用户名: 密码: 验证码:
聚芳醚锂离子电池隔膜的电纺丝制备技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隔膜作为锂离子电池的重要组成部分,其性能的优劣不仅影响着电池电化学性能的好坏,更对电池的安全性能起着至关重要的作用。本文针对目前聚烯烃微孔锂离子电池隔膜热稳定性能差、对电解液浸润性能差、隔膜孔隙率低等问题,选择耐热性能优异、电解液浸润性能良好的可溶性聚芳醚砜酮树脂(PPESK),通过溶液电纺丝技术制备了高孔隙率的新型PPESK锂离子电池隔膜,并采用混合电纺丝工艺将电纺聚偏氟乙烯(PVDF)与PPESK隔膜相复合,制备了PPESK/PVDF/PPESK多层复合隔膜,以进一步提高隔膜的热安全性能。研究了纺丝工艺参数对隔膜形貌、结构、力学性能及离子电导率的影响,并考察了隔膜材料性质及隔膜结构对隔膜吸液性能、电化学性能及热安全性能的影响。
     本文采用溶液电纺丝工艺制备了PPESK无纺布隔膜。通过改变溶液浓度、纺丝电压以及纤维收集速度,调节PPESK无纺布隔膜的微孔结构,以改善隔膜的力学性能及离子电导率。采用扫描电镜(SEM)对不同工艺参数条件下制备的PPESK隔膜形貌进行表征,利用SEM图像分析法统计纤维直径、取向度以及孔径大小,并测试了隔膜的拉伸强度,分析纺丝工艺参数对隔膜微观结构以及力学性能的影响规律。测试了隔膜的孔隙率及吸液率的大小,并利用交流阻抗法对隔膜的离子电导率进行表征,分析隔膜微观结构对隔膜吸液性能及离子电导率的影响规律。研究结果表明,溶液粘度增加、纺丝电压降低以及收集线速度下降,有利于增大纤维直径及隔膜孔径,改善隔膜的通透性,提高隔膜孔隙率及吸液率,使隔膜的离子电导率得以提高。但过高浓度及过低纤维收集速度条件下形成的隔膜孔径过大,容易造成漏液,反而使吸液率下降,不利于离子电导率的提高。适当提高纤维收集速度,有利于增强纺丝过程中射流拉伸作用,改善纤维的宏观取向,提高无纺布隔膜的拉伸强度。
     选用熔融温度适宜、电化学性能优异的PVDF树脂对PPESK隔膜进行改性,制备出PPESK/PVDF/PPESK复合隔膜。通过PPESK与PVDF质量配比的调节,改善复合隔膜的离子电导率、热尺寸稳定性以及电流遮断性能。利用示差扫描量热法(DSC)表征隔膜的耐热性能,并采用交流阻抗法表征热处理前后隔膜的离子电导率,分析隔膜组成对离子电导率、热尺寸稳定性及电流遮断性能的影响规律。研究表明,PPESK同PVDF的质量比为4:3时,该复合隔膜具有较高的离子电导率、良好热尺寸稳定性及一定的电流遮断性能。
     采用线性扫描伏安法(LSV)、交流阻抗法以及电池充放电测试方法分别表征不同隔膜的电化学稳定性,分析隔膜/电解液体系的离子电导机理,并考察PPESK隔膜及PPESK/PVDF/PPESK复合隔膜所制备锂离子电池的比容量、倍率放电性能以及循环性能的优劣。研究表明,PPESK隔膜及PPESK/PVDF/PPESK隔膜具有良好的电化学稳定性,室温离子电率可达5.94×10-3S/cm以上,离子电导行为符合Arrhenius方程。采用这两种隔膜制备的电池首次放电容量可达143mAh/g以上,较相同条件下Celgard(?)2325组装的电池提高了近40%,100次循环后放电容量仍可保持在首次放电容量的84.7%以上,电池的倍率放电性能以及充放电效率也得到较大的改善。
A separator is one of the important components of the Lithium-ion battery. The properties of the separator decide not only the electrochemical performance, but also the safety of the battery. Currently, polyolefin microporous membranes have been used as major separators for Lithium-ion batteries. But rate capability of the battery assembled with this separator is not enough for high power application due to poor thermal stablility, low wettability and low porosity of the polyolefin microporous membrane. Novel soluble Poly(phthalazinone ether sulfone ketone) resins have excellent thermal resistance properties and good wettability in liquid electrolyte, therefore are used to prepare novle separators for Lithium-ion batteries by electrospinning technique in this paper. Moreover, in our experiment Poly(vinylidene fluoride) resins were used for preparation of PPESK/PVDF/PPESK sandwiched composite separators to further improve the thermal safety of electrospun PPESK separators. The influences of electrospinning process parameters on morphology, structure, mechanical performance and ionic conductivity of the electrospun PPESK separator were invesgated. And the effects of materials'characteristic and porous structure of the separators on electrolyte uptake, electrochemical performance and thermal safety were disscussed.
