用户名: 密码: 验证码:
结构在非饱和黄土抗剪特性中的控制机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土是一类典型的结构性土体,黄土地区的许多工程事故、地质灾害都与黄土的亚稳定结构密切相关。滑坡是我国黄土地区最常见的灾害类型之一,而黄土滑坡的变形破坏特征受制于黄土的抗剪特性。结构在黄土抗剪强度中的作用一直是工程地质领域研究的热点问题,然而针对结构的作用程度及控制机理依旧争议不断。目前,滑坡灾害已经成为黄土地区经济发展面临的巨大挑战之一。针对上述问题,本文在前人相关研究的基础上,以兰州黄土为对象,以黄土的抗剪特性为切入点,主要进行了以下四部分内容的试验研究与数值计算。
     利用直接剪切与三轴剪切两类方法进行了大量室内试验,对比研究了不同试验条件下天然与重塑非饱和黄土抗剪特性及其变化规律。结果显示,随着天然结构破坏、丧失,天然黄土的抗剪强度与粘聚力均显著降低,但其内摩擦角的降低幅度并不明显。
     在对比分析天然与重塑黄土的抗剪强度及其参数差异特征的基础上,借助结构强度与灵敏度两类结构性定量化参数,直接衡量了结构对黄土抗剪特性的作用程度。研究发现,使用不同试验方法获取抗剪强度和强度参数的情况下,结构在黄土抗剪特性中的作用程度既有相似之处,又有很大差异。研究认为,结构对不同试验条件下黄土抗剪特性的控制规律基本相似,但受围压影响,三轴条件下黄土的抗剪强度及其参数对结构变化的灵敏度低于直剪强度与其参数。
     通过扫描电镜、压汞仪与压力板仪三种试验途径系统分析了结构对黄土抗剪特性的控制机理。研究发现,黄土结构体系中骨架颗粒间难溶盐、易溶盐及粘粒的胶结作用,大孔隙塌陷作用对黄土抗剪特性的控制作用最为关键,尤以粘粒的胶结作用在结构对黄土抗剪特性的作用中最为显著,碳酸盐的作用次之。相对而言,非饱和基质吸力的作用较弱。
     基于兰州市亨达小区回填黄土滑坡实例,开展了填土与天然土边坡稳定性对比分析,验证了结构在维持斜坡稳定性中的作用。
     上述研究成果对目前黄土地区的工程建设具有重要的实用和指导价值,并且加深了对黄土滑坡形成机理的认识。
Loess is typically a kind of structural soil, many engineering accidents andgeological disasters are closely associated with its metastable structure. Landslide is oneof the most common types of disasters in loess strata in China, and the landslides’deformation and failure characteristics are controlled by loess’s shear behavior. Theinfluence of structure on shear strength of loess is thus always a hotspot issue inengineering geological region, however, the control degree of loess structure and itsbehind mechanism are still controversial. At present, landslide disasters have become onebiggest challenge facing loess region’s economic development. After reviewing thisquestion, basing on these previous academic researches, this dissertation studies Lanzhouloess’s shear characteristics, summaries and presents four key chapters on experimentalinvestigations and numerical calculations.
     First of all, through amount of experimental data obtained by means of conventionaldirect shear and triaxial shear test, this paper systematically investigates the variation ofshear strength and its parameters of both natural and remolded loess samples underdifferent experimental conditions. It finds that the peak shear strength and cohesion of thenatural loess significantly reduced once its structure is destroyed and remolded, whileinternal frictional angle of the loess shows little decrease.
     Secondly, basing on the comparative analysis of shear strength and its parameters(cohesion and internal frictional angle) between natural and remolded loess specimens, theinfluence degree of structure on shear behavior can be directly evaluated via twoquantitative parameters of sensitivity and structural strength. With different test methods,structure doesn’t play the same role in the shearing procedure, however, similarities priorto distinguish, owing to the influence of confining pressure, sensitivity of shear strengthand its parameters of loess obtained from triaxial test are lower than that from direct sheartest.
     Thirdly, the mechanisms behind structure influence loess’s shear characteristics areanalyzed though three laboratory approaches of scanning electron microscope, mercury injection apparatus and pressure plate equipment. The result shows that the cementationprovided by carbonate, soluble salt and clay-sized grains among skeletal grain contacts,big pore collapse are key factors in the action of structure. Particularly, among all thesefactors, the clay grain’s impact is the largest, carbonate’s is subsequent, while matricsuction is the least important.
     Finally, a backfill landslide example (HengDa landslide) in Lanzhou city is chosen tocarry out a compared analysis of stability condition between backfill loess slope andnatural loess slope, which fully certify the advantage role of structure in maintaining stablestate of loess slope.
