用户名: 密码: 验证码:
机场高填方土石混填地基表征压实度剪切波分析理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着西部大开发与我国民航强国战略的实施,在基础设施建设尤其是西部机场建设中常遇到土石混填的高填方工程,其压实质量关系到地基的强度与稳定性,如何采取有效方法检测其压实质量,已成为土石混填工程的关键问题与国际上公认的技术难题。对于土质高填方地基的施工质量,多以环刀法、灌砂法等测试手段来进行检验与评价。但对于土石混填地基,这些传统的压实度检测方法不仅难以开展,而且往往需要较多的人力和物力,效率低、周期长,难以进行大面积检测。目前对于土石混合材料的压实性能、静力或动力变形性质及影响因素等问题尚缺乏系统的研究。一般的施工控制大多以经验为主或以压实遍数来控制,这导致了这类地基的施工带有很大的盲目性。
     土石混合料的工程性质由土和石共同决定,而石料与土相比,可认为是刚体,只有其中土的压实度达到良好状态,才能保证土石混合料的压实质量。基于此,本论文依托国家自然科学基金“高填方土石混填地基压实质量剪切波分析理论研究(60879021)”和中国民航科技基金“高填方土石混填地基强度与稳定性控制技术研究(MHRD07Z11)”,开展土石混合料宏观剪切波速理论和试验研究,提出采用混合料中间隙土压实度评价混合料压实质量的新方法。该方法在土石混合料地基压实度测试领域尚属首创。核心思想为通过理论和试验分析,建立土石混合料宏观剪切波速与间隙土表征干密度相关分析模型,依据该模型计算土石混合材料中石料间隙土的压实度,进而实现对土石混合料压实质量的分析。
     系统地建立了不同含水率、不同含石量条件下混合料宏观剪切波速与间隙土剪切波速关系模型。应用土石混合料宏观剪切波速模型可有效分析石料间隙土的波速值,为混合料间隙土表征压实度评价体系的建立提供了理论依据。该项成果丰富了土石复合材料波速分析理论,这在国内外尚属首次。
     提出了表征压实度测试与分析的新理论。将土石混合料中的可能存在的孔隙与其填充细粒土综合为间隙土干密度,并将其定义为表征干密度。使土石混合料压实质量评价的基本概念和物理意义更为清晰。建立了混合料宏观剪切波速与间隙土表征干密度相关性计算模型。通过对不同土石比例、石料级配、含水量等条件下,土石混合材料的强度与稳定性达到良好状态时其中细粒土压实状态的试验分析,建立了土石混合料表征压实度的评价标准,丰富了土石混合料的力学分析理论。
     通过分析不同细粒土类型、不同含水率对剪切波速的影响机理,建立了细粒土剪切波速与干密度相关模型。系统分析了最佳含水量附近含水量对剪切波速的影响,提出含水率引发的细粒土剪切波速变化主要是含水率变化引发的细粒土剪切模量或剪切刚度变化而发生变化。这一研究成果揭示了细粒土中含水量对剪切波速的影响规律与机理,为提高细粒土压实度剪切波速分析精度提供了依据。
     通过对土石混合料泊松比随含水率、含石量、干密度的变化规律研究表明,土石混合料基本压实状态下泊松比分布范围为:砂土混合料,0.301~0.346;粉土混合料,0.281~0.377;粘土混合料,0.336~0.399。在此基础上建立了混合料泊松比随含水率、含石量变化的二元函数模型。该模型揭示了土石混合料这种特殊介质泊松比的变化规律,同时建立了混合料面波与剪切波的相关计算模型。该项成果丰富了剪切波速测试理论,为现场应用面波测试研究土石混填地基的表征压实度提供了科学依据。
     本论文在大量理论和试验研究基础上提出的土石混合料表征压实度无损测试方法及建立的土石混合料压实程度剪切波分析理论体系可以有效的解决土石混填工程压实质量控制环节中的技术难题,为提高山区机场跑道安全与耐久性提供技术支持,且在提高测试精度、加快工程进度、节约测试成本等方面也具有较大优势。本技术在机场、铁路、公路等土石高填方工程中的推广应用必将带来重大的经济效益和社会效益。
Along with the development of the west regions and the application of powerful country strategicwith strong civil aviation, the compaction quality became the key factor of holding foundation intensityand stability in high filled engineering with soil and rock mixture in construction of infrastructuralfacilities, specially in western airport construction. How to test the foundation compaction qualityeffectively had become a international technical problem in soil-rock filled engineering. Test means ofcutting ring method, sand replacement method, etc were usually adopted to test and evaluate theconstruction quality of high fill foundation. But it was difficult to test soil-rock foundation in large aerawith these traditional test methods because of furthermore human and material resources, low efficiencyand long period. To soil-rock mixture, there has been deficiency in research on compaction performance,static deformation, dynamic deformation properties and so on at present. The construction quality wasalways controlled by engineering experience or compaction times, which resulted in blindness insoil-rock foundation construction.