     In this paper, appropriate porous structure was obtained to improve mechanical performance and ionic conductivity of electrospun PPESK fabrics separators by selecting suitable electrospinning parameters during electrospinning process, including solution concentration, voltage and collecting velocity. Morphology and tensile strength of the separator were characterized by scanning electron microscopy (SEM) and tensile testing, respectively. The influences of electrospinning parameters on fiber diameter, orientation, pore size and mechanical behavior were disscussed. Porosity and electrolyte uptake of the separator were tested. AC impedance spectroscopy was used to characterize the ionic conductivity. The influence of micro-structure on electrolyte uptake and electrochemical performance was analyzed. The results indicate that electrospun fiber diameter and pore size of the separator are increased by increasing solution concentration and decreasing voltage and collecting velocity. Large pore size structure contributes to the improvement of permeability, porosity, electrolyte uptake and ionic conductivity of the electrospun separator. But too large pore size can induce electrolyte leakage and ionic conductivity decrease. Increasing collecting velocity appropriately can increase jet strengthing effect during electrospining process, which is benifical to improve the orientation of fibers and enhance the tensile strength of electrospun fabrics.
     PVDF resins have suitable melting temperature and excellent electrochemical property, therefore are used to prepare PPESK/PVDF/PPESK sandiwiched composite separators for futher improving thermal safety of PPESK separator in this paper. Deferential scanning calorimetry (DSC) was used to evaluate thermal properties of PPESK/PVDF/PPESK separator. AC impedance spectroscopy was used to characterize the ionic conductivity of the composite separator before and after thermal treatment. The influences of the component of composite separator on ionic conductivity, thermal dimensional stability and shut-down characteristic were analyzed. The results indicate that PPESK/PVDF/PPESK composite separator with4:3mass rate between PPESK and PVDF has higher ionic conductivity and better thermal dimensional stability than other mass rates. And shut-down characteristic is also observed for this PPESK/PVDF/PPESK composite separator.
     Linear sweep voltammetry (LSV), AC impedance spectroscopy and charge-discharge testing were used to characterize the electrochemical stability, analyze the ionic conductivity mechanism and evaluate the capacity, rate discharger properties and cycling properties of the separators, respectively. The results indicate that electrospun PPESK separator and PPESK/PVDF/PPESK sandiwiched separator display good electrochemical stability. The ionic conductivity of the both separators is higher than5.94×10-3S/cm at room temperature. The ionic conductive behavion of the two separators/electrolyte systems is in accord with Arrhenius equation. The cells assembled with these two separators exhibite high discharge capacity. The initial discharge capacity of the cells can reach to143mAh/g, which is increased by40%than that of the cells assembled with Celgard(?)2325. And the cells with the both kinds of separators can retain more than84.7%of initial discharge capacity after100times cycling charger-discharge process. Moreover, discharge rate capacity and charge-discharge effectivity of the cells are improved due to being assembled with PPESK separator or PPESK/PVDF/PPESK sandiwiched separator.
引文
[1]杨军,解晶莹,王久林.化学电源测试原理与技术[M].北京:化学工业出版社,2006.
    [2]蔡年生.锂离子电池用于海军装备的研究[J].船电技术,2006,3:50-53.
    [3]邹连荣,陈猛,解晶莹.国外航天用锂离子电池应用概况[J].电池工业,2007,12(4):277-280.
    [4]安晓雨,谭玲生.空间飞行器用锂离子蓄电池储能电源的研究进展[J].电源技术,2006,30(1):70-73.
    [5]吴凯,张耀,曾毓群,等.锂离子电池安全性能研究[J].化学进展,2011,23(2/3):401-409.
    [6]吴大勇,唐代华.锂离子电池隔膜研究及国产化进展[J].新材料产业,2007,8:30-33.
    [7]王宜,詹怀宇,胡健,等.无纺布型锂离子电池隔膜的研究进展[J].化工新型材料,2009,37(10):26-28.
    [8]伊廷锋,胡国信,高昆.锂离子电池隔膜的研究及发展现状[J].电池,2005,35(6):468-470.
    [9]黄友桥,管道安.锂离子电池隔膜材料的研究进展[J].船电技术,2011,31(1):26-29.
    [10]任旭梅,吴锋,吴川,等.锂离子二次电池用隔膜的制备及其性质[J].电化学,2001,7(2):234-237.
