用户名: 密码: 验证码:
高效喷射式制冷系统性能的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷射制冷是一种能有效利用低品位热能、维修方便、系统可靠性高、可直接利用水等环保型制冷剂的“绿色制冷”方式。但由于系统的工作效率不高,制约了其广泛应用,如何提高喷射式制冷系统性能就成为当前研究的首要任务。喷射器结构和蒸发器性能对喷射式制冷系统性能有着直接的影响,为此本文进行了理论和实验研究,主要做了以下工作:
     1)运用热力学及流体力学理论对喷射器理论模型进行了研究。根据工作流体流过喷嘴、混合室和扩压器的特点,导出了由能量损失定义的能耗系数,修正了喷射器的等压混合理论模型。分别研究了工作蒸汽温度和蒸发温度的变化对喷射式制冷系统性能及结构的影响规律,为本文喷射器结构的设计提供了理论依据。将文献中的实验结果与本文所提出的理论模型计算结果进行对比,结果表明本文所提出的喷射器理论模型的模拟计算结果优于目前广泛采用的Eames等人提出的理论模型。
     2)以水为工质分别对工作参数、喷射器结构尺寸和喷嘴出口位置对喷射式制冷系统性能的影响进行了实验研究。设计并搭建了喷射器结构可改变且能够测量沿喷射器轴线方向压力分布的蒸汽喷射式制冷系统性能实验台。通过实验研究,获得了工作流体温度、蒸发温度、冷凝压力、混合室结构、扩压器结构和喷嘴结构等参数的变化对喷射式制冷系统性能的影响规律,发现了本实验系统在不同条件下的最佳喷嘴出口位置及上述各参数的变化对最佳喷嘴出口位置的影响。
     3)运用细薄膜蒸发理论,针对矩形沟槽内液体分布的细薄膜区和弯月面区的传热建立了数学模型,获得了矩形沟槽内液相具有曲面界面边界条件温度分布的解析解,并采用无因次变量用伽辽金方法进行求解。根据所建立的数学模型分别模拟计算了随着接触角和壁面过热度的变化对不同区域传热量、总传热系数以及薄膜区传热量与总传热量比率的影响。细薄膜蒸发对矩形沟槽内的传热起主要作用。搭建了矩形沟槽表面细薄膜蒸发实验台,分别研究了在不同蒸发温度条件下,矩形沟槽表面细薄膜蒸发热流密度、过热度和热阻的变化情况。
Ejector refrigeration can utilize thermal energy with a relatively low temperature ranging from100℃to200℃such as solar energy or industrial waste heat, to power the system and use the most environmentally friendly substance-water as the working fluid. The ejector refrigeration system has a number of other unique features such as simplicity in construction, high reliability and low cost. However, the ejector refrigeration system is labeled as low coefficient of performance (COP) and low cooling capacity which restricts its applications. In the current dissertation, theoretical analysis and experimental investigation have been carried out to improve the thermal performance of the ejector refrigeration. The main works in this dissertation are summarized as follows:
     1. The mathematical model of the ejector was investigated based on the thermodynamic analysis and compressible fluid flow. Considering the flow characteristics of the working fluid in the nozzle, mixing chamber and diffuser, an efficiency was defined. Using this new defined efficiency a mathematical model has been redeveloped. The effect of the generation temperature and evaporation temperature on the performance and structure of the ejector refrigeration system, which can provide theoretical basis for the design of the ejector. In addition, results were compared with available experimental data in the literature and it shows that the model developed herein can result in a better prediction.
     2. The effects of the working conditions, ejector structure and nozzle exit position (NXP) on the ejector refrigeration performance have been conducted. A novel steam ejector refrigeration system was developed which could adjust the nozzle position, modify the mixing chamber, and change diffuser. In addition, the pressure distribution along the ejector could be readily measured. Experimental results show that the effects of generation temperature, evaporation temperature, condensing pressure and the structure of mixing chamber, diffuser and nozzle on the performance of the steam ejector refrigeration system could be readily obtained. Using this system, the optimal nozzle exit position (NXP) at a given working condition could be found.
     3. A highly efficient ejector system requires an extra-high efficient evaporator. In order to develop this highly efficient evaporator for the ejector system, a mathematical model was developed to determine heat transfer through both the thin film and bulk regions of a liquid in a rectangular micro groove. An analytical solution of the temperature distribution within the meniscus bulk region, where the interface is dominated by surface tension was found via a coordinate transformation and the Galerkin Method. The model includes the effect of contact angle and wall superheat on heat transfer and total heat transfer coefficient through both regions and the ratio of heat transfer in thin film region to total heat transfer. A thin film evaporation test setup has been built with rectangular micro groove surface to investigate the heat flux, superheat and thermal resistance of the thin film evaporator under different evaporating temperature.
