用户名: 密码: 验证码:
大跨屋盖结构风致振动分析及等效静力风荷载研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨屋盖结构体型各异,且具有质量轻、柔度大、阻尼小、振型密集等一系列特点,其风荷载分布、风振响应分析及等效静力风荷载的计算都具有特殊性。本文通过随机振动理论分析、风洞动态测压试验和工程案例计算,给出了大跨屋盖结构抗风类型划分标准,提出了大跨屋盖结构风振响应和等效静力风荷载计算的SCQC法和CLRC法,并进行了多目标等效静力风荷载的研究。本文的主要研究内容如下:
     1.大跨屋盖结构及其抗风分析方法回顾:对大跨屋盖结构的发展概况进行了总结,并对历年来大跨屋盖结构的风毁事件进行了回顾。在对大跨屋盖结构的表面风荷载、风振响应和等效静力风荷载研究现状进行系统总结和比较的基础上,指出了各种方法优缺点和适用条件。针对目前大跨屋盖结构抗风研究存在的不足和需要改进之处,引申出本文需要进行的研究工作。
     2.大跨屋盖结构风洞动态测压试验:以一大跨屋盖结构动态测压风洞试验为例,介绍了风洞动态测压试验的基本原理和数据处理方法。对模型制作、测点布置、系统要求、试验安排以及风洞测压数据到实际结构风荷载的换算等一系列过程进行了较详细的介绍和分析。另一方面,由于频域分析需要将时程数据转换为功率谱的形式,文中给出了结构模态力谱的计算公式。
     3.大跨屋盖结构抗风类型划分:考虑到大跨屋盖结构自身特性的差异、不同屋盖对风的敏感程度的差异、以及各种风振分析和等效静力风荷载计算方法的适用性,对大跨屋盖结构抗风类型进行了系统的划分。提出了保障率的概念,并根据大跨屋盖结构平均响应、脉动风背景响应和脉动风共振响应所占的比重,将大跨屋盖结构抗风类型划分为四类。进一步给出各分类的划分标准,指出每种类型适用的抗风分析方法,选择与之对应的抗风分析方法,可以同时兼顾效率和精度。
     4.大跨屋盖结构考虑模态耦合效应的共振SCQC法:针对目前大跨屋盖结构考虑共振响应模态耦合效应计算方法的现状,本文提出一种简化的风振计算方法,称为简化CQC法(简称:SCQC法)。SCQC法考虑了各共振模态的耦合效应,具有较高的计算精度。本文推导了模态频响传递函数和模态力谱实部乘积和虚部乘积对响应方差贡献的计算公式,该公式不需要进行传统CQC法复杂的积分过程,进行简单的求和运算就能得到模态耦合项对响应方差的贡献,极大提高了计算效率,推导公式过程中所作的简化对于大跨屋盖结构也是合理的。
     5.大跨屋盖结构风振响应和等效静力风荷载CLRC法:本文通过对动力方程的变换,得到广义恢复力向量,将其当作新的输入荷载,可将动力方程变为拟静力方程,进而可采用本文提出的一致LRC法(简称:CLRC法)进行风振响应和等效静力风荷载的求解。CLRC法可以与任何风振响应计算方法相适应,关键是获得广义恢复力协方差矩阵。当采用时域法时,得到结构的整体动态响应,可直接计算位移响应的协方差矩阵,进而得到广义恢复力的协方差矩阵;当采用频域法时,广义恢复力的协方差矩阵可以根据模态响应协方差矩阵计算得到。特别对于需要同时考虑背景分量和共振分量的结构,CLRC法中的三分量方法,考虑了模态耦合效应,其计算结构风振响应精度较高,与CQC方法误差非常小;同时,通过广义恢复力协方差矩阵的分别求解,在计算效率上远高于CQC方法。
     6.大跨屋盖结构多目标等效静力风荷载方法:由于大跨屋盖多振型参与结构风振,结构响应往往不能同时到达极值。在单目标等效静力风荷载的作用下,仅仅等效目标的静力响应与动力响应极值相等,其他目标响应与实际动力响应极值常常相差较大。在分析以往多目标等效静风荷载研究的基础上,提出了一种新的多目标等效静力风荷载计算方法。该方法选择广义恢复力的本征模态作为构造多目标等效静力风荷载的基本向量,并引入约束方程组和权值因子,根据最小二乘法,可以得到这些基本向量的最优组合系数。该方法既解决了多目标等效静力风荷载问题,又保证了所得等效静力风荷载分布较为合理。
     最后,对本文的主要研究成果进行了总结,并讨论了下一步需要进行的研究工作。
Long-span roof structures are composed of facilities of different structures and shapes, with the characteristics of light weight, large flexibility, small damping, closed natural frequencies and so on. Hence their wind load distribution, wind-induced vibration analysis and equivalent static wind loads are unique. In this article, based on the theory of random vibration, wind tunnel test and engineering projects, wind-resistant types classification criterion was given for long-span roof structures, also Simplified-CQC and Consistent-LRC methods were proposed for wind-induced vibration and equivalent static wind loads, finally universal equivalent static wind loads research was conducted. The main contents are as follows:
     1. Long-span roof structures and their wind resistance analysis method were reviewed. Based on the systematical summary and comparison for surface wind loads, wind-induced vibration and equivalent static wind loads of the long-span roof structures, the advantages and disadvantages of each method and application requirements were pointed out. In view of deficiencies and improvement of the wind-resistant research, the needed research work was extended.
