用户名: 密码: 验证码:
基于高分辨率遥感影像的南京典型城区绿地信息提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究是高分辨率遥感影像在城市绿地监测与制图中的具体应用,同时验证了高分数据在该应用中的有效性。本文以江苏省南京市为研究区,利用高分辨率QuickBird遥感影像,对传统的影像分类方法进行改进,精确地提取了城市绿地的类型和面积。研究内容主要分为三个方面:遥感影像中阴影的去除、NDVI与阈值法结合提取植被信息、以及GEMI(?)旨数的改进。
     遥感数据在城市植被制图中的应用已有数十年的历史。最近,随着各种诸如QuickBird的高分辨率遥感影像越来越容易获得,更高分辨率的城市土地利用制图也获得了发展。高分辨率卫星遥感影像将以它的高时效和低成本等特性更好的服务于各个规划部门。准确和细致的市区土地利用信息对许多市政活动,如城市土地管理、城市规划、城市景观类型分析、环境研究等,都有着重要的作用,因此,城市绿地信息的精确提取有着十分重要的实际意义。本文主要研究内容和结论如下:
     (1)遥感影像中阴影区域的检测和去除。
     如何解决阴影问题是数字图像处理过程的难点之一。遥感图像中阴影是由于光源发出的直射光完全或部分被阻塞产生的,其中包括高层物体的投影和该物体本身投射在地面上的阴影。阴影对遥感影像的影响一直以来就是遥感研究中的一个重要问题。由于被遮挡物体光谱信息的减少或者完全损失,对这些对象的分类和解释就面临着巨大的困难。阴影问题对城市环境的高空间分辨率遥感影像的分析尤为重要。建筑物,桥梁,高塔和树木等较高的地物都在很大程度上增强了阴影效果。遥感影像中的阴影检测和去除技术正在进一步发展。阴影检测是确定遥感影像中阴影像元的过程,而阴影的去除则是一个恢复阴影区域的光谱信息以重新获得无阴影图像的过程。
     (2)结合归一化植被指数(NDVI)和域值法提取城市绿地的种类和面积。
     首先对遥感影像进行处理,计算出影像的NDVI,并提取出NDVI值大于0.036的象元。这些象元中的大部分属于植被,但范围并没有包含所有的城市植被。为了得到所有的植被象元,我们将NDVI阂值降低至-0.2,但是在这种情况下,一些在红光与近红外波段与植被光谱特征相似的蓝色和白色金属屋顶会被错分为植被。
     为了纠正这种错分现象,我们将蓝色屋顶、白色屋顶和植被在QuickBird影像四个波段上的光谱特征进行了对比,发现植被在蓝光波段的像元值小于380,我们可利用这点从这三中错分地物中分离出植被。
     另外,杉树与水体和人造草皮操场的光谱存在相似的特征,所以在提取出的NDVI>-0.2并且蓝光波段<380的象元中,仍然存在错分现象。为了解决这个问题,我们对比了这三种地物的光谱信息。经过对比得出通过限定红光波段的值在200到300之间可以从这三种地物中识别出杉树。
     (3)提出一种改进的GEMI指数,提高了分类的精度。
     通过对遥感影像进行处理,得出影像的GEMI指数。基于GEMI指数可以较好的提取出植被,但由于植被和蓝色屋顶的GEMI旨数比较相似,存在错分现象。为了消除植被和蓝色屋顶的错分现象,我们对GEMI指数进行了改进,并加入了条件蓝光波段<380,这种新的方法称作改进的GEMI指数(MGEMI).在城市绿地信息提取中,通过MGEMI旨数的应用,蓝色屋顶带来的影响基本上得以消除。最后,本文对城市绿地监测与制图中NDV、GEMI、MGEMI三种指数的效果进行了对比和分析。
This study is an application of high-resolution remotely sensored data in extracting urban green landscape. In particular, the capabilities of the data are assessed. The study area was in Nanjing, Jiangsu Province, China. The type and area of urban green land was extracted finely for the high resolution of QuickBird image. An improved traditional classification method was developed to extract the urban vegetation more accurately.
     ●QuickBird image and unsurprised classification methods were used to detect the shadow of remotely sensed imagery and enhanced infrared value helped to extract the vegetation pixel under the shadow.
     ●NDVI and spectrums value were combined to extract urban vegetation, including the vegetation type and area.