     The engineering properties of soil-rock mixture were decided by soil and rock. Compared with soil,rock material could be seen as rigid body. The compaction quality of soil-rock mixture would be assuredif compaction degree of soil was good. This thesis was supported by the National Natural ScienceFoundation (60879021) and Civil Aviation Agency of China Research Fund (MHRD07Z11). Based onwhich, the theoretical analysis and experimental research on macro shear wave velocity of soil-rockmixture were done. New method of evaluating compaction quality of mixture with compaction degree ofgap soil in mixture was proposed for the first time in compaction test of soil-rock foundation. Theanalysis model of correlation between macro shear wave velocity of soil-rock mixture and apparent drydensity of gap soil was built. By which the compaction degree of gap soil in mixture was calculated,then the compaction quality of soil-rock mixture was analyzed.
     The model of correlation between macro shear wave velocity of soil-rock mixture and shear wavevelocity of gap soil with different water content and different rock content was built systematically. Thevelocity of gap soil was analyzed effectively by application of macro shear wave velocity of mixture,which provided theoretical evidence for the establishment of evaluation system of apparent gap soilcompaction degree. This research was originated in the world. And the analysis theory of wave velocityof soil-rock mixture was enriched by the study.
     The new theory of test and analysis of the apparent compaction degree was proposed. The possible gap in mixture and the compaction state of gap soil were represented by dry density of gap soil. And thedry density of gap soil was defined as apparent dry density. By which, the basic concept and physicalmeaning were described more clearly. The computing model of correlation between macro shear wavevelocity of mixture and apparent dry density of gap soil was built. The evaluation criterion of apparentcompaction degree of mixture was established by experimental analysis of soil compaction state withgood strength and stability of mixture in different rock content, different water content and different rockgradation. By which, the theory of mechanics analysis of mixture was enriched.
     By analyzing variation mechanism of shear wave velocity with different soil type and differentwater content, The model of correlation between shear wave velocity of soil and dry density of soil wasbuilt. The influence of water content for shear wave velocity was analyzed around optimum watercontent. The change of shear wave velocity of soil was caused mainly by the change of soil shearmodulus and soil shear rigidity in different water content. The rule and mechanism of water contenteffects on shear wave velocity was revealed, and the evidence for improving the analysis precision ofsoil compaction degree with shear wave velocity was provided.
     By studying the change rule of poisson's ratio in mixture with different water content, different rockcontent and defferent dry density, the distribution of poisson's ratio in basic compacted soil-rock mixturewas confirmed. Sandy mixture,0.301-0.346; silt mixture,0.281-0.377; clay mixture,0.336-0.399. Thebinary function model of variation of soil-rock mixture with water content and rock content was built.The change rule of poisson's ratio in mixture was revealed by this model. And the calculation model ofcorrelation between surface wave of mixture and shear wave of mixture was built. The theory of testwith shear wave velocity was enriched, and the scientific proof for studying apparent compaction degreeof soil-rock mixture with site surface wave test was provided.
     The technical problems in compacted quality control of soil-rock engineering can be solvedeffectively by the nondestructive test method of apparent mixture compactness and the theoreticalsystem of shear wave velocity analysis for mixture compactness which were proposed by a great numberof theoretical studies and experimental studies. The technical support for safety and durability of airfieldrunway in mountain aera was provided. The new method has great advantages in improving testprecision, quickening engineering schedule, saving test cost and so on. Therefore, it is of great economicand social benefit to popularize and apply this technology in high fill engineering of airport, railway andexpressway.
