用户名: 密码: 验证码:
面向河流生态健康的供水水库群联合调度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,水库修建运用的生态环境效应越来越为人们所关注,水库(群)生态调度已成为水资源学、生态学等领域的研究热点。与国外相比,我国水库(群)生态调度相关研究起步较晚,虽已有许多成果,但整体来看尚处于起步阶段,部分理论、技术有待进一步完善。本文围绕生态调度理论、技术方法展开,着重解决滦河下游水库群联合生态调度问题,对其它北方缺水地区水库(群)生态调度具有一定借鉴意义。论文结合河流生态水文学、河流生态水力学及水库群优化调度等理论,开展河流栖息地模拟、区域生态需水评估整合、水库群联合生态调度规则优化等方面的研究:并以滦河下游河流及潘家口、大黑汀、桃林口3库为例进行实证研究。主要研究内容及成果如下:
     (1)提出了一种面向河流生态健康的供水水库群联合调度模式。论文在国内外相关研究的基础上,对水库(群)生态调度的内涵、措施进行了讨论,并结合滦河流域水资源特征及生态调度实际需求,提出了面向河流生态健康的供水水库群联合调度模式,旨在协调缺水地区兴利、生态用水间的矛盾,以期能够为缺水地区生态调度研究提供理论支撑。
     (2)考虑到现阶段河流物理栖息地模型中存在的不足,论文提出了一个用于模拟、评估不同流量下河流栖息地面积变化的集成建模方式,并耦合一维水动力模型MIKE11及物理栖息地模拟模型PHABSIM对大黑汀、桃林口水库至滦县水文站区间河段的流量—加权可利用栖息地面积关系进行模拟:将研究区河流划分为10个独立河段,采用MIKE11模拟全部河段整体的水力学过程;并以鲤鱼为目标物种,采用PHABSIM获得各河段的流量—栖息地面积关系,其中PHABSIM所需的边界条件由MIKE11模拟结果给出。论文结合实地调查结果对栖息地模拟结果进行验证,结果表明,该栖息地模拟结果与滦河下游栖息地特征基本相符,模拟结果可靠。
     (3)提出了一种流域/区域复合系统生态需水分级评估、整合模式,并构建了相应的方法及模型。针对现阶段水库生态调度中多关注局部河段,对沿程河流、河口及与河流有水力联系的滨河生态系统考虑不多的问题,论文从下游影响区域整体出发,在分析各子系统生态需水要求的基础上,构建了流域/区域复合系统生态需水整合模式及模型,以水循环及其伴生生态过程为主线,通过差值逆向传播循环算法将水库调度下游影响区各生态系统的需水要求整合到坝址断面处,为水库(群)生态调度决策提供支撑。在此基础上,以滦河下游河段为例进行生态需水评估、整合实证研究。
     (4)构建了供水水库群联合生态调度模型,并对其求解方法进行了研究。论文结合滦河流域径流特征及生态调度实际需求,提出了一种基于生态流量分级控制的水库群调度规则模式:将生态需水划分为最小生态需水及适宜生态需水两级,要求在枯水时按照最小生态需水要求供水,保证下游生态不退化;丰水时按照适宜生态需水要求供水,为下游提供良好生境。以此为支撑,论文采用聚合水库调度图及供水量分解系数作为调度规则标度,结合大系统分解协调理论构建了供水水库群联合生态调度优化模型,并采用自适应遗传算法(AGA)、逐次优化法(POA)作为求解工具,对滦河下游潘家口、大黑汀、桃林口3水库联合生态调度规则进行了优化研究。结果表明,生态调度规则可在牺牲部分兴利供水效益的同时,提高最小生态供水保证率及适宜生态供水保证率。研究可为滦河下游水库群联合生态调度提供理论、技术支撑,并可为其他相似流域研究提供参考。
In recent years, more attention has been paid on the effects of reservoir operation on eco-environment. The ecological operation of reservoir and reservoir group has become the focus of water resources science and ecology research. Compared with the situation abroad, research on ecological operation started late in China. There are still many theories and technologies need to be further improved, although some research has been done already. This paper focuses on the theory and technology of ecological operation, with the purpose to solve the problem on ecological operation of reservoir group in downstream of Luan River. It also has reference value for ecological operation research of other water-scarce regions in northern China. Researches about river physical habitat simulation, assessment of regional ecological water demand and optimization of operation rules for reservoir group have been done in the paper based on river ecohydrology, river ecohydraulics and optimal operation theory of reservoir group. The downstream reaches of Luan River and Panjiakou reservoir, Daheiting reservoir, and Taolinkou reservoir were taken as an example. The study content and results are as follows:
     (1) A pattern of joint operation for reservoir group for river ecosystem health was proposed. Based on the related research both at home and abroad, this paper discussed the connotation and measures of ecological operation of reservoir and reservoir group. According to the runoff characteristics of Luan River and the actual demand of the reservoir group operation, a pattern of joint operation for reservoir group to maintain river health has been proposed in the paper. It can provide theoretical support for ecological operation research in water-scarce regions.