     ●GEMI was developed to improve the accuracy of extracting the urban vegetation, and the new equation called Modified Global Environment Monitoring Index.
     Remotely sensed data have been used for urban land cover mapping for decades. The recent availability of high spatial resolution imagery from satellite sensors such as QuickBird provides new opportunities for detailed urban land cover mapping at very fine scales. The low and decreasing cost of High Resolution (HR) Remotely Sensed satellite imagery such as QuickBird may motivate planning departments, saving considerable time and money.
     Accurate and detailed land cover information of urban areas is essential for many purposes such as urban land management, urban planning, and urban landscape pattern analysis, environmental study, and others. Thus, the accurate and detailed extraction of urban green land is of great significance. The research content and results were as follows
     (1) Detecting the shadows and recovering the vegetation under shadow.
     The problem of shadowing is a challenge raised in digital image processing. Shadows in a remotely sensed imagery occur when objects totally or partially occlude the direct light from a source of illumination, which include shadows cast on the ground feature by high-rise objects, and self shadows. The effect of shadows in remote sensoring has been an important issue. Great difficulty arises in classification and interpretation of shaded objects in an image because of the reduction or total loss of spectral information of those shaded objects.
     In the monitoring of urban vegetation, the problem of shadowing is particularly significant in high spatial resolution imagery. With the dominance of elevated objects such as buildings, bridges, towers and trees in the landscape, the proportion of the imagery that is affected by shadowing could be relatively large.
     Shadow detection and removal were investigated in remotely sensed imagery. Shadow detection is the process of identifying the shaded pixels in remotely sensed imagery, in the study unsupervised classification used to detect the shadowing area, whereas a new algorithm applied for restoration shadow and recover the vegetation pixels, the radiometric enhancement methods increased the value of infrared spectrum to be and add to the unsupervised classification image to detected the missing vegetation under the high building shadow.
     The new application algorithm is the value of Unsupervised classification+(08*Infrared).With raster attribute editor shows the vegetation pixels as trees under the shadow. Shadow removal is used to restore the spectral information of the shaded areas to obtain a shadow-free image.
     (2) Extract urban vegetation used NDVI and spectrums value.
     When we derived NDVI and got a NDVI value greater than0.036, a huge number of the pixels marking the vegetation is seen, and it contained the majority of vegetation. After collecting the fraction of the remaining vegetation we get a NDVI value greater than-0.2, but in this case the extracted vegetation cover also included some blue and white metal roofs, which have similar spectral characteristics to vegetation in the red and near-infrared band.
     To remove this influence of the roofs, the investigation focused on the value of the three features, blue roofs, white metal roofs, and vegetations in the four bands of QuickBird image. The vegetation value in the blue band shows it should be less than380.
     There was still a problem to extract the pine fir trees which have the similar spectral characteristics to water and artificial playgrounds. There was still a problem to extract the pine fir trees after the application of NDVI>-0.2and Blue band<380. But when we have the value for these three features, we can recognize the pine fir trees in the red band with the value between200and300.
     (3) Developing Global Environmental Monitoring Index (GEMI) to
     improve the accuracy of extraction of urban vegetation
     Global Environmental Monitoring Index (GEMI) has been applied in the study area. It gives good results, but also creates some confusion because of the similar spectral characteristics of blue roofs and vegetation.
     Global Environmental Monitoring Index (GEMI) has been modified to eliminate and remove the blue roofs influence, which have similar spectral characteristics to vegetation, the factor of blue band as Blue band<380added to (GEMI) equation, then the new equation called Modified Global Environmental Monitoring Index (MGEMI). After applying the MGEMI and obtaining the preliminary green space extraction, it seems that most of the effects of the blue roofs have been eliminated. The use of Modified Global Environment Monitoring Index (MGEMI) was compared to the Global Environment Monitoring Index (GEMI) and NDVI in this research for extracting urban green land and was found to be more accurate.
引文
Adams, J. B., Smith, M. O., & Johnson, P. E. (1986). Spectral mixture modeling; a new analysis of rock and soil types at the Viking Lander 1 site. Journal of Geophysical Research,91, 8098-8122.