     2. The wind tunnel dynamic pressure test of a long-span roof structure was taken as an example. The principle and data processing method for wind tunnel test were introduced. In addition, the structure modal force spectrum calculation formula was given to facilitate frequency domain analysis of structral respinses.
     3. Wind-resistant types for long-span roof structures were classified systematically considering the differences of characteristics, the sensitivity to wind, and the wind vibration analysis. The concept of guarantee rate was defined, and according to the proportion of average response, background response and resonant response, wind-resistant types were classified into four kinds. For any type, the corresponding wind-resistant analysis method will be choosen, which can make a better compromise between the efficiency and accuracy.
     4. The resonant SCQC method of long-span roof structures considering modal coupling effects was presented. The response variance calculation formula was given, which can consider the response variance contribution by modal coupling effects through simple summations instead of complex integration. Hence the calculation efficiency was greatly improved. Furthermore, the process of deducing the formula of simplified for long-span roof structures is reasonable, the calculation precision is also warranted.
     5. The CLRC method for wind-induced vibration and equivalent static wind loads of long-span roof structures was presented. The CLRC method can be adapted to any wind vibration response calculation method, and the key is to get generalized recovery force covariance matrix. Especially for the need to simultaneously consider the background component and the resonant component structure, modal coupling effects were included in the CLRC method. At the same time, by solving the generalized recovery force covariance matrix respectively, thus the calculation efficiency is much higher than that of CQC method.
     6. Based on the analysis of the past universal equivalent static wind loads, a new method of universal equivalent static wind loads was addressed. In this method, the generalized recovery force mode was selected as the basic vectors, and a set of constraint equations and weight factor was introduced. Using the least square method, optimal combination coefficient for the basic vector can be obtained. The method not only solves problems of the universal equivalent static wind loads, but also ensures that the equivalent static wind load distribution be more reasonable.
     Finally, the main research results were summarized, and further research work that will be carried out was discussed.
引文
[1]张相庭.结构风压和风振计算[M].上海:同济大学出版社,1985.
    [2]Yasui H, Marukawa H, Katagiri J. Study of wind-induced response of long-span structure [J]. Journal of Wind Engineering and Industrial Aerodynamics.1999,83:277-288.
    [3]Holmes J D. Wind loading of structures [M]. London:Spon Press,2001.
    [4]李元齐,董石麟.大跨网壳结构抗风研究现状[J].工业建筑.2001,3(5):50-53.
    [5]项海帆.结构风工程研究的现状和展望[J].振动工程学报.1997,10(3):258-263.
    [6]贺德馨.我国风工程研究现状与展望[J].力学与实践.2002,24(4):10-20.
    [7]完海鹰,黄柄生.大跨屋盖[M].北京:中国建筑工业出版社,2008.
    [8]沈世钊.大跨空间结构的发展-回顾与展望[J].土木工程学报.1998,31(3):5-14.
    [9]徐良炎.我国台风灾害的初步分析[J].气象.1994(10):50-55.
    [10]黄本才.结构抗风分析原理及应用[M].上海:同济大学出版社,2008.