     (2) Taking the deficiencies of river physical habitat simulation model into account, this paper proposed an integrated modeling method to simulate and assess river habitat area under different discharge. The1-dimensional hydrodynamic model MIKE11and Physical Habitat Simulation Model (PHABSIM) were coupled in this paper to simulate the Q-WUA relationship of the reaches in Luan River downstream. The study river is firstly divided into10separate reaches; Then, MIKE11was used to simulate the hydraulics process for all reaches, and PHABSIM was used to get the Q-WUA relationship of each reach. The boundary conditions of PHABSIM were given by MIKE11simulation results. The results of field surveys were used to verify the habitat simulation. It shows that the simulation results were reliable for the Q-WUA relationships basically consistent to the habitat characteristics of Luan River downstream.
     (3) A classification assessment and integration pattern for ecological water demand of watershed/regional complex ecosystem has been proposed, and the method and model has been build. Nowadays, people pay more attention on the downstream river ecosystem near dam(s) in ecological operation study. However, the river ecosystem with further distance, estuaries ecosystem and the riparian ecosystem with hydraulic connection to the river were ignored. Thus, an integration pattern and model for ecological water demand of watershed/regional complex ecosystem have been proposed according to the water demand of each ecosystem in the downstream effect region. In order to support ecological operation decisions, the ecological water demand of different ecosystems is integrated to discharge process of dam(s) through a reverse passing loop algorithm. The downstream reaches of the Luan River have been taken as an example based on the pattern and model.
     (4) An ecological operation optimization model for feeding reservoir group has been built and its solving algorithm was given. According to the runoff characteristics of the Luan River and the actual demand of the reservoir group, this paper proposed a pattern of joint operation for reservoir group based on classification of ecological water demand. Ecological water demand was divided into two levels, minimum ecological water demand and suitable ecological water demand. During dry season, the discharge of reservoir group should meet the minimum ecological water demand so that the downstream ecosystem is non-degenerate, while the discharge should meet the suitable ecological water demand in wet season in order to provide a nice habitat conditions. Based on the pattern, an ecological operation optimization model for feeding reservoir group has been built according to the large system decomposition-coordination theory, which takes the operation chart of polymerization reservoir and the decomposition coefficients of water supply amount as measurement tools. Adaptive Genetic Algorithms (AGA) and Progressive Optimality Algorithm (POA) were used as solver tools and the reservoir group in the downstream of Luan River was taken as an example. The result shows that the guaranteed rates of minimum and suitable ecological water demand were increasing while the social-economic benefits were reduced. The research could provide theory and technical support to ecological operation of reservoir group in downstream of the Luan River, and also has reference value for other similar region.
引文
[1]陈求稳.河流生态水力学[M].北京:科学出版社,2010.
    [2]陈端,陈求稳,陈进.基于改进遗传算法的生态友好型水库调度[J].长江科学院院报,2012,29(3):1-6.
    [3]李景波,董增,王海潮,等.水库健康调度与河流健康生命探讨[J].水利水电技术,2007,9(38):12-15.
    [4]Petts G E. Impounded Rivers:perspective for ecological management [M]. Chic ester (UK):John Wiley and & Sons,1984.
    [5]Cardwell B H, Jager H I, Sale M J. Designing instream flows to satisfy fish and human water needs [J]. Journal of Water Resources Planning and Management,1996,12(5): 356-363.
    [6]Hughes D A, Ziervogel G. The inclusion of operating rules in a daily reservoir simulation model to determine ecological reserve releases for river maintenance [J]. Water SA,1998,24(4):293-302.