    Anttonen, S., Sutinen, M.-L. and Heagle, A.S. (1996). Ultrastructure and some plasma membrane characteristics of ozone-exposed loblolly pine needles. Physiologia Plantarum, 98:309-
    Balling Jr., R.C., Cerveny, R.S. and Idso, C.D. (2002), Does the urban CO2 dome of Phoenix, Arizona contribute toits heat island? Geophysical Research Letters, 28:4599-4601.
    Barnsley, M.J. and Barr, S.L. (1996) Inferring Urban Land Use from Satellite Sensor Images Using Kernel-Based Spatial Reclassification, Photogrammetric Engineering and Remote Sensing, Vol. 62, No. 8, pp.949-958.
    Beaubien, J. (1994) Landsat TM Satellite Images of Forests: From Enhancement to Classification, Canadian Journal of Remote Sensing, Vol.20, No.1, pp.17-26.
    Benz, U. C, Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multiresolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready
    information. ISPRS Journal of Photogrammetry & Remote Sensing, 58,239-258.Bijker, W., Tolpekin, V., Ardila, J.,2010. Change detection and uncertainty in fuzzytree crown objects in an urban environment. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 38 (Part 4/C7), (on CD-ROM).
    Blaschke, T., & Strobl, J. (2001). What's wrong with pixels? Some recent developments interfacing remote sensing and GIS. Interfacing Remote Sensing and GIS,6, 12-17.Cardelino, C.A. and Chameides, W.L. (1990), Natural hydrocarbons, urbanization, and urban ozone. Journal of Geophysical Research 95(D9),13,971-13,979.
    Changnon, S. and Demissie, M. (1996), Detection of changes in streamflow and floods resulting from climate fluctuations and land use-drainage changes. Climatic Change,32:411-421.
    Chehbouni, A., Huete, A. R., and Kerr, Y.,1994. A modified soil adjusted vegetation index (MSAVI). Remote Sensing of Environment,48,119-126.
    Chen, D., J. Weeks, and J. Kaiser.2004. Remote sensing and spatial statistics as tools in crime analysis (F. Wang, Editor), Geographic Information Systems and Crime Analysis, Hershey, Pennsylvania, Idea Group Publishing.
    Chen, Y., Wen, D., Jing, L., & Shi, P. (2007). Shadow information recovery in urban areas from very high resolution satellite imagery. International Journal of Remote Sensing, 28(15), 3249-3254.
    Christensen, A., Westerholm, R. and Almen, J. (2001), Measurement of regulated and unregulated exhaustemissions from a lawn mower with and without an oxidizing catalyst: a comparison of two different fuels.Environmental Science and Technology, 35 (11): 2166-2170.
    Civco, D.L., J.D. Hurd, E.H. Wilson, C.L. Arnolld, and M.P. Prisloe, 2002. Quantifying and describing urbanizing landscapes in the Northeast United States, Photogrammetric Engineering & Remote Sensing, 68(10):1083-1090.
    Clark, R. N., Chapter 1:Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, in Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences, (A.N. Rencz, ed.) John Wiley and Sons, New York, p 3-58,1999.
    Cleugh, H.A. and Oke, T.R. (1986), Suburban-rural energy balance comparisons in summer for Vancouver, B.C. Boundary-Layer Meteorology, 36:351-369.Environmental Protection Agency (1994), The quality of our Nation's water: 1992. United States Environmental Protection Agency #EPA-841-S-94-002. Washington, DC:USEPA Office of Water.
    Cochrane, M. A., A. Alencar, M. D. Schulze, C. M. Souza Jr., D. C. Nepstad, P. Lefebvre, and E. A. Davidon,1999. Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science,284,1832-1835.
    Dare, P. M. (2005). Shadow analysis in high-resolution satellite imagery of urban areas Photogrammetric Engineering & Remote Sensing, 71(2), 169-177.
    DigitalGlobe, Inc.2003. QuickBird Imagery Products, Product Guide. DigitalGlobe, Inc., Longmont, Colorado.
    Duggin, M.J. and Robinove, C.J. (1990) Assumptions Implicit in Remote Sensing Data Acquisition and Analysis, International Journal of Remote Sensing, Vol.11, No.10,
    Elnazir Ramadan.(2004).Multitemporal Remote Sensing for land use change around the Rural-Urban Fringe of Shaoxing City of Eastern China. Doctorate theses,Nanjing university China.1-4.
    Escobar, D. E., J. H. Everitt, J. R. Noriega, I. Cavazos, and M. R. Davis.1998. A twelve-band airborne digital video imaging system (ADVIS). Remote Sensing of Environment 66: 122-128.