    [11]Tae-Hyung C, Masanao T, Hiroshi O, et al. Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery [J]. Journal of Power Sources,2008,181:155-160.
    [12]Yang C R, Jia Z D, Guan Z C, et al. Polyvinylidene fluoride membrane by novel electrospinning system for separator of Li-ion batteries [J]. Journal of Power Sources,2009,189:716-720.
    [13]Bansal D, Meyer B, Salomon M. Gelled membranes for Li and Li-ion batteries prepared by electrospinning [J]. Journal of Power Sources,2008,178:848-851.
    [14]夏兰,李素丽,艾新平,等.锂离子电池的安全性技术[J].化学进展,2011,23(2/3):328-335.
    [15]胡广侠,解晶莹.影响锂离子电池安全性的因素[J].电化学,2002,8(3):245-251.
    [16]Hwang K, Kwon B, Byun H. Preparation of PVdF nanofiber membranes by electrospinning and their use as secondary battery separators [J]. Journal of Membrane Science,2011,378:111-116.
    [17]Gupta P, Elkins C, Long T E, et al. Electrospinning of linear homopolymers of poly(methyl methacrylate):exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent [J]. Polymer,2005,46:4799-4810.
    [18]Lu C, Chen P, Li J F, et al. Computer simulation of electrospinning. Part I. Effect of solvent in electrospinning [J]. Polymer,2006,47:915-921.
    [19]Cheng M L, Lin C C, Su H L, et al. Processing and characterization of electrospun poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) nanofibrous membranes [J]. Polymer,2008,9: 546-553.
    [20]Gopalan A I, Lee K P, Manesh K M, et al. Poly(vinylidene fluoride)-polydiphenylamine composite electrospun membrane as high-performance polymer electrolyte for lithium batteries [J]. Journal of Membrane Science,2008,318:422-428.
    [21]Choi S S, Lee Y S, Joo C W, et al. Electrospun PVDF nanofiber web as polymer electrolyte or separator [J]. Electrochimica Acta,2004,50:339-343.
    [22]Kim J R, Choi S W, Jo S M, et al. Characterization and Properties of P(VdF-HFP)-Based Fibrous Polymer Electrolyte Membrane Prepared by Electrospinning [J]. Journal of the Electrochemical Society,2005,152:A295-A300.
    [23]Subramania A, Kalyana S N T, Sathiya P A R, et al. Preparation of a novel composite micro-porous polymer electrolyte membrane for high performance Li-ion battery [J]. Journal of Membrane Science, 2007,294:8-15.
    [24]Raghavan P, Choi J W, Ahn J H, et al. Novel electrospun poly(vinylidene fluoride-co-hexafluoropropylene)-in situ SiO2 composite membrane-based polymer electrolyte for lithium batteries [J]. Journal of Power Sources,2008,184:437-443.
    [25]Ding Y H, Zhang P, Long Z L, et al. The ionic conductivity and mechanical property of electrospun P(VdF-HFP)/PMMA membranes for lithium ion batteries [J]. Journal of Membrane Science,2009, 329:56-59.
    [26]Li X, Cheruvally G, Kim J K, et al. Polymer electrolytes based on an electrospun poly(vinylidene fluoride-co-hexafluoropropylene) membrane for lithium batteries [J]. Journal of Power Sources,2007, 167:491-498.
    [27]Jian X G, Dai Y, He G H, et al. Preparation of UF and NF poly (phthalazine ether sulfone ketone) membranes for high temperature application [J]. Journal of Membrane Science,1999,161:185-191.
    [28]Zhang S H, Jian X G, Yang D L, et al. Preparation of poly(phthalazinone ether sulfone ketone)s ultrafiltration membrane [J]. Membrane Science and technology,2004,24(1):24-27.
    [29]Gu S, He G H, Wu X M, et al. Synthesis and characteristics of sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) for direct methanol fuel cell (DMFC) [J]. Journal of Membrane Science, 2006,281:121-129.
    [30]杨永强,杨大令,张守海,等.新型杂萘联苯聚醚砜酮中空纤维超滤膜的研制[J].膜科学与技术,2006,26(4):36-38.
    [31]郭炳焜,徐徽,王先友,等.锂离子电池[M].湖南长沙:中南大学出版社,2002.
    [32]黄彦瑜.锂电池发展简史[J].物理学史和物理学家,2007,36(8):643-651.
    [33]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工业出版社,2007.
    [34]吴宇平,张汉平,吴锋,等.聚合物锂离子电池[M].北京:化学工业出版社,2007.