    [7]King J, Cambray J A, Impson N D. Linked effects of dam-released floods and water temperature on spawning of the Clanwilliam yellowfish Barbus capensis [J]. Hydrobiologia,1998,384:245-265.
    [8]Susan J H, Stevens L E. Experimental flood effects on the limnology of Lake Powell reservoir, southwestern USA[J]. Ecological Applications,2001,11(3):644-656.
    [9]Koel, T M, Sparks, R E. Historical patterns of river stage and fish communities as criteria for operations of dams on the Illinois River[J]. River Research and Applications,2002,18(1):3-19.
    [10]Richter B D, Mathews R, Harrison D L, et al. Ecologically sustainable water management: managing river flows for ecological integrity [J]. Ecological Applications,2003, 13(1):206-224.
    [11]Bednarek A T, Hart D D. Modifying dam operations to restore rivers:ecological responses to Tennessee River dam mitigation [J]. Ecological Applications,2005,15(3): 997-1008.
    [12]Suen J P, Eheart J W. Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime [J]. Water Resources Researches,2006,42:1-9.
    [13]Shiau J T, Wu F C. A dynamic corridor-searching algorithm to seek time-varying instream flow releases for optimal weir operation:comparing three indices of overall hydrologic alteration [J]. River Research and Applications,2007,23:35-53.
    [14]Shiau J T, Wu F C. Pareto-optimal solutions for environmental flow schemes incorporating the intra-annual and inter annual variability of the natural flow regime [J]. Water Resources Researches,2007,43(6):1-12.
    [15]Halleraker J H, Sundt H, Alfredsen K T, et al. Application of multiscale environmental flow methodologies as tools for optimized management of a Norwegian regulated national salmon watercourse[J]. River Research and Applications,2007,23:493-510.
    [16]董哲仁,孙东亚,赵进勇.水库多目标生态调度[J].水利水电技术,2007,38(1):27-32.
    [17]艾学山,范文涛.水库生态调度模型及算法研究[J].长江流域资源与环境,2008,17(3):451-455.
    [18]胡和平,刘登峰,田富强等.基于生态流量过程线的水库生态调度方法研究[J].水科学进展,2008,19(3):325-331.
    [19]郭文献.基于河流健康水库生态调度模式研究[D].南京:河海大学,2008.
    [20]康玲,黄云燕,杨正祥,等.水库生态调度模型及其应用[J].水利学报,2010,41(2):134-141.
    [21]Yin X A, Yang Z F, Yang W. Optimized reservoir operation to balance human and riverine ecosystem needs:model development, and a case study for the Tanghe reservoir, Tang river basin, China [J]. Hydrological Processes,2010,24(4):461-471.
    [22]许可.面向生态保护和恢复的梯级水电站联合优化调度研究[D].武汉:华中科技大学,2011.
    [23]Zhang H B, Huang Q, Qian H. Connotation of reservoir ecological operation and its model framework[J]. Engineering Journal of Wuhan University,2011,44 (4):427-433.
    [24]Bovee K D. A Guide to stream habitat analysis using the instream flow incremental Methodology[R]. Washington, D C:U. S. Fish and Wild life Service,1982.
    [25]Jorde K, Schneider M, Zoellner F. Analysis of instream habitat quality-preference functions and fuzzy models[A].Wang llu, et al. Stochastic Hydraulics[C]. Rotterdam: Balkema,2000,671-680.
    [26]Parasiewicz P. MesoHABSIM:A concept for application of instream flow models in river restoration planning [J]. Fisheries,2001,26:6-13.
    [27]Steffler P, Blackburn J. "Two-dimensional depth averaged model of river hydrodynamics and fish habitat," River2D user's manual, University of Alberta, Canada,2002.
    [28]Lee J H, Kil J T, Jeong S. Evaluation of physical fish habitat quality enhancement designs in urban streams using a 2D hydrodynamic model[J]. Ecological Engineering, 2010,36(10):1251-1259.
    [29]IM D K, Kang H, Kim K H, et al. Changes of river morphology and physical fish habitat following weir removal [J]. Ecological Engineering,2011,37(6):883-892.
    [30]Jowett L G, Duncan M J. Effectiveness of 1D and 2D hydraulic models for instream habitat analysis in a braided river[J]. Ecological Engineering,2012,48(10):92-100.