    [11]吴瑾,夏逸鸣,张丽芳.土木工程结构抗风设计[M].北京:科学出版社,2007.
    [12]程志军,楼文娟,孙炳楠等.屋面风荷载及风致破坏机理[J].建筑结构学报.2000,21(4):39-47.
    [13]GB50009-2001.建筑结构荷载规范[S].北京:中国建筑工业出版社,2006.
    [14]Murakami S, Mochida A. Three Dimensional Numerical Simulation of Air flow around a Cubic Model By Means of Large Eddy Simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics.1987,25:291-305.
    [15]Easom G. Improved turbulence models for computational wind engineering[D]. Nottingham:University of Nottingham,2000.
    [16]杨伟,顾明.高层建筑三维定常风场数值模拟[J].同济大学学报.2003,31(6):647-653.
    [17]王辉,陈水福,唐锦春.低层双坡屋面房屋表面风压的数值模拟[J].浙江大学学报(工学版).2003,37(6):634-638.
    [18]彪仿俊.建筑物表面风荷载的数值模拟研究[D].杭州:浙江大学建筑工程学院,2005.
    [19]孙斌.大跨屋盖建筑开孔风致平均内压的数值模拟研究[D].浙江大学建筑工程学院,2006.
    [20]贺德馨.风工程与工业空气动力学[M].北京:国防工业出版社,2006.
    [21]Richardson G M. Surry D. The silsoe structures buildings:comparison between full-scale and wind-tunnel data[J]. Journal of Wind Engineering and Industrial Aerodynamics.1994,51:157-176.
    [22]Richardson G M, Blackmore P A. The silsoe structures building:comparison of 1:100 model-scale data with full-scale data[J]. Journal of Wind Engineering and Industrial Aerodynamics.1995,57:191-201.
    [23]Richards P J, Hoxey R P, Wanigaratne B S. The effect of directional variations on the observed mean and rms Pressure coefficients [J]. Journal of Wind Engineering and Industrial Aerodynamics.1995,54/55:359-367.
    [24]Dalley S. Suface pressure spectra on a model of the silsoe structures building and comparison with full-seale[J]. Journal of Wind Engineering and Industrial Aerodynamics. 1996,60:177-187.
    [25]Tieleman H W, Surry D, Mehta K C. Full/model-scale comparison of surface pressures on the texas tech experimental building [J]. Journal of Wind Engineering and Industrial Aerodynamics.1996,61:1-23.
    [26]Tieleman H W. Model/full scale comparison of pressures on the roof of the TTU experimental building[J]. Journal of Wind Engineering and Industrial Aerodynamics. 1996,65:133-142.
    [27]Cheung J C K, Holmes J D, Melbourne W H. Pressures on a 1/10 scale model of the Texas Tech building[J]. Journal of Wind Engineering and Industrial Aerodynamics. 1997,69/70/71:529-538.
    [28]Ham H J, Bienkiewicz B. Wind tunnel simulation of TTU flow and building roof Pressure[J]. Journal of Wind Engineering and Industrial Aerodynamics.1998,77/78: 119-133.
    [29]Endo M, Bienkiewicz B, Ham H J. Wind tunnel investigation of point pressure on TTU test building[J]. Journal of Wind Engineering and Industrial Aerodynamics.2006,94: 553-578.
    [30]沈国辉,孙炳楠,楼文娟.复杂体型大跨屋盖结构的风荷载分布[J].土木工程学报.2005,38(10):39-43.
    [31]沈国辉,孙炳楠,楼文娟.体育场看台挑篷的风荷载及干扰效应分析[J].空气动力学学报.2005,23(4):490-495.
    [32]余世策,楼文娟,孙炳楠.大跨屋盖结构风洞试验模型的设计方法讨论[J].建筑结 构学报.2005,26(4):92-98.
    [33]周暄毅,顾明.上海铁路南站屋盖结构风致抖振响应参数分析[J].同济大学学报(自然科学版).2006,34(5):574-579.
    [34]UematsuY, Watanabe K, Sasakim A, et al. Wind-induced dynamic response and resultant load estimation of a circular flat roof[J]. Journal of Wind Engineering and Industrial Aerodynamics.1999,83:251-261.