引文
[1]中国民航总局规划发展司.从统计看民航(2009)[M].北京:中国民航出版社,2009.
    [2]董云,阎宗岭.土石混填路基沉降变形特征的二维力学模型试验研究[J].岩土工程学报,2007,29(6):943-947.
    [3]董云,柴贺军,阎宗岭.土石混填路基沉降变形特征的离心模型试验研究[J].公路交通科技,2007,24(3):25-29.
    [4]董云,柴贺军,杨慧丽.土石混填路基原位直剪与室内大型直剪试验比较[J].岩土工程学报,2005,27(2):235-238.
    [5]何兆益,吴国雄,朱洪洲.山区高填方土石混填路堤压实质量控制研究[J].公路交通科技,2002,19(3):28-31.
    [6]陈希哲.粗粒土的强度与咬合力的试验研究[J].工程力学,1994,11(4):56-61.
    [7]甘霖,袁光国.粗粒土的三轴测试及其强度特性[J].水电工程研究,1996,(1):21-26.
    [8]武明,土石混合非均质填料力学特性试验研究[J].公路,1997,(1):40-43.
    [9]阎宗岭,龚红兵,董云.土石混填路基填料散体本构关系研究[J].公路交通技术,2004,(6):10-22.
    [10]马松林,王龙,王哲人.土石混合料室内振动压实特性[J],公路,2000,(5):67-70.
    [11]杨荫华.土石料压实和质量控制[M].水利水电出版社,1992.
    [12]柴贺军,陈谦应,孔祥臣等.土石混填路基修筑技术研究综述[J].岩土力学,2004,25(6):1005-1010.
    [13]何兆益,周虎鑫,张弛.山区机场高填方土石混填强夯参数的现场试验研究[J].公路交通科技,2002,19(4):30-32.
    [14]罗国煜,李生林.工程地质学基础[M].南京:南京大学出版社,1990,11.
    [15]华东水利学院土力学教研室.土工原理与计算[M].北京:水利电力出版社,1982,11.
    [16]陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1994,4.
    [17]南京大学水文地质工程地质教研室.工程地质学[M].北京:地质出版社,1982,62~68.
    [18]郭庆国.关于粗粒土工程特性及其分类的探讨[J].水利水电技术,1979,(06):53-57.
    [19]蒋彭年.土的分类建议[J].岩土工程学报,1991,3:1~12.
    [20]韩世莲,周虎鑫,陈荣生.土和碎石混合料的蠕变试验研究[J].岩土工程学报,1999,21(2):196-199.
    [21]屈智炯,徐广峰.砾石土宽级配土料在高坝应力状态下工程性质的研究[J].水电站设计,1996,12(2):47-55.
    [22]刘令瑶,崔亦昊,张广文.宽级配砾石土水力劈裂特性的研究[J].岩土工程学报,1998,20(3):10-13.
    [23]武明.混合土以压实特性为标准的分类法[J].云南公路科技,1996,(2):36-39.
    [24]屈智炯.粗粒土在高土石坝的应用研究[J].水电站设计,1998,14(1):83-88.
    [25]王龙.土石混合料的结构分类[J].哈尔滨建筑大学学报,2000,6(33):129-132.
    [26]油新华.土石混合体的随机结构模型及其应用研究[D].北京:北方交通大学,2001.
    [27]隋吉军.粗粒土振动压实特性的试验研究[J].大连理工大学学报,2003,10:1-41.
    [28]董云,柴贺军.土石混合料的工程分类研究[J].路基工程,2006,(3):38-41.
    [29]董云,柴贺军.土石混合料的工程综合分类法研究[J].岩土力学,2007,28(1):180-184.
    [30]田堪良,张会礼.论天然沉积砂卵石粒度分布的分形结构[J].西北水资源与水工程,1996,12:26-30.
    [31]吴志锋.花岗岩风化土体粒度成分的分形特征[J].中国水土保持,1997,5:17-19.