    [31]杨志峰,于世伟,陈贺.基于栖息地突变分析的春汛期生态需水阀值模型[J].水科学进展,2010,21(4):567-574.
    [32]蒋晓辉,赵卫华,张文鸽.小浪底水库运行对黄河鲤鱼栖息地的影响[J].生态学报,2010,30(18):4940-4947.
    [33]Li R N, Chen Q W, Chen D. Ecological hydrograph based on Schizothorax chongi habitat conservation in the dewatered river channel between Jinping cascaded dams [J]. Science China Technological Sciences,2011,54(S1):54-63.
    [34]Chen Q W, Yang Q R, Lin Y Q. Development and application of a hybrid model to analyze spatial distribution of macroinvertebrates under flow regulation in the Lijiang River [J]. Ecological Informatics,2011,6:407-413.
    [35]Yi Y J, Wang Z Y, Yang Z F. Two-dimensional habitat modeling of Chinese sturgeon spawning sites[J]. Ecological Modelling,2010,221 (5):864-875.
    [36]Yi Y J, Wang Z Y, Yang Z F. Impact of the Gezhouba and Three Gorges Dams on habitat suitability of carps in the Yangtze River[J]. Journal of Hydrology, 2010,387(3/4):283-291.
    [37]李建,夏自强.基于物理栖息地模拟的长江中游生态流量研究[J].水利学报,2011,42(6):678-684.
    [38]Tharme R E. A global perspective on environmental flow assessment:emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Application,2003,19(5):397-441.
    [39]钟华平,刘恒,耿雷华,等.河道内生态需水估算方法及其评述[J].水科学进展,2006,17(3):430-434.
    [40]Tennant D L. Instream.flow regimes for fish, wildlife, recreation and related environmental resources [J]. Fisheries,1976, 1(4):6-10.
    [41]Mathews R C, Bao Y X. The Texas method of preliminary instream flow determination [J]. Rivers,1991,2(4):295-310.
    [42]杨志峰,刘静玲,孙涛,等.流域生态需水规律[M].北京:科学出版社,2006.
    [43]Richter B D. How much water does a river need? [J]. Freshwater Biology,1997,37(2): 231-249.
    [44]Gippel C J, Stewardson M J. Use of the wetted perimeter in defining minimum environmental flows [J]. Regulated Rivers:Research and Management,1998,14:53-67.
    [45]Mosley M P. Analysis of the effect of changing discharge on channel morphology and instream uses in a braided river, Ohau River, New Zealand[J]. Water Resources Researches,1982,18(4):800-812.
    [46]Stalnaker C B, Lamb B L, Henriksen J, et al. The Instream Flow Incremental Methodology: A Primer for IFIM [M]. Washington, DC:U. S. Department of the Interior, National Biological Service,1995.
    [47]傅小城,吴乃成,周淑婵,等.引水型电站对河流底栖动物栖息地的影响及生态需水量[J].生态学报,2008,28(1):45-52.
    [48]Hughes D A. Providing hydrological information and data analysis tools for the determination of ecological instream flow requirements for South African rivers [.]]. J Hydrol,2001,241(1-2):140-151.
    [49]Dong X, Du P F, Tong Q Y, et al. Ecological water requirement estimates for typical areas in the Huaihe Basin[J]. Tsinghua Sci Technol,2008,13(2):243-248.
    [50]Sun T, Yang Z F, Shen Z Y. Ecological water requirements for the source region of China's Yangtze River under a range of ecological management objectives[J]. Water International,2012,37(3):236-252.
    [51]Zhang Y, Yang Z F, Wang X Q, et al. Methodology to determine regional water demand for instream flow and its application in the Yellow River Basin[J]. J Environ Sci, 2006,18 (5):1031-1039.
    [52]Ahmed I. On the determination of multi-reservoir operation policy under uncertainty[D]. Tucson Arizona:The University of Arizona,2001.
    [53]王金文,袁晓辉,张勇传。随机动态规划在三峡梯级长期发电优化调度中的应用[J].电力自动化设备,2002,22(8):54-56.
    [54]Tang G L, Zhou H C, Li N N. Reservoir optimization model incorporating inflow forecasts with various lead times as Hydrologic state variables [J]. Journal of Hydroinformatics, 2010,12(3):292-302.