     The results presented in this dissertation can not only provide practical guidance ofgreat importance on the city construction in loess regions, but also give furtherimplication on formation mechanisms of loess landslides.
引文
Assallay, A.M., Rogers, C.D.F., Smalley, I.J..Formation and collapse of metastable particle packingsand open structures in loess deposits. Engineering Geology,1997,48(1-2):101-115.
    Awoleye O.A., Bouazza A., Rama-Rao R. Time effects on the unconfined compressive strength andsensitivity of a clay. Engineering Geology,1991,31(3-4):345-351.
    Burland J.B. On the compressibility and shear strength of natural clays.Geotechnique,1990,40(3):329-378.
    Chang C S,Matsuchima T, Lee X. Heterogeneous Strain and Bonded Granular Structure Changein Triaxial Specimen Studied by Computer Tomography.Journal of Engineering Mechanics,2003.129(11):1295-1307.
    Cotecchia F., Chandler R. J.. The influence of structure on the pre-failure behaviour of a naturalclay[J]. Geotechnique,1997,47:523-544.
    Derbyshire, D. E., Mellors, T.W.. Geological and geotechnical characteristics of some loess andloessic soils from China and Britain: a comparision. Engineering Geology,1988,25:135-175.
    Dijkstra, T. A, Rogers, C. D. F., Smalley, I.J., et al. The loess of north-central China:Geotechnical properties and their relation to slope stability. Engineering Geology,1994,34:153-171.
    Dijkstra, T. A, Smalley, I.J., Rogers, C.D.F.Particle packing in loess deposits and the problem ofstructure collapse and hydroconsolidation.Engineering Geology,1995,40:49-64.
    Francois Duhaime, EI Mehdi Benabdallah, Robert P. Chapuis.The Lachenaie clay deposit: somegeochemical and geotechnical properties in relation to the salt-leaching process.CanadianGeotechnical Journal,2013,50-61..
    Gao G.R.Formation and development of the structure of colllapsing loess in China. EngineeringGeology,1988,25:235-245.
    Gasparre, A., Coop, M.R. Quantification of the effects of structure on the compression of a stiffclay. Canadian Geotechnical Journal,2008,45:1324-1334.
    Ghislain Lessard, James K. Mitchell. The causes and effects of aging in quick clays.CanadianGeotechnical Journal,1985,22(3):335-346
    Grabowska-Olszewska, B., Engineering-geological problems of loess in Poland.EngineeringGeology.1988,25,177-200.
    Holtz, W.G., Hillf, J.W. Settlement of soil foundations due to saturation. Proceedings of the5thInternational Conference on Soil Mechanics and Foundation Engineering, Paris,1961:673-679.
    Hu, R.L., Yeung,M.R., Lee,C.F., Wang,S.J. Mechanical behavior and microstructural variation ofloess under dynamic compaction. Engineering Geology,2001,59:203-217.
    Jacquet D. Sensitivity to remoulding of some volcanic ash soils in New Zealand[. EngineeringGeology,1990,28(1-2):1-25.
    Jefferson, I.F., Mavlyanova, N., Hara-Dhand, K. O., Smalley, I.J. The engineering geology ofloess ground:15tasks for investigators—the Mavlyanov programme of loess research. EngineeringGeology,2004,74:33–37.
    Jiang, M.J., Hu, H.J., Peng, J.B., Leroueil, S. Experimental study of two saturated natural soilsand their saturated remoulded soils under three consolidated undrained stress paths.Front.Archit.Civ.Eng.China.2011,5(2),225–238.
    Kazuhiko Egashira, Masami Ohtsubo.Smectite in marine quick-clays of Japan[J]. Clays and ClayMinerals,1982,30(4),275-280.
    Klukanova A. and Frankovska J.The Slovak Carpathians loess sediments, their fabric andproperties. Genesis and properties of collapsible soils,1995:129-147.
    Lefebvre G. Collapse mechanisms and design consideration for some partly saturated andsaturated soils. Genesis and properties of collapsible soils,1995:361-374.
    Leonards G A, Altschaeffl A G Compressibility of clay. Journal of the Soil Mechanics andFoundations,1964.90(SM5):133-155.
    Leroueil S., Tavenas F., Locat J. Discussion on: Correlations between index tests and theproperties of remoulded clays-Carrier W.D. and Beckman J.F.. Geotechnique,1985,35(2):223-226.
    Leroueil S, Vaughan PR. The general and congruent effects of Structure in natural soils and weakrocks.Geotechnique,1990.40(3):467-488.