    [35]李朝晖,张汉平,张鹏,等.偏氟乙烯-六氟丙烯共聚物基微孔-凝胶聚合物电解质的研究进展[J].高分子通报,2007,7:8-16.
    [36]唐致远,王占良.PEO基聚合物电解质[J].高分子材料科学与工程,2003,9(2):48-56.
    [37]Kannan R, Mahendran O, Rajendran S. An electrochemical investigation on PMMA/PVdF blend-based polymer electrolytes[J]. Materials Letters,2001,49:172-179.
    [38]张鹏,李琳琳,何丹农,等.锂离子电池凝胶聚合物电解质研究进展[J].高分子学报,2011,2:125-130.
    [39]黄锦娴,吴耀根,廖凯明,等.锂离子电池聚烯烃隔膜安全性能的探讨[J].塑料制造,2009,3:67-71.
    [40]樊孝红,蔡朝辉,吴耀根,等.锂离子电池隔膜的研究及发展现状[J].中国塑料,2008,22(12):11-15.
    [41]崔振宇.聚偏氟乙烯多孔膜结构及其聚合物锂离子电池隔膜的性能[D].浙江:浙江大学材料与化学工程学院,2008.
    [42]Zhang S S. A review on the separators of liquid electrolyte Li-ion batteries [J]. Journal of Power Sources,2007,164:351-364.
    [43]Eo S M, Cha E, Kim D W. Effect of an inorganic additive on the cycling performances of lithium-ion polymer cells assembled with polymer-coated separators [J]. Journal of Power Sources,2009,189: 766-770.
    [44]许鑫华,李冬光,刘强,等.高分子电池隔膜的研究进展[J].材料导报,2004,18(1):49-52.
    [45]崔闻宇.聚合物锂离子电池隔膜的研究[D].哈尔滨:哈尔滨工业大学,2006.
    [46]Kim H S, Shin J H, Moon S 1, et al. Electrochemical properties of poly(tetra ethylene glycol diacrylate)-based gel electrolytes for lithium-ion polymer batteries [J]. Journal of Power Sources,2003, 119-121:482-486.
    [47]孙小青,孙卫东,王华,等.微孔滤膜在锂离子电池隔膜中的应用[J].塑料,2003,(2):39-43.
    [48]Chen R T, Saw C K, Jamieson M C, et al. Structural characterization of Celgard(?) microporous membrane precursors:melt-extruded polyethylene films [J]. Journal of Applied Polymer Science, 1994,53:471-483.
    [49]王箴主编.化工辞典[M].北京:化学工业出版社,2000.
    [50]吴宇平,戴晓兵.马军旗,等.锂离子电池-应用与实践[M].北京:化学工业出版社,2004.
    [51]Grondin J, Ucasse L D, Bruneel J L, et al. Vibrational and theoretical study of the complexation of LiPF6 and LiClO4 by di(ethylene glycol) dimethyl ether [J]. Solid State Ionics,2004,166:441-452.
    [52]Scrosati B, Croce F, Persi L. Impedance Spectroscopy Study of PEO-Based Nanocomposite Polymer Electrolytes [J]. Journal of the Electrochemical Society,2000,147:1718-1721.
    [53]Spevacek J, Bins J, Dybal J. Solid state NMR and DFT study of polymer electrolyte poly(ethylene oxide)/LiCF3SO3, [J]. Solid State Ionics,2005,176:163-167.
    [54]Xiao Q Z, Wang X Z, Li W, et al. Macroporous polymer electrolytes based on PVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery [J]. Journal of Membrane Science,2009, 334:117-122.
    [55]Gopalan A I, Santhosh P, Manesh K M, et al. Development of electrospun PVdF-PAN membrane-based polymer electrolytes for lithium batteries [J]. Journal of Membrane Science,2008, 325:683-690.
    [56]Choi S W, Jo S M, Lee W S, et al. An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications [J]. Advanced Materials,2003,15:2027-2032.
    [57]Kim J R, Choi S W, Jo S M, et al. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries [J]. Electrochimica Acta,2004,50:69-75.
    [58]Lee S W, Choi S W, Jo S M, et al. Electrochemical properties and cycle performance of electrospun poly(vinylidene fluoride)-based fibrous membrane electrolytes for Li-ion polymer battery [J]. Journal of Power Sources,2006,163:41-46.
    [59]Zheng Z R, Gu Z Y, Huo R T, et al. Superhydrophobicity of polyvinylidene fluoride membrane fabricated by chemical vapor deposition from solution [J]. Applied Surface Science,2009,16: 7263-7267.