    Escobar, D. E., J. H. Everitt, J. R. Noriega, M. R. Davis, and I. Cavazos.1997. A true digital imaging system for remote sensing applications. In Proc.16th Biennial Workshop on Color Photography and Videography in Resource Assessment,470-484.
    Everitt, J. H., D. E. Escobar, I. Cavazos I., J. R. Noriega, and M. R. Davis.1995. A three-camera multispectral digital video imaging system. Remote Sensing of Environment 54:333-337.pp.1669-1694.
    Forghanii, A. (1994) A New Technique for Map Revision and Change Detection Using Merged Landsat TM and SPOT Data Sets in an Urban Environment, Asian-Pacific Remote Sensing Journal, Vol.7, No.1, pp.119-127.
    Forster, B.C. (1980b) Urban Residential Land Cover Using Landsat Digital Data, Photogrammetric Engineering and Remote Sensing, Vol.46, No.4, pp.547-558.
    Fritz, L. (1996) The Era of Commercial Earth Observation Satellites, Photogrammetric Engineering and Remote Sensing, Vol.62, No.1, pp.39-45.
    Georgios Mallinis, Nikos Koutsias, Maria Tsakiri-Strati and Michael Karteris,2008 "Object-based Classification usingQuickBird Imagery for Delineating Forest Vegetation Polygons in a Mediterranean Test Site," ISPRS Journal of Photogrammetry & Remote Sensing 63, 237-250(2008)
    Giles, P. (2001). Remote sensing and cast shadows in mountainous terrain PhotogrammetricEngineering & Remote Sensing, 67(7), 833-839.
    GopalaPillai, S., and L. Tian.1999. In-field variability detection and spatial yield modeling for corn using digital aerial imaging. Transaction of the ASAE 42(6):1911-1920.
    Green, K., Kempka, D. and Lackey, L. (1994) Using Remote Sensing to Detect and Monitor Land-Cover and Land-Use Change, Photogrammetric Engineering and Remote Sensing, Vol.60, No.3, pp.331-337.
    Grimm, N.B., J.M. Grove, S.T.A. Pickett, and C.L. Redman, 2000. Integrated approaches to long-term studies of urban ecosystems, BioScience,50(7):571-584.
    Grimmond, C.S.B. and Oke, T.R. (1995), Comparison of heat fluxes from summertime observations in the suburbs of four North American cities. Journal of Applied Meteorology,34:873-889.
    Grimmond, C.S.B., Souch, C. and Hubble, M.D. (1996), Influence of tree cover on summertime surface energy balance fluxes, San Gabriel Valley, Los Angeles. Climate Research,6:45-
    Haack, B., Bryant, N. and Adams, S. (1987) An Assessment of Landsat MSS and TM Data for Urban and Near-Urban Land-Cover Digital Classification, Remote Sensing of Environment, Vol.21, pp.201-213.
    Haohao Zhao*ab, Xuezhi Fenga, Yan Chenc, Shuhe Zhaoa, Pengfeng Xiaoa," 2009 Entropy-based Texture Analysis and Feature Extraction of Urban Street Trees in the Spatial Frequency Domain" SPIE Vol.7495 749513-1
    Hassan, L.A., Ashmore, M.R. and J.N. Bell (1994), Effects of ozone on the stomatal behavior of Egyptian varieties of radish (Raphanus sativus L. cv. Baladey) and turnip (Brassica rapa, L. cv. Sultani). New Phytologyst, 128:243-249.
    Hay, G. J., Blaschke, T., Marceau, D. J., & Bouchard, A. (2003). A comparison of three image-object methods for the multiscale analysis of landscape structure. ISPRS
    Heisler, G.M. (1986), Energy savings with trees. Journal of Arboriculture.12(5):113-125.
    Herold, M., N.C. Goldstein, and K.C. Clarke, 2003. The spatiotemporal form of urban growth: Measurement, analysis and modeling, Remote Sensing of Environment,86:286-302.
    Herrington, L.P. (1977). "The role of urban forests in reducing energy consumption." Proceedings of the Society of American Foresters, pp.60-66.
    Hougton R. A., D. L. Skole, C. A. Nobre, J. L. Hackler, K. T. Lawrence, and W. H. Chomentowski, 2000. Annual Fluxes of Carbon from Deforestation and Regrowth in the Brazilian Amazon. Nature,403,301-304.