    [32] Xu Y F·Fractal structure of soils-a case study [A]. Shen zhu-jiang, Proc.2nd Int. Con.f onSoftSoilEngrg.
    [33] Turcotte. D. L. J. Geophys. Res.,1986,91:1921~1926.
    [34]胡卸文.金沙江溪洛渡水电站坝区软弱层带的工程地质系统研究[D].成都:成都理工学院,1995.
    [35]谢学斌,潘长良.排土场散体岩石粒度分布与剪切强度的分形特征[J].岩土力学,2004,25(2):288-291.
    [36]刘松玉,方磊,陈浩东等.论我国特殊土粒度分布的分形结构[J].岩土工程学报,1993,15(1):23~30.
    [37]马润前,刘丽萍,王胜利.土石混合料的工程分类及其应用[J].水利与建筑工程学报,2009,7(1):80-82.
    [38]刘飞.土石混合料的结构分类[J].中国勘察设计,2010,(11):56-58.
    [39] Rowe P W. The Stress一Dilatancy Relation for Static Equilibrium of an Assembly of Particles inContact[J]. Proo.Royai.Soe.A,1962,296:500一527.
    [40] Cundall P A, Strack O D L. A Discrete Numerical Model for Granular Assemblies[J].Geotehnique,1979,6:21-27.
    [41] Christoffersen J. Mehrabadi M.Micromechanical Description of Granular Material Behavior[J].Journal of Applied Mechanics,1981,6:101-109.
    [42]郭庆国.关于粗粒土应力一应变特性及非线性参数的试验研究[J].水利学报,1983,(11):44-50.
    [43]孔宪京,龙冈文夫等.砾石料微小应变下变形特性Ⅱ一单调载荷试验的刚性率[R].日本东京大学生产技术研究所生产研究,1989, No.11:69-72.
    [44]孔宪京,龙冈文夫等.砾石料微小应变下变形特性Ⅲ一单调载荷试验的刚性率[R].日本东京大学生产技术研究所生产研究,1990, No.12:38-41.
    [45] Tatsuoka F, Shibuya S, etal. Diseussionon on “The use of hall effect semiconductors ongeotechnical instrumentation” by C R I Clayton, etal[J].GeotechniealTestingJournal.ASTM,1990,13(l):63一67.
    [46] S Shibuya, F Tatsuoka, X J Kong. Elastic Deformation Properties of Geomaterials[J]. Soil andFoundations,1992,32(3):47-52.
    [47] Chang Ching S. Micromechnical of Deformation and Failure for Granulates with FrictionalContacts[J]. Mechanics of Materials,1989,8:89-99.
    [48]钟晓雄,袁建新.散粒体的微观组构与本构关系[J].岩土工程学报,1992,(14):39-47.
    [49]王平,万复光.铁路碎石道床弹性特性研究初探[J].铁道学报,1997,19(4):108-114.
    [50]蒋洋,王操,柴贺军.土石混合料K-G模型参数试验研究[J].公路交通科技,2008,25(3):44-48.
    [51]郭庆国.关于粗料土抗剪强度特性的试验研究[J].水利学报,1987,(5):59-65.
    [52]孙岳崧,濮家骝,李广信.不同应力路径对砂土应力应变关系的影响[J].岩土工程学报,1987,9(6):79-87.
    [53]邱金营.应力路径对砂土应力应变关系的影响[J].岩土工程学报,1995,17(2):75-82.
    [54]刘祖德,陆士强,杨天林等.应力路径对填土应力应变关系的影响及应用[J].岩土工程学报,1982,4(4):45-54.
    [55]徐日庆,龚晓南.土的应力路径非线性行为[J].岩土工程学报,1995,17(4):56-60.
    [56]王朝东,潘招湘,喻小生.在普遁土大三袖仪上进行土的应力路径试验的探讨[J].岩土力学,1991,12(l):57-63..
    [57]高莲士,赵红庆,张丙印.堆石料复杂应力路径试验及非线性K一G模型研究[A].中田水利学会编.国际高土石坝一混凝土面板堆石坝学术会议论文集[C].北京:中国科学技术出版社.1993,110-117.