    [35]UematsuY, Yamada M, Inoue A, et al. Wind loads and wind-induced dynamic behavior of a single-layer latticed dome[J]. Journal of Wind Engineering and Industrial Aerodynamics.1997,66:227-248.
    [36]UematsuY, Kuribara O, Yamada M, et al. Wind-induced dynamic behavior and its load estimation of a single-layer latticed dome with a long span[J]. Journal of Wind Engineering and Industrial Aerodynamics.2001,89:1671-1687.
    [37]Lazzari M, RenatoV S, Vitaliani R V. Non-linear dynamic anaiysis of cable-suspended structures subjected to wind actions[J]. Computers and Structures.2001,79:953-969.
    [38]王珩,孙炳楠,楼文娟等.台州体育中心屋盖的风振系数计算[J].工业建筑.2005,35(4):82-84.
    [39]李庆祥,楼文娟,杨仕超等.大跨单层球面网壳的风振系数及其参数分析[J].建筑结构学报.2006,27(8):65-72.
    [40]李国豪.工程结构抗震动力学[M].上海:上海科学技术出版社,1980.
    [41]谷口修,尹传永.振动工程大全[M].北京:机械工业出版社,1983.
    [42]Nakamura O, Tamura Y, Miyashita K. A case study of wind pressure and wind-induced vibration of a large span open-type roof[J]. Journal of Wind Engineering and Industrial Aerodynamics.1994,52:237-248.
    [43]陈波.大跨屋盖结构等效静风荷载精细化理论研究[D].哈尔滨:哈尔滨工业大学,2006.
    [44]Nakayama M, Sasaki Y, Masuda K, et al. An efficient method for selection of vibration modes contributory to wind response on dome-like roofs [J]. Journal of Wind Engineering and Industrial Aerodynamics.1998,73:31-43.
    [45]何艳丽,董石麟,龚景海.空间网格结构频域风振响应分析模态补偿法[J].工程力学.2002,19(4):1-6.
    [46]黄明开,倪振华,谢壮宁.里兹向量直接叠加法在圆拱顶屋盖风致响应分析中的应用.第十一届全国结构风工程学术会议论文集.2003,321-326.
    [47]黄明开,倪振华,谢壮宁.大跨圆拱屋盖结构的风振响应分析[J].振动工程学报.2004,17(3):275-279.
    [48]陈波,武岳,沈世钊.Ritz-POD法的原理及应用[J].计算力学学报.2007,24(4):499-504.
    [49]Davenport A G. The missing links[C]. Wind engineering into 21st Century.1993,3 (13): 86-93.
    [50]Zhou Y, Kareem A. Gust loading factor:new model[J]. Journal of Structural Engineering.2001,127(2):168-175.
    [51]Zhou Y, Kareem A, Gu M. Equivalent static buffeting wind loads on structure[J]. Journal of Structural Engineering.2000,126(8):989-992.
    [52]Holmes J D. Effective static load distributions in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics.2002,90(2):91-109.
    [53]Davenport A G Gust loading factors[J]. Journal of the Structural Division, ASCE. 1967,93(3):11-34.
    [54]Simiu E. Gust factors and along-wind pressure correlations [J]. Structural Division. 1973,99(4):773-783.
    [55]Davenport A G. How can we simplify and generalize wind loads [J]. Journal of Wind Engineering and Industrial Aerodynamics.1995,54(2):657-669.
    [56]Zhang Xiangting. The current Chinese code on wind loading and comparative study [J]. Journal of Wind Engineering and Industrial Aerodynamics.1988,30:133-142.
    [57]张相庭.工程结构风荷载理论和抗风设计手册[M].上海:同济大学出版社,1990.
    [58]Kasperski M, Niemann H J. The LRC (load-response-correlation)-method a general method of estimating unfavourable wind load distributions for linear and non-linear structural behaviour [J]. Journal of Wind Engineering and Industrial Aerodynamics. 1992,43(1-3):1753-1763.
    [59]Kasperski M. Extreme wind load distributions for linear and nonlinear design[J]. Engineering Structures.1992,14:27-34.
    [60]Ginger J D, Reardon G F, Whitbread B J. Wind load effects and equivalent pressures on low-rise house roof[J]. Engineering Structure.2000,22:638-646.
    [61]Killen G P, Letchford C W. A parametric sutdy of wind load on grandstand roofs[J]. Engineering Structure.2001,23:725-735.