    [60]Cheruvally G, Kim J K, Choi J W, et al. Electrospun polymer membrane activated with room temperature ionic liquid:novel polymer electrolytes for lithium batteries [J]. Journal Power Sources, 2007,172:863-869.
    [61]Cho T H, Sakai T, Tanase S, et al. Electrochemical performances of polyacrylonitrile nanofiber-based nonwoven separator for lithium-ion battery [J]. Electrochemical and Solid-State Letters,2007,10: 159-162.
    [62]Choi S W, Kim J R, Jo S M, et al. Electrochemical and spectroscopic properties of electrospun PAN-based fibrous polymer electrolytes [J]. Journal of the Electrochemical Society,2005,152: A989-A995.
    [63]Chen-Yang Y W, Chen H C, Lin F J, et al. Polyacrylonitrile electrolytes 1. A novel high-conductivity composite polymer electrolyte based on PAN, LiClO4 and a-Al2O3 [J]. Solid State Ionics,2002,150: 327-335.
    [64]Carol P, Ramakrishnan P, John B, et al. Preparation and characterization of electrospun poly(acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries [J]. Journal of Power Sources,2011,196:10156-10162.
    [65]Quartarone E, Tomasi C, Mustarelli P, et al. Long-term structural stability of PMMA-based gel polymer electrolytes [J]. Electrochimica Acta,1998,43:1435-1439.
    [66]Ali A M M, Yahya M Z A, Bahron H, et al. Impedance studies on plasticized PMMA-LiX [X: CF3SO3-, N(CF3SO2)2] polymer electrolytes [J]. Materials Letters,2007,61:2026-2029.
    [67]Dong H, Nyame V, MacDiarmid A G, et al. Polyaniline/poly(methyl methacrylate) coaxial fibers:the fabrication and effects of the solution properties on themorphology of electrospun core fibers [J]. Journal of Polymer Science:Part B:Polymer Physics,2004,42:3934-3942.
    [68]Xiao Q Z, Li Z H, Gao D S, et al. A novel sandwiched membrane as polymer electrolyte for application in lithium-ion battery [J]. Journal of Membrane Science,2009,326:260-264.
    [69]Alamgir M, Abraham K M. Li ion conductive electrolytes based on Poly(vinly chloride) [J]. Journal of the Electrochemical Society,1993,140:L96-L97.
    [70]Subban R H Y, Arof A K.. Plasticiser interactions with polymer and salt in PVC-LiCF3SO3-DMF electrolytes [J]. European Polymer Journal,2004,40:1841-1847.
    [71]Jeong H S, Choi E S, Kim J H, et al. Potential application of microporous structured poly(vinylidene fluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwoven separators to high-voltage and high-power lithium-ion batteries [J]. Electrochimica Acta,2011,56:5201-5204.
    [72]陈祥宝.高性能树脂基体[M].北京:化学工业出版社,1999.
    [73]张海春,陈天禄,袁雅桂.合成带有酞侧基的新型聚醚醚酮:中国,85108751[P].1987.
    [74]陈平,陆春,于祺,等.连续纤维增强PPESK树脂复合材料的界面性能[J].材料研究学报,2005,19(2):159-164.
    [75]Wang J, Chen P, Li H, et al. The analysis of Armos fibers reinforced Poly(phthalazinone ether sulfone ketone) composite surfaces after oxygen plasma treatment [J]. Surface and Coatings Technology,2008, 202(20):4896-4991.
    [76]颜春,张守海,杨大令,等.季铵化条件对季铵化聚醚砜酮纳滤膜性能的研究[J].功能材料,2007,7(38):1163-1168.
    [77]武春瑞,张守海,杨大令,等.耐高温聚芳醚酰胺超滤膜的研制与应用[J].功能材料,2007,3(38):A004-304.
    [78]Gu S, He G H, Wu X M, et al. Preparation and characteristics of crosslinked sulfonated poly(phthalazinone ether sulfone ketone) with poly(vinyl alcohol) for proton exchange membrane [J]. Journal of Membrane Science,2008,312:48-58.
    [79]李铁军.锂离子电池用聚丙烯微孔薄膜[J].中国塑料,2004,18(5):1-5.
    [80]艾新平,洪昕林,董全锋,等.塑料化薄膜锂离子电池的制造技术[J].电化学,2000,6(2):193-199.
    [81]叶舒展,蔡朝晖,黄海星,等.湿法生产锂离子电池隔膜流程简介[J].塑料制造,2009,3:63-66.
    [82]任小龙,刘渝洁,冯勇刚,等.电池隔膜制造方法研究进展[J].绝缘材料,2007,40(6):36-42.