    [58]蒋关鲁.大型三轴试验砾石料变形强度特性[D].日本:东京大学大学院工学系博士学位论文,1996,3.
    [59]张克昌.含泥砂砾石的强度特性[J].岩土工程学报,1985,7(6):51-59.
    [60]司洪洋.几种粗颗粒土的剪胀性质[J].水利水运科学研究,1986,(2):45~51.
    [61] Tatsuoka F, Sakamoto M, etal. Strength and Deformation Characterstics of Sand in Plane StrainCompression at Extremely Low[J]. Soil and Foundations,1986, No.1:65-84.
    [62]司洪洋.论无粘性砂砾石与堆石的力学性质[J].岩土工程学报,1990,12(6):32-41.
    [63]胡辉.颗粒破碎对粗粒料抗剪强度的影响[D].武汉:长江科学院学位论文,1995.
    [64] F Tatsuoka, Diego Lo Presti, etal. Deformation Characteristics of Soils and Soft Rocks underMonotonic and Cyelic loads and Their Relationships[A]. Third International Conference onRecent Advances in Geotechnical Earthquake Engineering and Soil Dynamics,1995,4.
    [65]郭庆国.粗粒土的工程特性及应用〔M].郑州:黄河水利出版社,1998.
    [66]董云,柴贺军.土石混合料室内大型直剪试验的改进研究[J].岩土工程学报,2005,27(11):1329-1333.
    [67]董云,任小伟.土石混合料的颗粒分形特征及其工程应用研究[J].中外公路,2006,26(6):178-181.
    [68]董云,柴贺军.土石混合料剪切面分形特征试验研究[J].岩土力学,2007,28(5):1015-1020.
    [69]董云.土石混合料强度特性的试验研究[J].岩土力学,2007,28(6):1269-1274.
    [70]高春玉,徐进,刘建峰等.四川盆地区红层无粘性土石混合料强度参数预测模型研究[J].四川大学学报,2010,42(6):61-65.
    [71] Hardin B O, Dmevieh V P. Shear modulus and damping in soils: design equatlons and curves[J].Journal of the Soil Mechanics and Foundation Division, ASCE,1972,98(7):667-692.
    [72] Kokusho T, Esashi Y, Sakurai A. Dynajmic Properties of deformation and damping of coarsesoils for wide strain range[R]. Central Research Institute of Electric Power Industry, CivilEngineering Laboratory Report No.380002[inJaPanese].
    [73] Haltanakai M, Suzuki Y, etai. Cyclic undrained shear Properties of high quality undisturbedTokyo gravel[J]. Soils and Foundations, Japanese Society of Soil Mechanics and FoundationEngineeing,1988,28(4):57-68.
    [74] Iida R, Matsumoto N, etal. Large-scale tests for measuring dynamic shear moduli and dampingratio of rockfill materiais[A]. Sixteenth Joint Meeting of U.S-Japan Panel On Wind and SeismicEflects[C]. Washington, D.C.,1984.
    [75] Rollins K M,Evans M D,etal. Shear modulus and damping relationships for gravels[J]. Journalof Ceotechnical and Geoenvironmental Engineering, ASCE,1998,124(5):396-405.
    [76]孔宪京,韩国城,林皋.粒径对动剪切模量的影响[J].东北水利发电学报,1988,4(4):9-12.
    [77]梁永霞.模拟堆石料的动力变形测试及其应用[A].第三届全国土动力学学术会议论文集[C].上海:同济大学出版社,1990,121-124.
    [78] Yasuda N, Matsumoto N. Dynamic deformation characteristics of sands and rockfill materials[J].Canadian Ceotechnical Journal,1993,30(3):747-757.
    [79] Evans M D, Zhou S. Liquefaction behavior of sand-gravel composites[J]. Journal ofGeotechnical Englneering, ASCE,1995,121(3):287-298.
    [80]孔宪京,韩国城等.高土石坝坝料及地基土动力工程性质研究:粗粒料动应力一应变关系试验研究[R].‘八五’国家科技攻关(85-208-02-04-1-08)项目报告,大连理工大学土木工程系,1994,9.