    [62]Ginger J D. Wind loads and response of grandstand roofs[C]. Proceedings of the 11th International Conference on wind Engineering. Lubbock,TX.2003:1603-1610.
    [63]Holmes J D, Kasperski M. Effective distributions of fluctuating and dynamic wind load[J]. Australian Civil/Structural Engineering Transactions.1996,38(3):83-88.
    [64]Holmes J D. Effective static load distributions in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics.2002,90(2):91-109.
    [65]Holmes J D. Wind loading of structures[M]. Taylor & Francis Group,2007.
    [66]Solari G. Gust buffeting:Peak wind velocity and equivalent pressure[J]. Journal of Structural Engineering.1993,119(2):365-382.
    [67]Solari G. Gust buffeting Ⅱ:Dynamic along-wind response[J]. Journal of Structural Engineering.1993,119(2):383-397.
    [68]Piccardo G. Solari G.3D wind-excited response of slender struetures:closed-form solution[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2004,92:335-357.
    [69]Gunnarsson J, Wahlund R, Uematsu Y, et al. Design wind loads for structural frames of flat long-span roofs:gust loading factor for the beams supporting roofs[J]. Journal of Wind Engineering and Industrial Aerodynamics.1997,66(1):35-50.
    [70]Uematsu Y, Yamada M, Karasu A.Design wind loads for structural frames of flat long-span roofs:gust loading for a structurally integrated type[J]. Journal of Wind Engineering and Industrial Aerodynamics.1997,66(2):155-168.
    [71]Tamura Y, Takeshi O, Hisashi O, et al. Wind loading standards and design criteria in Japan[J]. Journal of Wind Engineering and Industrial Aerodynamics.1999,83:555-566.
    [72]Uematsu Y, Kuribara O, Yamada M, et al. Wind-induced dynamic behavior and its load estimation of a single-layer latticed dome with a long span[J]. Journal of Wind Engineering and Industrial Aerodynamics.2001,89:1671-1687.
    [73]Kareem A, Zhou Yin.Gust loading factor-Past, Present and future[J]. Journal of Wind Engineering and Industrial Aerodynamics.2003,91:1301-1328.
    [74]Letchford C W, Killen G P. Equivalent wind loads for cantilevered grandstand roofs [J]. Engineering Structure.2002,24:207-217.
    [75]谢壮宁,方小丹,倪振华.超高层建筑的等效静风荷载-扩展荷载响应相关方法[J].振动工程学报.2008.21(004):398-403.
    [76]陈贤川.大跨度屋盖结构风致响应和等效风荷载的理论研究及应用[D].杭州:浙江大学建筑工程学院,2005.
    [77]周晅毅,顾明.大跨度屋盖结构考虑模态耦合的抖振共振响应分析方法[J].振动工程学报.2006,19(2):179-183.
    [78]张建胜,武岳,陈波等.Ritz-POD法及其在大跨度屋盖结构风振分析中的应用[J].沈阳建筑大学学报.2005,21(6):601-605.
    [79]Katsumura A, Tamura Y, Nakamura O. Maximum wind load effects on a large-span cantilevered roof[J]. Structural Engineering International.2005,15(4):248-252.
    [80]Katsumura A, Tamura Y, Nakamura O. Universal wind load distribution simultaneously reproducing largest load effects in all subject members on large-span cantilevered roof[J]. Journal of Wind Engineering and Industrial Aerodynamics.2007, 95(9/10/11):1145-1165.
    [81]Hu Xiaohong. Wind loading effects and equivalent static wind loading on low rise buildings[D]. Texas:Texas Tech University,2006.
    [82]梁枢果,吴海洋,郭必武等.大跨度屋盖结构等效静力风荷载数值计算方法[J].华中科技大学学报:自然科学版.2008,36(4):110-114.
    [83]陈波,杨庆山,武岳.大跨空间结构的多目标等效静风荷载分析方法[J].土木工程学报.2010,43(3):62-67.
    [84]周暄毅.大跨度屋盖结构风荷载及风致响应研究[D].上海:同济大学土木工程学院,2004.
    [85]Barnard R H. Wind loads on cantilevered roof structures[J]. Journal of Wind Engineering and Industrial Aerodynamics.1981,8:21-30.