    Huang, Y.J., Akbari, H., Taha, H. and Rosenfeld, A.H. (1987), The potential of vegeta tion in reducing summer cooling loads in residential buildings. Journal of Climate and Applied Meteorology,26:1103-1116.
    Huete A.R.,1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment,25, 295-309.
    Huete A.R., C. justice, and W. Van Leeuwen,1999. MODIS vegetation index, MODIS algorithm theoretical basis document, NASA Goddard Space Flight Center, Greenbelt. 14-15
    Jaregui,E. (1990/91), Influence of a large urban park on temperature and convective precipitation in a tropical city. Energy and Buildings,15-16:457-463.
    Jensen, J.R. (1996) introductory Image Processing:A Remote Sensing Perspective, Second Edition, Prentice-Hall, Upper Saddle River, NJ, pp.316.319.
    Jensen, J.R., and D.C. Cowen, 1999. Remote sensing of urban/suburban infrastructure and socio-economic attributes, Photogrammetric Engineering & Remote Sensing, 65(5):611-622.
    Jiann-Yeou Rau Nai-Yu Chen Liang-Chien Chen ,(2000). Hidden Compensation and Shadow Enhancement for True Orthophoto Generation, GISdevelopment.net.Digital Photogrammetry, Journal of Photogrammetry and Remote Sensing, 57,327-345.
    Juan P. Ardila, Valentyn A. Tolpekin, Wietske Bijker, Alfred Stein, 2011.Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images, ISPRS Journal of Photogrammetry and Remote Sensing,66 (2011) 762-775
    Karathannassi, V., C.H. Jossifidis, and D. Rokos, 2000. A texture based classification method for classifying built areas according to their density, International Journal of Remote Sensing, 21(9):1807-1823.
    Kressler, F., & Steinnocher, K. (1996). Change detection in urban areas using satellite images and spectral mixture analysis. International Archives of Photogrammetry and Remote Sensing, XXXI(Part B7), 379-383.
    Laliberte, A. S., Rango, A., Havstad, K. M., Paris, J. F., Beck, R. F., McNeely, R., et al. (2004). Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico. Remote Sensing of Environment, 93,198-210.
    Landsberg, H.E. (1981), "The urban climate", Academic Press, New York, 275 p.
    Laurance, W. F., M. A. Cochrane, S. Bergen, P. M. Fearnside, P. Delamonica, C. Barber, S. D'Angelo, and T. Fernandes, 2001. The Future of the Brazilian Amazon. Science, 291, 438-439.
    Leblon, B., L. Gallant, and H. Granberg, 1996. Effects of shadowing types on ground-measured visible and near-infrared shadow reflectances, Remote Sensing of Environment, 58(3):322-328.
    Li, Y., Gong, P., & Sasagawa, T. (2005). Integrated shadow removal based on photogrammetry and image analysis. International Journal of Remote Sensing, 26(18),3911-3929.
    Lillesand, T.M. and Kiefer, R.W. (1994) Remote Sensing and Image Interpretation, Wiley and Sons, New York, NY, pp.749.
    Liow, Y., & Pavlidis, T. (1990). Use of shadows for extracting buildings in aerial images.Computer Vision, Graphics, and Image Process,49,242-277.
    Mao C. and D. Kettler.1995. Digital CCD cameras for airborne remote sensing. In Proc.15th Biennial Workshop on Color Photography and Videography in Resource Assessment, 1-12. Bethesda, Maryland: American Society for Photogrammetry and Remote Sensing.
    Martin, L.R.G., Howarth, P.J. and Holder, G.H. (1998) Multispectral Classification of Land Use at the Rural-Urban Fringe Using SPOT Data, Canadian Journal of Remote Sensing, Vol.14, No.2, pp.72-79.
    McPherson, E.G., Nowak, D., Heisler, G., Grimmond, S., Souch, C., Grant, R. and Rowntree, R. (1997),Quantifying urban forest structure, function, and value:the Chicago Urban Forest Climate Project. UrbanEcosystems,1:49-61.
    McPherson, E.G. and Simpson, J.R. (1999), Guidelines for calculating carbon dioxide reductions through urban orestry programs. USDA Forest Service, PSW General Technical Report No.171, Albany, CA.