    Lin Z.S. Variation in collapsibility and strength of loess with age.Genesis and properties ofcollapsible soils,1995:247-266.
    Lutenegger A.J..Stability of loess in light of the inactive particle theory. Nature,1981291-360.
    Maleki, M., Bayat, M. Experimental evaluation of mechanical behavior of unsaturated silty sandunder constant water content condition. Engineering Geology,2012,141–142,45–56.
    Matalucci R.V., Abdel-hady, Shelton, J.W., Influence of grain orientation on direct shear strengthof a loessial soil. Engineering Geology,1969(4):121-132.
    Matalucci, R.V., Abdel-hady, M., Shelton, J.W. Influence of microstructure of loess on triaxialshear strength. Engineering Geology,1970,4:341-351.
    Mellors.T.W.The influence of the clay component in loess on collapse of the soil structure.Genesis and properties of collapsible soils,1995:207-216.
    Muxart T. Billard A. and Andrieu A. et. al. Changes in water chemistry and loess porosity withleaching: implications for collapsibility in the loess of north China. Genesis and properties ofcollapsible soils,1995:313-332.
    Oloo S.Y. and Fredlund D.G.,1996.A method of determination of φb for statically compactedsoils. Canadian Geotechnical Journal33,272-280.
    Osipov V. I. and Sokolov V N. Factors and mechanism of loess collapsibility. Genesis andproperties of collapsible soils,1995:49-64.
    Penner E.. A study of sensitivity in leda clay[J]. Canadian Journal of Earth Sciences,1965,2(5):425-441.
    Rendell, H.M.. Comparison between naturally consolidated and laboratory consolidated loess.Engineering Geology,1988,25:229-233.
    Rogers, C.D.F., Dijkstra, T.A., Smalley, l.J..Particle packing from an earth-science viewpoint.Earth Science Review,1994,36:59-82.
    SkemptionA. W., Northey R. D. TheSensitivity of Clays. Geotechnique,1952,3(1):30-53.Side G, Barden L.The microstructure of dispersed and flocculated samples of kaolinite, illite andmontmorillonite.CanadianGeotechnical Journal,1970(8):391-399.
    Smalley, I.J., Vita-Finzi, C..The formation of fine particles in sandydeserts and the nature of"desert" loess. Journal of Sedimentalogy and Petrology,1968,38:766-774.
    Smalley, I.J., Derbyshire, E. Large loess landslides in active tectonic regions. In: Jones, M.,Cosgrove, J. Eds., Neotectonics and Resources. Belhaven Press, London,,1991:202–219.
    Subhash G,Nemat-Nasser S,Mehrabadi M M. Experimental investigation of fabric-stress relationsin granular materials. Mechanics of Materials,1991(11):87-106.
    Torrance J.K. On the development of high sensitivity: mineralogical requirements and constraints,in: K. Senneset (Ed.), Landslides, Proceedings of the Seventh International Symposium on Landslides,Trondheim,1996, vol.2:491–496
    Vaughan PR. Characterising the mechanical properties of in-situ residual soil.Proceeding of2rdInternational Conference on Geomechanics in Tropical Soils, Singapore,1988,2:469-487.
    Yvonne Andersson-Sk ld, J. Kenneth Torrance, Bo Lindet. al Quick clay-A case study ofchemical perspective in Southwest Sweden. Engineering Geology,2005,82(2):107-118.
    Fanyu Zhang, Gonghui Wang and Toshitaka Kamaib, Undrained shear behavior of loesssaturated with different concentrations of sodium chloride solution. Engineering Geology.2013,155,69-79.
    安亚芳,梁庆国,赵磊等.兰州Q4黄土力学性质的各向异性初探.兰州交通大学学报,2011,1(30):90-97.
    陈存礼,胡再强,高鹏.天然黄土的结构性及其与变形特性关系研究.岩土力学,2006,27(11):1891-1896.
    陈存礼,高鹏,何军芳.考虑结构性影响的天然黄土等效线性模型.岩土工程学报,2007,29(9):1130-1136.
    陈存礼,何军芳,杨鹏.考虑结构性影响的天然黄土本构关系.岩土工程学报,2007,28(11):2284-2290.
    陈立.黄土的结构强度及其与结构屈服应力的关系:[硕士学位论文].咸阳市:西北农林科技大学,2008.
    陈嘉欧,叶斌,郭素杰.珠江三角洲粘性土微结构与工程性质初探.岩石力学与工程学报,2000,19(5):674-678.
    陈正汉.重塑非饱和黄土的变形、强度、屈服和水量变化特性.岩土工程学报,1999,21(1):82-90.