    [86]陆锋.大跨度平屋面结构的风振响应和风振系数研究[D].浙江大学建筑工程学院,2001.
    [87]Simiu E, Scanlan R H. Wind Effects on Structure[M]. New York:Wiley.1996.
    [88]埃米尔·希缪,罗伯特·H·斯坎伦.风对结构的作用-风工程导论[M].刘尚培译.上海:同济大学出版社,1992.
    [89]Counihan J. An improved method of simulating an atmospheric boundary layer in a wind tunnel[J]. Atmospheric Environment.1969,3:197-214.
    [90]Sill B L. Turbulent boundary layer profiles over uniform rough surfaces[J]. Journal of Wind Engineering and Industrial Aerodynamics.1988,31:147-163.
    [91]Fnag C, Sill B L. Aerodynamic roughness length:correlation with roughness elements[J]. Journal of Wind Engineering and Industrial Aerodynamics.1992,41-44:449-460.
    [92]JiaY Q, Sill B L, Reinhold T A. Effects of surface roughness element spacing on boundary-layer velocity profile Parameters[J]. Journal of Wind Engineering and Industrial Aerodynamics.1998,73:215-230.
    [93]Cermak J E. Progress in physical modeling for wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics.1995,54/55:439-455.
    [94]Nishi A, Miyagi H, Higuchi K. A computer-controlled wind tunnel. [J]. Journal of Wind Engineering and Industrial Aerodynamics.1993,46:837-841.
    [95]Nishi A, Miyagi H. Computer controlled wind tunnel for wind engineering applications. Journal of Wind Engineering and Industrial Aerodynamics.1995,54/55:493-504.
    [96]Nishi A, Kikugawa H, Matsuda Y, et al. Turbulence control in multiple-fan wind tunnels[J]. Journal of Wind Engineering and Industrial Aerodynamics.1997,67/68: 861-872.
    [97]Nishi A, Kikugawa H, Matsuda Y, et al. Active control of turbulence for an atmospheric boundary layer model in a wind tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics.1999,83:409-419.
    [98]Ozono S, Miyagi H, Nishi A. Simulation of turbulent flow in a wind tunnel of multi-fan type[C]. The Second International Symposium on Wind and Structures. Busan, Korea, August 21-23,2002:169-176.
    [99]Hellman G. Uber die bewegung der luft in den untersten schichten der atmosphare[J]. Meteorol Z.1916,34:273-278.
    [100]Davenport A G. The relationship of wind structure to wind loading[C]. Proc. of the Symposium on Wind Effect on Building and Structures. London,1965,1 (1):54-102.
    [101]Gumley S J. Tubing systems for the measurement of fluctuating pressure in wind engineering[D]. Oxford:University of Oxford,1981.
    [102]Melbourne W H. The structural & Environmental effects of wind on building & structures.1984.
    [103]张亮亮.高层建筑风荷载及其动态响应研究[D].成都:西南交通大学土木工程学院,1994.
    [104]吴太成.大跨屋面风荷载及其风振响应研究[D].成都:西南交通大学土木工程学院,2005.
    [105]谢壮宁,顾明.脉动风压测压系统的优化设计[J].同济大学学报.2002,20(2):157-163.
    [106]Holmes J D, Lewis R E. Optimization of dynamic-pressure-measurement systems: single point measurements[J]. Journal of Wind Engineering and Industrial Aerodynamics.1987,25:249-273.
    [107]Holmes J D, Lewis R E. Optimization of dynamic-pressure-measurement systems Ⅱ: parallell tube manifold systems[J]. Journal of Wind Engineering and Industrial Aerodynamics.1987,25:275-290.
    [108]高品贤.测试信号分析处理方法与程序[M].成都:西南交通大学出版社,1999.
    [109]星谷胜.随机振动分析[M].常保琦译.北京:地震出版社,1997.
    [110]庄表中,王行新.随机振动概论[M].北京:地震出版社,1982.
    [111]R.克拉夫,J.彭津.结构动力学[M].第二版.王光远等译校.高等教育出版社,2006:183-185.
    [112]Steven M K. Modern spectral estimation:theory and application[M]. London:Prentice Hall.2005.
    [113]Petre S, Randolph M. Spectral analysis of signals[M]. London:Prentice Hall.2005.