    McPherson, E.G., Simpson, J.R., Peper, P.J., Scott, K.I. and Xiao Q. (2000), "Tree guidelines for Coastal Southern California communities", Western Center for Urban Forest Research and Education, USDA Forest Service, Pacific Southwest Research Station, 98 p.
    Mennis Jeremy 2006,Socioeconomic-Vegetation Relationships in Urban, Residential Land: The Case of Denver,Colorado, Photogrammetric Engineering & Remote Sensing Vol.72, No.8, August, 2006, pp.911-921.
    Mesev, V. (editor), 2003. Remotely Sensed Cities, London, Taylor and Francis, multiple end member spectral mixture models, Photogrammetric Engineering & Remote Sensing, 69(9):1011-1020
    Miller, R.H. and Miller, R.W. (1991), Planting survival of selected street tree taxa. Journal of Arboriculture,17(7):185-191.
    Nowak, D.J. (1993), Atmospheric carbon reduction by urban trees. Journal of Environmental Management, 37:207-217.
    Myeong, S., Nowak, D.J., Duggin, M.J.,2006. A temporal analysis of urban forest carbon storage using remote sensing. Remote Sensing of Environment 101 (2), 277-282.
    Nilsson, K. and Randrup, T. (1997). "Urban and peri-urban forestry" Proceedings of the XI World ForestryCongress, Antalya, Turkey, Vol.1, Topic 3, pp.97-110.
    Oke, T.R. (1989), The micrometeorology of the urban forest. Philosophical Transactions of the Royal Society of London B,324:335-349.
    Oke, T.R. and Cleugh, H.A. (1987), Urban heat storage derived as energy balance residuals. Boundary-LayerMeteorology, 39:233-245.
    Oke, T.R. (1978), "Boundary layer climates", 1st edition, Methuen, London, 372 p.
    Paul M. Dare,2005. Shadow Analysis in High-Resolution Satellite Imagery of Urban Areas, February PHOTOGRAMMETRIC ENGINEERING, REMOTE SENSING,169-177
    Pozzi, F., and C. Small, 2002. Vegetation and population density in urban and suburban areas in the U.S.A., Proceedings of the Third International Symposium of Remote Sensing of Urban Areas:pp.489-496.
    Rashed, T., Weeks, J. R., Gadalla, M. S., & Hill, A. G. (2001). Revealing the anatomy of cities through spectral mixture analysis of multispectral satellite imagery: A case study of the greater Cairo region, Egypt. Geocarto International,16(4), 5-15.
    Rashed, T., J.R. Weeks, D. Roberts, J. Rogan, and R. Powell, 2003. Measuring the physical composition of urban morphology using
    Rashed, T., Weeks, J., Stow, D., & Fugate, D. (2002). Measuring temporal compositions of urban morphology through spectral mixture analysis:Toward a soft approach to change analysis in crowded cities. In C. Jurgens, & D. Maktav (Eds.), Proceedings of the third international symposium of urban remote sensing (pp. 512-527). Istanbul, Turkey'Istanbul Technical University.
    Rao,D.P, (1999)."Remote sensing for earth resources "second edition association of exploration geophysicists. osmania university .india.17-20;28-30 p.
    Rau, J. Y., Chen, N. Y., & Chen, L. C. (2002). True orthophoto generation of built-up areas using multi-view images. PhotogrammetricEngineering & Remote Sensing, 68(6),581-588.
    Richter, R. (1998). Correction of satellite imagery over mountainous terrain. Applied Optics, 37(18),4004-4015.
    Robert, P.C.1996. Use of remote sensing imagery for precision farming. In Proc.26th International Symposium on Remote Sensing of Environment, pp.596-599, Vancouver, B.C., Canada:ISRSE and CRSS.
    Sailor, D.J. (1995), Urban climate response to modifications in surface albedo and vegetative cover. Journal of Applied Meteorology, 34 (7):1694-1704.
    Saito, I., Ishihara, O. and Katayama, T. (1990/91), Study of the effect of green areas on the thermal environment in an urban area. Energy and Buildings, 15-16:493-498.
    Salvador, E., Cavallaro, A., & Ebrahimi, T. (2001). Shadow identification and classificationusing invariant color models. In IEEE International Conference on Acoustics, Speech and Signal Processing (pp.1545-1548).