    [81]栾茂田,林皋等.岩土地震工程与土动力学中若干最新进展评述[A].第五届全国土动力学学术会议论文集[C].大连:大连理工大学出版社,1998:20-46.
    [82]刘雪珠,陈国兴胡庆兴.南京地区新近沉积土的动剪切模量和阻尼比的初步研究[J].地震工程与工程振动,2002,22(5):127-131.
    [83]尚守平,李刚,任慧.剪切模量沿深度按指数规律增大的场地土的地震放大效应[J].工程力学,2005,22(5):153-157.
    [84]赵明阶.根据波速计算多相土石地基压实度的理论模型[J].水利学报,2007,38(5):618–623.
    [85]程展林,姜景山,丁红顺等.粗粒土非线性剪胀模型研究[J].岩土工程学报,2010,32(3):460-467.
    [86]张献民,庄旭瑞,张宇辉等.含水量对土石混合介质剪切波传播速度的影响分析[J].公路交通科技,2010,(12):16-20.
    [87]张宇辉,张献民.细粒土液化对土石混合料剪切波速的影响研究[J].公路工程,2011,(03):30-34.
    [88] Frost R J. Some testing experiences and characteristics of bouldas gravel fill in earth dam[J].ASTM,1973,9.
    [89] Stephenson R J. Relative density tests on rock fill at carter dam[J]. ASTM,1973,(9):23-29.
    [90]史彦文.大粒径砂卵石最大密度的研究[J].土木工程学报,1981,(4):133-139.
    [91]刘贞草.大粒径粗粒材料相对密度实验研究[J].土石坝工程,1987,(2):145-148.
    [92]王继庄.粗粒料的变形特性和缩尺效应[J].岩土工程学报,1994,16(4):89-95.
    [93]交通部重庆公路科学研究所.广西柳桂一级公路总指挥部.土石混填压实评定方法试验研究[R].1995,7:1-33.
    [94]武明.土石混合非均质填料压实特性试验研究[J].公路,1996,(5):33-38.
    [95]孙耀东.山区道路路基最佳振动压实方法研究[J].吉林林学院学报,2000,7(16):149-152.
    [96]孙耀东.土石混合料最佳工艺参数的确定[J].北华大学学报(自然科学版),2000,1(6):540-543.
    [97]闫秀萍.关于土石混合料填筑路基压实检测方法的探讨[J].公路交通科技,2001,(4):40-42.
    [98]马松林.土石混合料室内振动压实研究[J].中国公路学报,2001,14(1):5-8.
    [99]刘宏.砂砾石土料的压实特性[J].三峡大学学报(自然科学版),2002,24(4):297-299.
    [100]刘丽萍,折学森.土石混合料压实特性试验研究[J].岩石力学与工程学报,2006,25(1):206-210.
    [101]刘丽萍,王东耀.土石混合料压实质量控制方法[J].长安大学学报,2006,26(1):35-48.
    [102]梅美云.试析如何控制土石混合料的压实质量[J].建筑、规划、设计,2007,(9):167-168.
    [103]许锡昌,周伟,韩卓等.土石混合料的压实特性研究[J].岩土力学,2010,31(2):115-148.
    [104]曹光栩,徐明,宋二祥.土石混合料的力学特性[J].华南理工大学学报,2010,38(11):32-39.
    [105]任劲松.圆砾土填筑铁路路基压实质量标准研究[J].石家庄铁道学院学报,1997,(10):33-38.
    [106]林祖玖.高速公路路基粗粒土填筑压实工艺[J].西部探矿工程,1999,(11):56-59.
    [107]徐立东.土石混合非均质填方的压实质量检测方法初探[J].辽宁交通科技,1999,22(3):44-46.
    [108]马骏.超粒径含量高的砂卵石填方压实质量控制指标[J].路基工程,2002,(1):31-33.
    [109]郭庆国,李鹏,徐彦文.土石坝的压实标准及应用中存在的问题[J].西北水电,2001,(3):27-34.
    [110]毛洪录.含砂低液限粉土路基压实标准的探讨[J].山东大学学报,2003,(5):593-596.
    [111]吴志雄.高速公路填石路堤的施工与质量控制[J].中外公路,2003,(1):44-48.