    [83]胡继文,许凯,沈家瑞.锂离子电池隔膜的研究与开发[J].高分子材料与工程,2003,19(1):215-219.
    [84]白莹,吴锋,吴川,等.干法制备聚合物锂离子电池用PVDF-HFP隔膜的研究[J].化工新型材料,2009,37(12):17-19.
    [85]张春林.非织造布电池隔膜概述[J].非织造布,1999,13(2):26-28.
    [86]张传文,严玉蓉,区炜锋,等.静电纺丝法制备锂离子电池隔膜的研究进展[J].产业用纺织品,2009,1:1-6.
    [87]Matoba Y, Matsui S, Tabuchi M, et al. Electrochemical properties of composite polymer electrolyte applied to rechargeable lithium polymer battery [J]. Journal of Power Sources,2009,137(2):284-287.
    [88]Pu W, H e X, Wang L, Jiang C, Wan C. Preparation of PVdF-HFP microporous membrane for Li-ion batteries by phase inversion [J]. Membrane Science,2006,272:11-14.
    [89]徐又一,徐志康,等.高分子膜材料[M].北京:化学工业出版社,2005.
    [90]Kritzer P. Nonwoven support material for improved separators in Li-polymer batteries [J]. Journal of Power Sources,2006,161:1335-1340.
    [91]大连振邦自主研制成功纳米纤维锂电池隔膜[J].功能材料信息,2006,3(6):41.
    [92]理化所纳米纤维锂离子电池隔膜项日通过北京市验收[J].新材料产业,2008,(2).
    [93]程琥,杜洪彦,杨勇.新型锂电池用复合隔膜的制备及其电化学性能的表征[J].电化学,2004,10(3):303-306.
    [94]Miao R Y, Liu B W, Zhu Z Z, et al.PVDF-HFP based porous polymer electrolyte membranes for lithium-ion batteries [J]. Journal of Power Sources,2008,184:420-426.
    [95]叶寅,邱士龙.辐射接枝制备电池隔膜研究现状[J].辐射研究与辐射工艺学报,2006,24(1):1-4.
    [96]陈均志,任便利,刘军海.等离子体辐射对聚烯烃电池隔膜纸性能的影响[J].化工新型材料,2006,34(3):61-63.
    [97]刘波,王红卫,谢洪德.电池隔膜用丙纶非织造布等离子体改性研究[J].非织造布,2004,12(3):16-18.
    [98]Augustin S, Hennige V D, Horpel G, et al. Ceramic but flexible:new ceramic membrane foils for fuel cells and batteries [J]. Desalination,2002,146:23-28.
    [99]王新威,胡祖明,潘婉莲,等.电纺丝形成纤维的过程分析[J].合成纤维工业,2004,27(2):4:1-3.
    [100]李珍,王军.静电纺丝可纺性影响因素的研究成果[J].合成纤维,2008,9:6-11.
    [101]Sang J L, Se H O, Jie L, et al. The use of thermal treatments to enhance the mechanical properties of electrospun poly(3-caprolactone) scaffolds [J]. Biomaterials,2008,29:1422-1430.
    [102]Wang X. F, Zhang K, Zhu M F, et al. Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method [J]. Polymer,2008,49:2755-2761.
    [103]薛聪,胡影影,黄争鸣.静电纺丝原理研究进展[J].高分子通报,2009,6:38-47.
    [104]Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibres [J]. Journal of Electrostatics,1995,35:151-160.
    [105]Theron S A, Zussman E, Yarin A L. Experimental investigation of the governing parameters in the electrospinning of polymer solutions[J]. Polymer,2004,5(6):2017-2030.
    [106]Cui W, Li X, Zhou S, et al. Investigation on process parameters of electrospinning system through orthogonal experimental design [J]. Journal of Applied Polymer Science,2007,103(5):3105-3112.
    [107]Lee J S, Choi K H, Ghim H D, et al. Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning [J]. Journal of Applied Polymer Science,2004,93(4):1638-1646.
    [108]Jun Z, Hou H, Schaper A, et al. Poly-L-lactide nanofibres by electrospinning-Influence of solution viscosity and electrical conductivity on fibre diameter and fibre morphology [J]. e-Polymers,2003, Paper 9.
    [109]Krishnappa R V N, Desai K, Sung C. Morphological study of electrospun polycarbonates as a function of the solvent and processing voltage [J]. Journal of Materials Science,2003,38(11):2357-2365.
    [110]Pornsopone V, Supaphol P, Rangkupan R, et al. Electrospinning of methacrylate-based copolymers: effects of solution concentration and applied electrical potential on morphological appearance of as-spun fibres [J]. Polymer Engneering and Science,2005,45(8):1073-1080.