    Sarabandi, P., Yamazaki, F., Matsuoka, M., & Kiremidjian, A. (2004). Shadow detectionand radiometric restoration in satellite high resolution images. Proceedings of IGARSS-2004, September 2004, Anchorage, Alaska (New York:IEEE), CDROM.
    Schreuder, M.D.J. (2000). "The effects of oxidative air pollutants on plant cuticles, cuticular transpiration, plant water balance, and growth" Ph D Thesis, Department of Biology, University of Montana, Missoula, 211 p.
    Scott, K.I., Simpson, J.R. and McPherson, E.G. (1999), Effects of tree cover on parking lot microclimate and vehicle emissions. Journal of Arboriculture,25 (3):129-142.
    Senay, G. B., A. D. Ward, J. G. Lyon, N. R. Fausey, and S. E. Nokes.1998. Manipulation of high spatial resolution aircraft remote sensing data for use in site-specific farming. Transaction of the ASAE 41(2):489-495.
    Shackelford, A. K., & Davis, C. H. (2003). A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas Geoscience and Remote Sensing, IEEE Transactions, 41(10), 2354-2363.
    Shanahan, J. F., J. S. Schepers, D. D. Francis, G. E. Varvel, W. W. Wilhelm, J. M. Tringe, M. R. Schlemmer, and D. J. Major.2001. Use of remote sensing imagery to estimate corn grain yield. Agronomy Journal 93:583-589.
    Shettigara, V. K., & Sumerling, G. M. (1998). Height determination of extended objects using shadows in SPOT images. Photogrammetric Engineering & Remote Sensing, 64(1), 35-44.
    Shu, J. S., & Freeman, H. (1990). Cloud shadow removal from aerial photographs. Pattern Recognition,23(6),647-656.
    Simpson, J. J., & Stitt, J. R. (1998). A procedure for the detection and removal of cloud shadow from AVHRR data over land. IEEE Transactions on Geoscience and Remote Sensing, 36(3),880-897.
    Skole, D., and C.J. Tucker.1993. Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988. Science,260,1905-1910.
    Small, C. (2006). Estimation and vicarious validation of urban vegetation abundance by spectral mixture analysis. Remote Sensing of Environment 100 (2006) 441-456
    Small, C,2001. Estimation of urban vegetation abundance by spectral mixture analysis, International Journal of Remote Sensing,22(7):1305-1334.
    Small, C. (2001a). Estimation of urban vegetation abundance by spectral mixture analysis. International Journal of Remote Sensing,22(7), 1305-1334.
    Small, C, & Miller, R. B. (1999). Digital cities Ⅱ:Monitoring the urban environment from space. Proceedings of the international symposium on digital earth (pp. 671-677). Beijing, China'Chinese Academy of Sciences.
    Smith, M. O., Ustin, S. L., Adams, J. B., & Gillespie, A. R. (1990). Vegetation in deserts:I. A regional measure of abundance from multispectral images. Remote Sensing of Environment,31,1-26.
    Stow, D. A. (1999). Reducing the effects of misregistration on pixel-level change detection. International Journal of Remote Sensing, 20(12), 2477-2483.
    Sutton, P., D. Roberts, C. Elvidge, and K. Baugh.2001. Census from heaven:An estimate of the global human population using nighttime satellite imagery, International Journal of Remote Sensing,22 (16):3061-3076.
    Taha, H., Douglas, S. and Haney, J. (1997), Mesoscale meteorological and air quality impacts of increased urban albedo and vegetation. Energy and Buildings,25:169-177.
    Thenkabail, P. S., A. D. Ward, and J. G. Lyon.1995. Landsat-5 Thematic Mapper models of soybean and corn crop characteristics. International Journal of Remote Sensing 15:49-61.
    Tsai, V. U. D. (2006). A comparative study on shadow compensation of color aerial images in invariant color models. IEEE Transactions on Geoscience And Remote Sensing,44(6), 1661-1671.
    Tucker, C. J., B. N. Holben, and J. H. Elgin, Jr.1980. Relationship of spectral data to grain yield variation. Photogrammetric Engineering & Remote Sensing 46(5):657-666.
    Tucker, J. J.,1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8,127-150.
    Verhoef, W.,1984. Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sensing of Environment, 16, 125-141.