    [112]章国辉.高速铁路碎石土路基压实质量检测方法、标准的研究[J].铁道建设,2003,(4):1-8.
    [113]张献民,王建华.公路工程瞬态激振无损检测技术[J].土木工程学报,2003,36(10):105-110.
    [114]吴明友.路基压实参数及其工程意义[J].铁道建筑技术,2004,(5):1-5.
    [115]黄卫东.高速公路土石混填路基压实质量控制与评价[J].重庆交通学院学报,2005,24(4):49-54.
    [116]楼访梅,夏振英.红土含水量、密度与横波声速及动力学参数相关性的实验研究[J].水文地质工程地质,1988(05):50-52.
    [117]张忠苗,魏玉伦,陈云敏.瞬态面波测试技术在地基处理评价中的应用[J].物探与化探,1992,16(1):48-54.
    [118]王飞荣.利用瑞雷面波法测定软土地基强夯加固的效果[J].江西煤炭科技,2002,(4):22-24.
    [119]柴华友,汪江波.瑞雷波分析方法及其应用进展.岩石力学与工程学报,2002,21(1):119-125.
    [120]高文信,李春泉.瑞雷波检测含块石人工填土强夯地基处理效果[J].市政技术,2007,25(6):515-519.
    [121]程建伟.瑞雷波检测人工填土强夯地基效果评价[J].低温建筑技术,2009,(9):114-116.
    [122]吴福良,耿光旭,仲伟周.瑞雷波在地基强夯检测中的应用[J].西安交通大学学报,2003,37(4):432-434.
    [123]陈健,杨永波,张永.瑞雷波在块石强夯地基质量检测中的应用[J].工程地球物理学报,2005,2(5):365-368.
    [124]李凤之,迟永坤,齐霞.多道瞬态瑞雷波勘探技术在地基土层波速测试中的应用[J].地质装备,2010,10:25-27.
    [125]李嘉,董海文.瞬态瑞雷面波法在路基压实度检测中的应用[J].中南公路工程,2006,31(3):8-10.
    [126]田钢,石战结, Don. W. Steeples等.多道面波分析方法在测量土壤压实度方面的应用研究[J].地球物理学进展,2003,18(3):450-454.
    [127]李明,魏一祥,邵常龙.面波测试在强夯地基检测中的应用[J].探矿工程,2004,(4):29-31.
    [128]闫澍旺,刘家海.应用瑞雷波检验评价碎石桩复合地基[J].勘察科学技术,2005,(4):58-61.
    [129]陈昌彦,白朝旭,黄昌乾等.综合评价柔性复合地基加固质量[J].物探与化探,2006,30(4):361-365
    [130]刘江平,罗银河,何伟兵.相邻道瞬态瑞雷面波法与压实度检测[J].岩土工程学报,2009,31(11):1652-1658.
    [131]李青山,张献民,李红英.路基压实度的瞬态瑞雷波检测法[J].河北工业大学学报,2003,32(5):27-30.
    [132]宋先海,肖柏勋,顾汉明.用瞬态瑞雷波反演横波速度映射二维压实度剖面[J].工程勘察,2003,(4):62-64.
    [133]曹圣华,杨晓东,朱正坤.瑞利面波法用于软土地基勘察的试验研究[J].河海大学学报,2003,31(4):419-423.
    [134]赵明阶,黄卫东,韦刚.公路土石混填路基压实度波动检测技术及应用[M].北京:人民交通出版社,2006.
    [135]李少波,张献民,智胜英.路基压实度剪切波测试新技术[J].公路交通科技,2008,25(3):32-37.
    [136]拾峰,孙燕君.基于地基现场纵、横波速测试评判建筑场地类别的研究[J].工程地质计算机应用,2009,(2):11-16.
    [137]拾峰,杨凤根,高宗旗等.基于地基现场横波波速测试评判建筑场地类别的研究[J].地质学刊,2010,34(1):73-78.
    [138] Jaroslav Feda. Notes on the effete of grain crushing on the granular soil behavior[J].Engineering geology,2002(63):93-98.
    [139]林绣贤.柔性路面结构设计方法[M].人民交通出版社,1988,11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700