    [111]Wang C, Zhang W, Huang Z H, et al. Effect of concentration, voltage, take-over distance and diameter of pinhead on precursory poly (phenylene vinylene) electrospinning [J]. Pigment & Resin Technology, 2006,35(5):278-283.
    [112]Deitzel J M, Harris K D, Beck Tan N C. The effect of processing variables on the morphology of electrospun nanofibers and textiles [J]. Polymer,2001,42:261-272.
    [113]Nair L S, Bhattacharyya S, Bender J D, et al. Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications [J]. Biomacromolecules,2004,5: 2212-2220.
    [114]杨颖,贾志东,李强,等.电纺丝技术及其应用[J].高电压技术,2006,32(11):91-95.
    [115]左秀琴,李子轩,叶志殷.静电纺丝聚合物加工技术及其应用[J].塑料,2005,34(3):1-7.
    [116]Senecal A, Magnone J, Marek P, et al. Development of functional nanofibrous membrane assemblies towards biological sensing [J]. Reactive & Functional Polymers,2008,68:1429-1434.
    [117]Xu X L, Chen X S, Ma P, et al. The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning [J]. European Journal of Pharmaceutics and Biopharmaceutics,2008,70:165-170.
    [118]Kumbar S G, Nukavarapu S P, James R, et al. Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering [J]. Biomaterials,2008,29:4100-4107.
    [119]Kim J S, Reneker D H. Mechanical Properties of Composites Using Ultrafine Electrospun Fibers [J]. Polymer Composites,1999,20:124-131.
    [120]Lee K H, Dim H Y, Ryu Y J, et al. Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends [J]. Journal of Polymer Science:Part B:Polymer Physics,2003,41: 1256-1262.
    [121]Pedicini A, Farris R J. Mechanical behavior of electrospun polyurethane [J].Polymer,2003,44: 6857-6862.
    [122]Ding Y H, Zhang P, Jiang Y, et al. Mechanical properties of nylon-6/SiO2 nanofibers prepared by electrospinning [J]. Materials Letters,2009,63:34-36.
    [123]Yang K. S, Edie D D, Lim D Y, et al. P reparation of carbon fiber web from electrostatic spinning of PMDA-ODA poly(amic acid) solution [J]. Carbon,2003,41:2039-2046.
    [124]Kim Y.J, Ahn C H, Lee M B, et al. Characteristics of electrospun PVDF/SiO2 composite nanofiber membranes as polymer electrolyte [J]. Materials Chemistry and Physics,2011,127:137-142.
    [125]Wachtler M, Ostrovskii D, Jacobsson P, et al. A study on PVdF-based SiO2-containing composite gel-type polymer electrolytes for lithium batteries [J]. Electrochimica Acta,2004,50:357-361.
    [126]Jiang G, Maeda S, Yang H, et al. All solid-state lithium-polymer battery using poly(urethane acrylate)/nano-SiO2 composite electrolytes [J]. Journal of Power Sources,2005,141:143-148.
    [127]Gao K, Hu X G, Dai C S, et al. Crystal structures of electrospun PVDF membranes and its separator application for rechargeable lithium metal cells [J]. Materials Science and Engineering B,2006,131: 100-105.
    [128]Ghasemi-Mobarakeh L, Prabhakaran M P, Morshed M, et al. Electrospun poly(3-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering [J]. Biomaterials,2008,29:4532-4539.
    [129]Morcy V J, Brian W S, Vinoy T, et al. Morphology and mechanical properties of Nylon 6/MWNT nanofibers [J]. Polymer,2007,48:1096-1104.
    [130]Jeong J S, Moon J S, Jeon S Y, et al. Mechanical properties of electrospun PVA/MWNTs composite nanofibers [J]. Thin Solid Films,2007,515:5136-5141.
    [131]Meng Z X, Zheng W, Li L, et al. Fabrication and characterization of three-dimensional nanofiber membrance of PCL-MWCNTs by electrospinning [J]. Materials Science and Engineering C,2010,30: 1014-1021.
    [132]Sian F F, Richard J F. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns [J]. Polymer,2004,45:4217-4225.
    [133]Triantafyllos S, Chris A B, Aaron S G, et al. Computational predictions of the tensile properties of electrospun fibre meshes:Effect of fibre diameter and fibre orientation [J]. Journal of the Mechanical Behavior of Biomedical Materials,2008,1:326-335.
    [134]Chen C Z, Wang L G, Yong H. A novel shape-stabilized PCM:Electrospun ultrafine fibers based on lauric acid/polyethylene terephthalate composite [J]. Materials Letters,2008,62:3515-3517.