    [55]张扬.二滩水电站中长期径流预报及隐随机优化调度模型研究[D].大连:大连理工大学,2009.
    [56]杨凤英.梯级水电站群优化调度图研究及应用[D].大连:大连理工大学,2009.
    [57]Wang Z Y, Cheng J H, Yin Z J. Reservoir operating rule extraction based on co-evolution artificial immune system[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2010,49(6):121-125
    [58]舒卫民,马文光,黄炜斌等.基于人工神经网络的梯级水电站群调度规则研究[J].水力发电学报,2011,30(2):11-14.
    [59]黄强,张洪波,原文林等.基于模拟差分演化算法的梯级水库优化调度图研究[J].水力发电学报,2008,27(6):13-17,26.
    [60]程春田,杨凤英,武新宇,等.基于模拟逐次逼近算法的梯级水电站群优化调度图研究[J].水力发电学报,2010,29(6):71-77.
    [61]申建建,程春田,廖胜利,等.基于模拟退火的粒子群算法在水电站水库优化调度中的应用[J].水力发电学报,2009,28(3):10-15.
    [62]Windsor J S. Optimization model for reservoir flood control [J]. Water Resources Research,1973,9 (5):1103-1114.
    [63]曾勇红,姜铁兵,张勇传.基于线性规划的梯级水电系统短期发电计划[J].水电自动化与大坝监测.2004(04):59-62.
    [64]Peng C S, Buras N. Practical estimation of inflow into multireservoir system [J]. Journal of Water Resources Planning and Management,2000,126(5):35-40.
    [65]Barros M, Tsai F, Yang S, et al. Optimization of Large-scale hydropower system operations[J]. Journal of Water Resources Planning and Management,2003, 129(3):178-188.
    [66]刘攀,郭生练,张文选,等.梯级水库群联合优化调度函数研究[J].水科学进展,2007,18(6):816-822.
    [67]Larson R. State increment dynamic programming [M].New York:Elsevier,1968.
    [68]Hiedari M, Chow V T, Kokotovi P V, et al. Discrete differential dynamic programming approach to water resources systems optimization [J]. Water Resources Research,1971, 7(2):273-282.
    [69]Turgeon A. Optimal short-term hydro scheduling from the principle of progressive optimality [J]. Water Resources Research,1981,17(3):481-486.
    [70]张淑祥,苏弈文,张国良.大伙房水库兴利调度的多目标动态规划模型研究[J].水利水电技术,2006,37(3):67-69.
    [71]梅亚东,熊莹,陈丽华.梯级水库综合利用调度的动态规划方法研究[J].水力发电学报,2007,26(2):1-4.
    [72]Cheng C T, Gao X Y, Wu X Y, et al. Fine-grained Parallel Discrete Differentiation and Dynamic Programming Algorithm for Long-term Optimization of Cascade Hydropower System[J]. Proceedings of the CSEE,2011,31 (10):26-32.
    [73]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1996.
    [74]Wardlaw R, Sharif M. Evaluation of Genetic Algorithms for optimal reservoir system operation [J].Water Resources planning and management,1999,125(1):25-33.
    [75]Ndiritu J G. Reservoir system optimization using a penalty approach and a multi-population genetic algorithm [J]. Water SA,2003,29(3):273-280.
    [76]王少波,解建仓,孔珂.自适应遗传算法在水库优化调度中的应用[J].水利学报,2006,37(4):480-485.
    [77]王文川,程春田,徐冬梅.基于混沌遗传算法的水电站优化调度模型及应用[J].水力发电学报,2007,26(6):7-11.
    [78]马玉新,解建仓,罗军刚.基于方向自学习遗传算法的水库优化调度[J].水力发电学报,2009,28(4):43-55.
    [79]Kennedy J, Eberhart R. Particle Swarm Optimization[C]//Proc. of IEEE Int'1 Conf. on Neural Networks. Perth, Australia:IEEE Service Center Piscataway,1995: 1942-1948.
    [80]Guo X N, Hu T S, Zhang T, et al. Bilevel model for multi-reservoir operating policy in inter-basin water transfer-supply project [J]. Journal of Hydrology, 2012,424/425(6):252-263.
