出版社,2002.
    [89]张少如,李志军,吴永俭,等.MATLAB与电力系统仿真[J].河北工业大学学报,2005,34(6):5-9.
    [90]王沫然.Simulink4建模及动态仿真[M].北京:电子工业出版社,2002.
    [91]刘兴杰,田建设,丁波,等.应用Matlab进行电力系统分析和动态仿真[J].电力自动化设备,2004,24(3):43-45.
    [92]XU Ming, GAO Houlei, YAN Chao. Matlab/Simulink Based Dynamic Simulation System for Distance Protection[J]. Transactions of Tianjin University, 2008,14(2):112-117.
    [93]李福寿.中性点非有效接地电网的运行[M].北京:水利电力出版社,1993.
    [94]平绍勋,周玉芳.电力系统中性点接地方式及运行分析[M].北京:中国电力出版社,2010.
    [95]刘万顺.电力系统故障分析(第二版)[M].北京:中国电力出版社,1998.
    [96]胡广书.数字信号处理:理论、算法与实现[M].北京:清华大学出版社,1997.
    [97]Cui Tao. Dong Xinzhou, Bo Zhiqian, et al. Hilbert-transform-based transient/intermittent earth fault detection in noneffectively grounded distribution systems[J]. IEEE Transactions on Power Delivery,2011,26(1):143-151.
    [98]李天云,赵妍,李楠.基于EMD的Hilbert变换应用于暂态信号分析[J].电力系统自动化,2005,29(4):49-52.
    [99]张林利,徐丙垠,薛永端,等.基于线电压和零模电流的小电流接地故障暂态定位方法[J].中国电机工程学报,2012,32(13):11 0-11 5.
    [100]徐丙垠.配电自动化远方终端技术[J].电力系统自动化,1999,23(5):41-44.
    [101]王宝祥.信号与系统[M].哈尔滨:哈尔滨工业大学出版社,2000.
    [102]吕虎,钟岷秀,王利平.基于GPS授时同步采样的输电线路故障定位[J].电力系统自动化,1998,22(8):26-29.
    [103]高厚磊,江世芳,贺家李.基于GPS的电流纵差保护设计及试验[J].电力系统自动化,2001,25(10):61-65.
    [104]何后裕,苏家祥,陈羽,等.XJ-100小电流接地故障暂态监测装置及运行经验[C].全国电网中性点接地方式与接地技术研讨会论文集,2005:176-179.
    [105]IEC 61850 Communication Networks and Systems in Substations[S]. International Electrotechnical Commission,2004.
    [106]韩国政,徐丙垠.基于IEC 61850标准的智能配电终端建模[J].电力自动化设备,2011,31(2):104-107.
    [107]李文伟,邱利斌.配网自动化及通信系统的规划建设[J].电力系统通信,2009,30(2): 5-7.
    [108]曹建权,严登俊,韩敬东.电力系统通信技术的发展[J].江苏电机工程,2004,23(3): 68-70.
    [109]张淑娥,孔英会,高强.电力系统通信技术(第2版)[M].北京:中国电力出版社,2009.
    [110]Morgan, Dennis R.; Craig, Samuel E.; Danielson, Gordon H. Adaptive interference cancellation for power line carrier communication systems[J]. IEEE Transactions on Power Delivery,1991,6(1):49-61.
    [111]Kirkham, Harold; Johnston, Alan R.; Allen, George D. Design considerations for a fiber optic communications network for power systems[J]. IEEE Transactions on Power Delivery,1994,9(1):510-518.
    [112]白杉.微波通信的回顾与展望[J].电力系统通信,2002,23(6):25-28.
    [113]韩伟GPRS无线通信在电力系统监控中的应用[J].电网技术,2007,31(增刊2):276-279.
    [114]Hua Zhenqian, Zhang Yadong. Security protection discuss of power Load Management (LM) based on GPRS/CDMA[C].2008 China International Conference on Electricity Distribution, CICED 2008:1-3.
    [1 1 5]郭谋发,杨振中,杨耿杰.基于ZigBee Pro技术的配电线路无线网络化监控系统[J].电力自动化设备,2010,30(9):105-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700