    党进谦,李靖.含水量对非饱和黄土强度的影响.西北工业大学学报,1996,24(1):57-60.
    党进谦.非饱和黄土结构强度及其应用.西北农业大学学报,1998.10(5):48-51.
    党进谦,李靖.非饱和黄土的结构强度与抗剪强度.水利学报,2001,(7):79-83.
    丁伯阳,苗天德,王惠.黄土震陷的骨架崩塌模型.第三届全国地震工程会议论文集,大连:1990,492-497.
    方祥位,陈正汉,沈春妮等.非饱和天然Q2黄土屈服硬化过程的细观结构演化分析.岩土工程学报,2008,30(7):1044-1050.
    高国瑞.中国黄土的微结构.科学通报,1980(20):945-948.
    高国瑞.黄土湿陷变形的结构理论.岩土工程报,1990,12(4):1-10.
    高凌霞.黄土湿陷性的微结构效应及其评价方法研究:[博士学位论文].大连:大连理工大学,2010.
    高凌霞,染茂田,杨庆.基于微结构参数主成分的黄土湿陷性评价.岩土力学,2012,33(7):1921-1926.
    关亮,陈正汉,黄雪峰等.非饱和重塑黄土的三轴试验研究.工程勘察2011,11:14-18.
    何青峰,林斌,赵发锁.西安地区马兰黄土的结构强度研究水文地质工程地质,2007,34(5):21-24.
    胡瑞林,官国琳,李向全等.黄土湿陷性的微结构效应工程地质学报,1999,7(2):161-167.
    扈胜霞,周云东,刘丰收,等.非饱和天然黄土强度特性的试验研究.岩土力学,2005,26(4):660-663.
    黄义,张引科.非饱和土土-水特征曲线和结构强度理论.岩土力学,2002,23(3):268–272.
    黄志全,陈贤挺,刘丰收,等.基质吸力对小浪底水库1#滑坡非饱和土强度影响试验研究.中国水运,2007,07(7):123–125.
    胡再强,沈珠江,谢定义.非饱和黄土的结构性研究.岩石力学与工程学报,2000,19(6):775-779.
    胡再强,沈珠江,谢定义.结构性黄土的本构模型.岩石力学与工程学报,2005,24(4):565-569.
    胡再强,张腾,朱轶韵等.非饱和黄土的弹塑性软化本构模型.岩土力学,2006,27(增刊):1103-1106.
    金旭,赵成刚.非饱和天然土本构模型研究.北京工业大学学报,2011,37(1):85-91.
    梁庆国,赵磊,安亚芳等.兰州Q4黄土各向异性的初步研究.岩土力学,2012,33(1):17-23.
    李加贵,陈正汉,黄雪峰等. Q3黄土侧向卸荷时的细观结构演化及强度特性.岩土力学,2010,31(4):1084-1091.
    李云峰.洛川黄土孔隙性模糊聚类分析.西安地质学院学报,1990,12(4):38-42.
    李永乐,张红芬,佘小光等.天然非饱和黄土的三轴试验研究.岩土力学,2008,29(10):2859-2863.
    李奕.黄土结构性试验研究:[博士学位论文].兰州:兰州理工大学,2007.
    梁燕,邢鲜丽,李同录等.晚更新世黄土渗透性的各向异性及其机制研究.岩土力学,2015:5(33):1313-1318.
    刘熙媛.河北省非饱和土含水量与抗剪强度参数关系的试验研究.河北工业大学学报,2006,(6):22-28.
    刘海松,倪万魁,颜斌.黄土结构强度与湿陷性的关系初探岩土力学,2008,29(3):722-726.
    刘坤.非饱和黄土结构性的试验研究:[硕士学位论文].西安,西安建筑科技大学,2008.
    雷胜友,唐文栋.黄土在受力和湿陷过程中微结构变化的CT扫描分析.岩石力学与工程学报,2004,23(24):4166-4169.
    雷祥义.西安附近黄土孔隙特征.水文地质与工程地质,1983,(4):56-65.
    雷祥义.陕北陇东黄土黄土孔隙特.科学通报,1985,(3):206-209.
    雷祥义.中国黄土的孔隙类型与湿陷性.中国科学,1987,(12):1309-1316.
    林崇义.黄土的结构特性.中国科学院哈尔滨土木建筑研究所黄土基本性质研究论文集,1962,42-44.
    骆亚生,非饱和黄土在动、静复杂应力条件下的结构变化特性及结构性本构关系研究:[博士学位论文].西安:西安理工大学,2003.
    骆亚生,谢定义,李鹏.非饱和黄土结构特性变化的主要影响因素.水土保持通报,2005,25(2):36-39.