    V.L. Mulder, S. de Bruin, M.E. Schaepman, T.R. Mayr, 2011. The use of remote sensing in soil and terrain mapping. Geoderma .162 (1-19)
    Walker, J.S., Briggs, J.M.,2007. An object-oriented approach to urban forest mapping in Phoenix. Photogrammetric Engineering & Remote Sensing 73 (5),577-583.
    Walton, J.T., Nowak, D.J., Greenfield, E.J.,2010. Assessing urban forest canopy cover using airborne or satellite imagery. Arboriculture & Urban Forestry 34 (6),334-340
    Wang, B., Ono, A., Muramatsu, K., & Fujiwara, N. (1999). Automated detection and
    removal of clouds and their shadows from Landsat TM images. IEICE Transactions on Information and Systems, 82(2), 453-460.
    Weeks, J., M. Gadalla, T. Rashed, J. Stanforth, and A. Hill.2000.Spatial variability in fertility in Menoufia, Egypt assessed through the application of remote-sensing and GIS technologies, Environment and Planning A,32(4):695-714.
    Weiqi Zhou, Ganlin Huang, Austin Troy, M.L. Cadenasso 2009. Object-based land cover classification of shaded areas in high spatial resolution imagery of urban areas. Remote Sensing of Environment 113 (2009) 1769-1777
    Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface
    temperature-vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment,89, 467-483.
    Wiegand, C. L. and A. J. Richardson.1990. Use of spectral vegetation indices to infer leaf area, evapotranspiration and yield:I. Rationale. Agronomy Journal 82(3):623-629.
    Wigmosta, M.S. and Burges, S.J. (2001), "Land use and watersheds:human influence on hydrology andgeomorphology in urban and forest areas", American Geophysical Society, Washington, DC,227 p.23
    Wilson, J.S, M. Clay, E. Martin, D. Stuckey, and K. Vedder-Risch, 2003. Evaluating environmental influences of zoning in urban ecosystems with remote sensing, Remote Sensing of Environment, 86(3)303-321.
    Witmer, R.E. (1977) The USGS Land Use and Land Cover Classification System, Remote Sensing of the Electro-Magnetic Spectrum, Vol.4, No.4, pp.10-19.
    Wu, C., & Murray, A. T. (2003). Estimating impervious surface distribution by spectral mixture analysis. Remote Sensing of Environment, 84, 493-505.
    Yang, C. and G. L. Anderson.1999. Airborne videography to identify spatial plant growth variability for grain sorghum. Precision Agriculture 1(1):67-79.
    Yang, C. and J. H. Everitt.2002. Relationships between yield monitor data and airborne multidate multispectral digital imagery for grain sorghum. Precision Agriculture 3(4):373-388.
    Yang, C., J. H. Everitt, J. M. Bradford.2002. Optimum time lag determination for yield monitoring with remotely sensed imagery. Transactions of the ASAE 45(6):1737-1745
    Yang, C., J. H. Everitt, J. M. Bradford, and D. E. Escobar.2000. Mapping grain sorghum growth and yield variations using airborne multispectral digital imagery. Transactions of the ASAE 43(6):1927-1938.
    Yao, J., & Zhang, Z. (2006). Hierarchical shadow detection for color aerial images.Computer Vision and Image Understanding, 102, 60-69.
    Yuan, Y., R.M. Smith, and W.F. Limp,1997. Remodeling Census population with spatial information from Landsat TM imagery, Computers, Environment and Urban Systems, 21(3/4):245-258.
    Yuan, F. (2008). Land-cover change and environmental impact analysis in the GreaterMankato area of Minnesota using remote sensing and GIS modeling. International Journal of Remote Sensing, 29(4), 1169-1184.
    Yuan, F., & Bauer, M.E., (2006). Mapping impervious surface area using high resolution imagery: a comparison of object-oriented classification to per-pixel classification In Proceedings of American Society of Photogrammetry and Remote SensingAnnual Conference, May 1-5, 2006, Reno, NV, CD-ROM.
    Zhou,W., & Troy, A. (2008). An object-oriented approach for analyzing and characterizing urban landscape at the parcel level. International Journal of Remote Sensing, 29(11), 3119-3135.
    Zhou, W., Troy, A., & Grove, J. M. (2008). Object-based land cover classification and change analysis in the Baltimore metropolitan area using multi-temporal high resolution remote sensing data. Sensors,8, 1613-1636.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700