    [81]Wang Y M, Chang X J, Huang Q. Simulation with RBF Neural Network Model for Reservoir Operation Rules[J]. WATER RESOURCES MANAGEMENT,2010,24(11):2597-2610.
    [82]张双虎,黄强,吴洪寿,等.水电站水库优化调度的改进粒子群算法[J].水力发电学报,2007,26(1):1-5.
    [83]向波,纪昌明,罗庆松.免疫粒子群算法及其在水库优化调度中的应用[J].河海大学学报(自然科学版),2008,36(2):198-202.
    [84]黄炜斌,马光文,王和康,等.混沌粒子群算法在水库中长期优化调度中的应用[J].水力发电学报,2010,29(1):102-105.
    [85]Dorigo M, Maniezzo V, Colorni A. Ant system:optimization by a colony of cooperating agents [J]. IEEE Trans on SMC,1996,26(1):28-411.
    [86]Huang S J. Enhancement of hydroelectric generation scheduling using ant colony system based optimization approaches [J]. IEEE Transactions on Energy Conversion,2001, 16(3):296-301.
    [87]徐刚,马光文.基于蚁群算法的梯级水电站群优化调度[J].水力发电学报,2005,24(5):7-10.
    [88]王刚.滦河流域河道系统水分—生态相互作用机制及调控[D].中国水利水电科学研究院,2010.
    [89]郭银环,王国兴.小滦河细鳞鱼自然生存环境及人工驯养技术[J].河北渔业,2008,(8):45-46.
    [90]孙立汉,杜静,高士平,等.滦河口湿地黑嘴鸥原繁殖地恢复研究[J].地理与地理信息科学,2005,21(3):84-87.
    [91]王所安,等.河北动物志(鱼类)[M].石家庄:河北科技出版社,2001.
    [92]时玉涛,温海燕,乔光建.人类活动对滦河口湿地生态环境影响分析[J].南水北调与水利科技,2011,9(3):124-128.
    [93]杨红梅.滦河流域生态环境问题及治理探讨[J].水科学及工程技术,2007(6):43-46.
    [94]Schofield, N J, Davies, P E. Measuring the health of our rivers [J]. Water,1996, 5-6(23):39-43.
    [95]Meyer, J L. Stream health:incorporating the human dimension to advance stream ecology [J]. The North American Benlhological Society,1997,16(2):439-447.
    [96]Karr J R. Defining and measuring real health [J]. Freshwater Biology,1999, (41): 221-234.
    [97]Nodrris, R H, Hawkins, C P. Monitoring river health [J]. Hydrobiologia,2000,435: 5-17.
    [98]高永胜,王浩,王芳.河流健康生命评价指标体系的构建[J].水科学进展,2007,18(2):252-257.
    [99]耿雷华,刘恒,钟华平,等.健康河流的评价指标和评价标准[J].水利学报,2006,37(3):253-258.
    [100]Collier, M, Webb, R H, Schmidt, J C. Dams and Rivers:A Primer on the Downstream Effects of Dams [M]. Virginia:USGS,1996.
    [101]Ligon, F E, Dietrich, WE, Trush, W J. Downstream ecological effects of dams[J]. Bioscience,1995,45:183-192.
    [102]Bunn, S E, Arithington, A H. Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity [J]. Environmental Management,2002,30(4): 492-507.
    [103]Nilsson C, Reidy C A, Dynesius M, et al. Fragmentation and flow regulation of the world's large river systems[J]. Science,2005,308:405-408.
    [104]陈庆伟,刘兰芬,刘昌明.筑坝对河流生态系统的影响及水库生态调度研究[J].北京师范大学学报(自然科学版),2007,43(5):578-582.
    [105]黄钰铃,王从峰,刘德福.水库建设及生态系统和谐[J].节水灌溉,2007,(8):63-66.
    [106]滕燕,高仕春.面向生态环境的水库调度方式研究[J].水力发电,2008,34(6):24-27.
    [107]陈庆伟,陈凯麒,梁鹏.流域开发对水环境累积影响的初步研究[J].中国水利水电科学研究院学报,2003.1(4):300-305.
    [108]Poff N L, Allan J D, Bain M B, et al. The natural flow regime:a paradigm for river conservation and restoration [J]. Bioscience,1997,47:1163-1174.