    [114]Harris R I. The classification of structures for assessment and codification of wind effects[C]. Wind Engineering:Proceedings of the Fifth International Conference, Colorado, USA.1982,2:1257-1269.
    [115]ASCE7-05. Minimum design loads for buildings and other structures[S]. American Society of Civil Engineers.2006.
    [116]陈波,杨庆山,武岳.大跨屋盖结构抗风类型划分方法及应用[J].北京交通大学学报.2011,35(4):66-72.
    [117]单层柱面网壳结构抗风类型划分[M].北京:北京交通大学土木建筑工程学院,2010.
    [118]方勇.模态加速度法在大跨屋盖风荷载及其动态响应中的应用[D].汕头:汕头大学,2003.
    [119]方勇,倪振华,谢壮宁.模态加速度法在屋盖结构风致响应分析中的应用[J].应用力学学报.2004,21(2):122-125.
    [120]Lin J H, Zhang W S, Li J J. Structural response to arbitrarily coherent staionary random excitations [J]. Computers and Structures.1994,50(5):629-633.
    [121]林家浩,钟万勰.关于虚拟激励法与结构随机响应的注记[J].计算力学学报.1998,15(2):217-223.
    [122]陈贤川,赵阳,董石麟.基于虚拟激励法的空间网格结构风致抖振响应分析[J].计算力学学报.2006,23(6):684-689.
    [123]孙建梅,叶继红,程文瀼等.考虑空间相干的虚拟激励法在大跨度空间结构随机振动分析中的应用[J].铁道科学与工程学报.2007,4(5):11-21.
    [124]谢壮宁.风致复杂结构随机振动分析的一种快速算法-谐波激励法[J].应用力学学报.2007,24(2):263-267.
    [125]李玉学.大跨屋盖结构风振响应和等效静力风荷载关键性问题研究[D].北京:北京交通大学.2010.
    [126]Solari G Equivalent wind spectrum technique:theory and applications[J]. Journal of Structural Engineering.1988,114(6):1303-1323.
    [127]Barnard R H. Predicting dynamic wind loading on cantilevered canopy roof structures[J]. Journal of Wind Engineering and Industrial Aerodynamics.2000, 85:47-57.
    [128]Lam K M, To A P. Generation of wind loads on a horizontal grandstand roof of large aspect ratio[J]. Journal of Wind Engineering and Industrial Aerodynamics.1995, 54/55:345-357.
    [129]黄本才,齐辉,陈勇.大悬挑屋盖脉动风模态力谱与位移谱[J].同济大学学报.2004,32(5):622-626.
    [130]刑静忠等.Ansys分析实例与工程应用[M].北京:机械工业出版社,2004.
    [131]王新敏.Ansys工程结构数值分析[M].北京:人民交通出版社,2007.
    [132]傅继阳,谢壮宁,李秋胜等.大跨屋盖结构考虑模态耦合的等效静力风荷载[J].力学学报.2007,39(6):781-786.
    [133]陈波,武岳,沈世钊.背景响应、共振响应定义及其相关性分析方法[J].振动工程学报.2008,21(2):140-145.
    [134]李玉学,杨庆山,田玉基.大跨屋盖风致背景响应和共振响应的模态耦合[J].振动工程学报.2009,22(6):614-619.
    [135]张建胜,武岳,沈世钊.单层网壳结构风振响应的模态耦合效应分析[J].振动与冲击.2006,25(6):39-42
    [136]Chen X Z, Kareem A. Coupled dynamic analysis and equivalent static wind loads on buildings with three-dimensional modes[J]. Journal of Structural Engineering. 2005,131(7):1071-1081.
    [137]顾明,周暄毅.大跨度屋盖结构等效静力风荷载方法及应用[J].建筑结构学报.2007,28(1):125-129.
    [138]Wilson E L. A replacement for the SRSS method in seismic[J]. EESD.1981,9:187-194.
    [139]Kiureghian A D. Response spectrum method for multi-support seismic excitations [J]. EESD.1992,21:713-740.
    [140]陈波,武岳,沈世钊.大跨度屋盖结构等效静力风荷载中共振分量的确定方法研究[J].工程力学.2007,24(1):51-55,66.
    [141]Kiureghian A D. Structural response to stationary excitation[J]. Journal of the Engineering Mechanics Division.1980,106(6):1195-1213.