    [135]Yun G Y, Kim H S, Kim J, et al. Effect of aligned cellulose film to the performance of electro-active paper actuator [J]. Sensors and Actuators A:Physical,2008,141:530-535.
    [136]胡福增.材料表面与界面[M].上海:华东理工大学出版社,2008.
    [137]Jose M V, Thomas V, Johnson K T, et al. Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering [J]. Acta Biomaterialia,2009,5:305-315.
    [138]Bashura C A, Dahlgren L A, Goldstein A S. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes [J]. Biomaterials,2006,27:5681-5688.
    [139]吴秋林,吴邦明.膜孔形态结构图像分析研究(Ⅱ)膜孔结构定量表征[J].水处理技术,1992,18(4):254-260.
    [140]Hernandez A, Calvo J I, Pradanos P, et al. Surface structure of microporous membranes by computerized SEM image analysis applied to Anopore filters [J]. Journal of Membrane Science,1997, 137:89-97.
    [141]刘杰,刘广立,薜安,倪晋仁.膜面孔特征的图像分析研究[J].膜科学与技术,2006,26(4):85-87.
    [142]Wu Q L, Wu B M. Study of membrane morphology by image analysis of electron micrographs [J]. Journal of Membrane Science,1995,105:113-120.
    [143]Jung H R, Ju D H, Lee W J, et al. Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes [J]. Electrochimica Acta,2009,54:3630-3637.
    [144]Thompson C J, Chase G G, Yarin A L, et al. Effects of parameters on nanofiber diameter determined from electrospinning model [J]. Polymer,2007,48:6913-6922.
    [145]Baumgarten P K. Electrostatic spinning of acrylic microfibers [J]. Journal of Colloid and Interface Science,1971,36:71-79.
    [146]Cloupeau M, Prunet-Foch B. Electrostatic spraying of liquids:Main functioning modes [J]. Journal of Electrostatics,1990,25:165-184.
    [147]Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, et al. Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers [J]. European Polymer Journal,2005,41:409-421.
    [148]Luo C J, Nangrejo M, Edirisinghe M. A novel method of selecting solvents for polymer electrospinning [J]. Polymer,2010,51:1654-1662.
    [149]Eda G, Liu J, Shivkuma S. Solvent effects on jet evolution during electrospinning of semi-dilute polystyrene solutions [J]. European Polymer Journal,2007,43:1154-1167.
    [150]罗光红,徐宏德,蹇锡高.新型PPESK溶解度参数的测定及其溶解性能[J].绝缘材料通讯,2007,5:31-33.
    [151]程能林.溶剂手册[M].北京:化学工业出版社,1994.
    [152]Fong H, Chun I, Reneker D H. Beaded nanofibers formed during electrospinning [J]. Polymer,1999, 40:4585-4592.
    [153]Zuo W, Zhu M, Yang W, et al. Experimental study on relationship between jet instability and formation of beaded fibres during electrospinning [J]. Polymer Engneering and Science,2005,45(5): 704-709.
    [154]Lee K H, Kim H Y, Bang H J, et al. The change of bead morphology formed on electrospun polystyrene fibres [J]. Polymer,2003,44:4029-4034.
    [155]Zhang C X, Yuan X Y, Wu L L, et al. Study on morphology of electrospun poly(vinyl alcohol) mats [J]. European Polymer Journal,2005,41:423-432.
    [156]Heikkila P, Harlin A. Parameter study of electrospinning of polyamide-6 [J]. European polymer journal,2008,44:3067-3079.
    [157]Kataoka H, SaitoY, SakaiT. Conduction mechanisms of PVDF-Type gel polymer electrolytes of Lithium prepared by a phase inversion process [J]. The Journal of Physical Chemistry B,2000,104: 11460-11464.
    [158]廖肃然,罗运军,魏媛.电纺丝[J].合成纤维工业,2005,28(2):47-50.
    [159]Yarin A L, Koombhongse S, Reneker D H. Bending instability in electrospinning of nanofibers [J]. Journal of Applied Physics,2001,89:3018-3026.
    [160]Carroll C P, Yong Lak Joo. Axisymmetric instabilities of electrically driven viscoelastic jets [J]. Journal of Non-Newtonian Fluid Mechanics,2008,153:130-148.
    [161]Reneker D H, Yarin A L. Electrospinning jets and polymer nanofibers [J]. Polymer,2008,49: 2387-2425.
    [162]Cheng C L, Wang C C, Wang Y Y. Microporous PVDF-HFP based gel polymer electrolytes reinforced by PEGDMA network [J]. Electrochemistry Communication,2004,6:531-535.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700