    [109]Landres P B, Morgan P, Swanson F J. Overview of the use of natural variability concepts in managing ecological systems [J]. Ecological Applications,1999,9(4):1179-1188.
    [110]Allan, JD. Landscapes and riverscapes:The influence of land use on stream ecosystems[J].Annual Review of Ecology Evolution Systematics,2004,35:257-284.
    [111]Richter, B D, Baumgartner, J V, Powell, J, et al. A method for assessing hydrologic alteration within ecosystems [J]. Conservation Biology,1996,10(4):1163-1174.
    [112]张爱静,张弛,王本德.碧流河水库对下游径流情势的影响分析[J].水文,2009,29(6):28-32.
    [113]Nichols, S, Norris, R, Maher, W, et al. Ecological effects of serial impoundment on the Cotter River, Australia [J]. Hydrobiologia,2006,572(1):255-273.
    [114]Shiau J T, Wu F C. Compromise programming methodology for determining instream flow under multi-objective water allocation criteria [J] Journal of the American Water Resources Association,2006,42(5):1179-1191.
    [115]Magilligana F J, Nislow K H. Changes in hydrologic regime by dams [J]. Geomorphology, 2005,71:61-78.
    [116]Kemp J L, Harper D M, Crosa G A. The habitat-scale ecohydraulics of rivers [J]. Ecological Engineering,2000,16(1):17-29.
    [117]Bockelmann B N, Fenrich E K, Lin B, et al. Development of an ecohydraulics model for stream and river restoration [J]. Ecological Engineering,2004,22(4):227-235.
    [118]董哲仁,孙东亚,王俊娜,等.河流生态学相关交叉学科进展[J].水利水电技术,2009,40(8):36-43.
    [119]Davies N M, Norris R H, Thoms M C. Prediction and assessment of local stream habitat features using large-scale catchment characteristics[J]. Freshwater Biology,2000, 45:343-369.
    [120]Wright, J F, Sutcliffe, D W, Furse, M T. Assessing the biological quality of fresh waters:RIVPACS and other techniques[M]. Ambleside:The Freshwater Biological Association,2000.
    [121]Danish Hydraulic Institute (DHI). MIKE11:A Modeling System for Rivers and Channels Reference Manual[R]. DHI,2005.
    [122]Spence R, Hickley P. The use of PHABS1M in the management of water resources and fisheries in England and Wales [J]. Ecological Engineering,2000,16(1):153-158.
    [123]Beecher H A, Caldwell B A, Demond S B, et al. An empirical assessment of PHABSIM using Long-Term Monitoring of Coho Salmon Smolt Production in Bingham Creek, Washington [J]. North American Journal of Fisheries Management,30(6):1529-1543.
    [124]Waddle T J, Associates. PHABSIM for Windows:user's manual and exercises [R]. Denver: Midcontinent Ecological Science Center, U S Geological Survey,2001.
    [125]张文鸽,黄强,蒋晓辉.基于物理栖息地模拟的河道内生态流量研究[J].水科学进展,2008,19(2):192-197.
    [126]英晓明,基于IFIM方法的河流生态环境模拟研究[D].南京:河海大学,2006.
    [127]El izabeth A E. Habitat suitability index models: Common Carp[R]. Washington:S Department of the interior, U S Fish and Wildlife Service,1982.
    [128]Yang Y C E, Cai X M, Herrick E E. Identification of hydrologic indicators related to fish diversity and abundance:A data mining approach for fish community analysis [J]. Water Resources Research,2008,44:2078-2089.
    [129]Yang Z F, Cui B S, Liu J L. Estimation methods of eco-environmental water requirements: Case study [J]. Sci China Ser D-Earth Sci,2005,48(8):1280-1292.
    [130]Cui B S, Zhai H J, et al. Characteristics of wetland functional degradation and its ecological water requirement for restoration in Yilong Lake of Yunnan Plateau[J]. Chinese Science Bulletin,2006,51(S):127-135.
    [131]孙涛,徐静,刘方方,等.河口生态需水研究进展[J].水科学进展,2010,21(2):282-288.
    [132]徐向广.滦河中下游水库群联合供水优化调度问题的研究[D].天津:天津大学建筑工程学院,2009.
    [133]陈献军,高庆艳.滦河下游灌区稻田节水技术[J].中国水利,2010,(11):48-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700