    米海珍,李如梦,牛军贤.含水量对兰州黄土剪切强度特性的影响.甘肃科学报,2006,18(1):78-81.
    蒲毅彬,陈万业,廖全荣.陇东黄土湿陷过程的CT结构变化研究.岩土工程学报,2000,22(1):49-54.
    钱鸿缙,王继唐,罗宇生,等.湿陷性黄土地基.北京:中国建筑工业出版社,1985.
    秦立科,李云璋,胡伟.非饱和黄土结构性定量试验研究.岩土力学,2011,32(S1):265-269.
    石建刚,邵生俊,陶虎等.非饱和土的真三轴试验及强度变形特性分析.岩土工程学报,2011,33(增1):85-90.
    邵生俊,龙吉勇,于清高等.湿陷性黄土的结构性参数本构模型.水利学报,2006,37(11):1315-1322.
    邵生俊,周飞飞,龙吉勇.天然黄土结构性及其定量化参数研究.岩土工程学报,2004,26(4):531-536.
    沈珠江.土体结构性的数学模型—21世纪土力学的核心问题.岩土工程学报.1996,18(1):95-97.
    宋章,程谦恭,张炜等.天然黄土显微结构特征与湿陷性状分析.工程地质学报,2007,15(5):646-653.
    孙明祥,杨磊,樊耀武等.基于不同试验手段对黄土结构性研究.铁道工程学报,2011,(3):24-31.
    申春妮,方祥位,陈正汉.Q2黄土的非饱和直剪试验研究.地下空间与工程学报,2010,6(4):724-728.
    汤连生.黄土湿陷性的微结构不平衡吸力成因论.工程地质学报,2003,11(1):30-36.
    覃小华,黄雪峰,姚志华等.三轴剪切下黄土结构特性试验研究.建筑科学,2012,28(9):71-74.
    田堪良,张慧莉.黄土的结构强度及其定量分析方法.第七届全国土力学及基础工程学术会议论文集[.北京:中国科学技术出版社,2002:178-180.
    田堪良.黄土的结构性及其动力特性研究:[博士学位论文].咸阳市:西北农林科技大学,2003.
    田堪良,张慧莉,张伯平等.黄土的结构性及其结构强度特性研究.水力发电学报,2005,24(2):64-67.
    王辉,何青峰,谢星,赵法锁.不同地区Q2黄土的结构性对比分析.中国地质灾害与防治学报.2010,21(4):99-103.
    王永炎.黄土与第四纪地质.西安:陕西人民出版社,1982.
    王志杰,骆亚生,杨永俊.不同地区非饱和黄土动力结构性研究.岩土力学,2010,31(8):2459-2464.
    王清,王凤艳,肖树芳.土微结构特征的定量研究及其在工程中的应用.成都理工学院学报,2001,28(4):148-153.
    王念秦,罗东海,姚勇等.马兰黄土动强度及其微结构变化实验.工程地质学报,2011,19(4):467-471.
    王现国.豫西东部黄土工程特性研究.水文地质工程地质2005,32(2):58-61.
    吴志刚,党进谦,高建勇.非饱和黄土结构强度特性的试验研究.路基工程,2007(5):77-78.
    吴志刚.非饱和黄土结构强度与抗剪强度的试验研究:[硕士学位论文].咸阳市:西北农林科技大学,2007.
    许领,戴福初,金艳丽.从非饱和土力学角度探讨湿陷机制.岩土工程学报,2009,36(4):62-65.
    谢星,赵法锁,王艳婷,林斌,王东红.结构性Q2,Q3黄土的力学特性对比研究.西安科技大学学报,2006,26(4):451-455.
    杨红霞,王光伟,申民.鲁中黄土结构强度特征与动态库仑定律.济南大学学报,2004,18(2):179-181.
    杨运来.黄土湿陷机理的研究.中国科学,1998,(7):756-765.
    颜斌.洛川剖面黄土的结构性及其力学特征研究:[博士学位论文].西安:长安大学,2010.
    袁丽侠.宁夏南部黄土的特殊工程性质及防治综述.工程地质学报,2003,11(1):58-63.
    张宗祜.我国黄土显微结构研究.地质学报,1964,44(3):357-366.
    张宗祜.黄土湿陷变形过程中微结构变化特征及湿陷性评价.国际交流地质学术论集,1985,12-15.
    张茂花,谢永利,刘保健.增湿时黄土的抗剪强度特性分析.岩石力学与工程学报,2006,27(7):1195-1200.
    查甫生,刘松玉,杜延军等.黄土湿陷过程中微结构变化规律的电阻率法定量分析.岩土力学,2010,31(6):1692-1698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700