    [142]杨世杰.风振响应分析中振型组合方法选取的指标[D].北京:北京交通大学,2008.
    [143]李玉学,杨庆山,田玉基.基于能量的大跨屋盖结构共振响应模态耦合效应分析[J].工程力学.2010,27(3):85-90.
    [144]王国砚,黄本才,林颖儒等.基于CQC方法的大跨屋盖结构随机风振响应计算[J].空间结构.2003,9(4):22-26.
    [145]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
    [146]曾祥金,吴华安.矩阵分析及其应用[M].武汉:武汉大学出版社,2007.
    [147]李方慧.大跨屋盖结构实用抗风设计[M].哈尔滨:黑龙江大学出版社,2008.
    [148]Fu J, Xie Z, Li Q, Equivalent static wind loads on long-span roof structures[J]. Journal of Structural Engineering.2008,134:1115.
    [149]Tamura Y, Kikuchi H, Hibi K. Extreme wind pressure distributions on low-rise building models[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2001,89:1635-1646.
    [150]Tamura Y, Kikuchi H, Hibi K. Actual extreme pressure distributions and LR.C formula[J]. Journal of Wind Engineering and Industrial Aerodynamics.2002, 90:1959-1971.
    [151]陆峰.大跨度平屋面结构的风振响应和风振系数研究[M].杭州:浙江大学建筑工程学院,2001.
    [152]Ray W C, Joseph P. Dynamics of Structures [M].3rd ed. Computers & Structures, Inc, University Ave. Berkeley.2003.
    [153]Chen Bo, Wu Yue, Shen Shizhao. A new method for wind-induced response analysis of long span roofs[J]. International Journal of Space Structures.2006,21(2):93-101.
    [154]Li Y X, Yang Q S, Tian Y J. Identification of dominant modes to wind-induced vibration response of large-span roofs[C]. The 10th International Symposium on Structural Engineering for Young Experts. Changsha, Hunan, China.2008:1051-1056.
    [155]Wu Y, Zhang J S, Chen B, et al. Identification of the dominant vibration modes of single-layer reticulated shells under wind action [J]. International Journal of Space Structures.2007,22(2):123-132.
    [156]田玉基,杨庆山.大跨度屋盖结构脉动风振响应的参与振型[J].哈尔滨工业大学学报.2009,41(6):146-149.
    [157]周晅毅,顾明,李刚.基于修正LRC的响应分组法求解等效静力风荷载[J].振动工程学报.2010,23(2):158-166.
    [158]Katsumura A, Tamura Y, Nakamura O. Universal wind load distribution simultaneously reproducing maximum load effects in all subject members on large span cantilevered roof[C].The Fourth European and African Conference on Wind Engineering. ITAN AS CRM Prague,11-15 July.2005.
    [159]Tamura Y, Ueda H, Kikuchi H, et al. Proper orthogonal decomposition study of approach wind-building pressure correlation[J]. Journal of Wind Engineering and Industrial Aerodynamics.1997,72:421-431.
    [160]Bienkiewicz B, Tamura Y, Ham H J, et al. Proper orthogonal decomposition and reconstruction of multi-channel roof pressure[J], Journal of Wind Engineering and Industrial Aerodynamics.1998,54/55:369-381.
    [161]Tamura Y, Suganuma S, Kikuchi H, et al. Proper orthogonal decomposition of random wind pressure field[J]. Journal of Fluids and Structures.1999,13(78):1069-1095.
    [162]李小康,倪振华,谢壮宁.本征正交分解用于屋盖风振分析的模态截断准则[J].振动工程学报.2009,22(3):274-279
    [163]吴迪,武岳,张建胜.大跨屋盖结构多目标等效静风荷载分析方法[J].建筑结构学报.2011,32(4):17-23.
    [164]周暄毅,顾明,李刚.加权约束最小二乘法计算等效静力风荷载[J].同济大学学报(自然科学版).2010,38(10):1403-1408.
    [165]谢国瑞.线性代数[M].上海:华东理工大学出版社,1996.
    [166]靳全勤,张华隆.线性代数[M].上海:上海交通大学出版社,2005.
    [167]魏木生.广义最小二乘问题的理论和计算[M].北京:科学出版社,2006.
    [168]张志涌.精通MATLAB[M].北京:北京航空航天大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700