引文
[1]Chunnanond K, Aphornratana S. Ejectors:applications in refrigeration technology[J]. Renewable and Sustainable Energy Reviews,2004,8(2):129-155.
    [2]Eames I W, Aphornratana S, Haider H. A theoretical and experimental study of a small-scale steam jet refrigerator[J]. International Journal of Refrigeration,1995,18(6):378-386.
    [3]张博.喷射器与太阳能喷射式制冷系统研究[D].大连理工大学,2002.
    [4]J.H.Keenan and E.P.Neumann, A simple air ejector [J]. ASME Journal of Applied Mechanics, 1942(64):A75-A82.
    [5]J.H.Keenan and E.P.Neumann, An investigation of ejector design by analysis and experiment[J]. ASME Journal of applied mechanics,1950,72:299-309.
    [6]J.T.Munday and D.F.Bagster, A New Ejector Theory Applied to Steam Jet Refrigeration[J]. Ind. Eng. Chem. Process Des. Dev.,1977,16(4):442-449.
    [7]Huang B J, Chang J M, Wang C P, et al. A 1-D analysis of ejector performance[J]. International Journal of Refrigeration,1999,22(5):354-364.
    [8]Zhu Y, Cai W, Wen C, et al. Shock circle model for ejector performance evaluation[J]. Energy Conversion and Management,2007,48(9):2533-2541.
    [9]祝银海,厉彦忠,鱼剑琳.基于制冷剂R141B的喷射器混合模型及其实验验证[J].化工学报,2008(9):2188-2193.
    [10]祝银海,厉彦忠,鱼剑琳,等.一种新的喷射器模型及其实验验证[J].西安交通大学学报,2008,42(9):1096-1101.
    [11]祝银海.基于临界圆的二维喷射器模型构建及流动机理研究[D].西安交通大学,2009.
    [12]Neve R S. Computational fluid dynamics analysis of diffuser performance in gas-powered jet pumps[J]. International Journal of Heat and Fluid Flow,1993,14(4):401-407.
    [13]Riffat S B, Gan G, Smith S. Computational fluid dynamics applied to ejector heat pumps[J]. Applied Thermal Engineering,1996,16(4):291-297.
    [14]张博,沈胜强,李海军,等.二维流动模型的喷射器性能分析研究[J].热科学与技术,2003(2):149-153.
    [15]李海军.喷射器性能、结构及特殊流动现象研究[D].大连理上大学,2004.
    [16]华敏.蒸汽喷射器特性的CFD分析与节能应用研究[D].南京工业大学,2005.
    [17]Rusly E, Aye L, Charters W W S, et al. CFD analysis of ejector in a combined ejector cooling system[J]. International Journal of Refrigeration,2005,28(7):1092-1101.
    [18]Bartosiewicz Y, Aidoun Z, Desevaux P, et al. Numerical and experimental investigations on supersonic ejectors[J].International Journal of Heat and Fluid Flow,2005,26(1):56-70.
    [19]姬淼.蒸汽喷射器的CFD数值模拟及过程状态分析[D].华北电力大学(北京),2009.
    [20]余志宏.基于Fluent的喷射器数值模拟与结构优化研究[D].江南大学,2011.
    [21]Sun D. Variable geometry ejectors and their applications in ejector refrigeration systems[J]. Energy,1996,21(10):919-929.
    [22]Aphornratana S, Eames I W. A small capacity steam-ejector refrigerator:experimental investigation of a system using ejector with movable primary nozzle[J]. International Journal of Refrigeration,1997,20(5):352-358.
    [23]Chen Y, Sun C. Experimental study of the performance characteristics of a steam-ejector refrigeration system[J]. Experimental Thermal and Fluid Science,1997,15(4):384-394.
    [24]Chang Y, Chen Y. Enhancement of a steam-jet refrigerator using a novel application of the . petal nozzle[J]. Experimental Thermal and Fluid Science,2000,22(3-4):203-211.
    [25]Sun D. Comparative study of the performance of an ejector refrigeration cycle operating with various refrigerants[J]. Energy Conversion and Management,1999,40(8):873-884.
    [26]Chunnanond K, Aphornratana S. An experimental investigation of a steam ejector refrigerator: the analysis of the pressure profile along the ejector[J]. Applied Thermal Engineering,2004,24(2-3): 311-322.
    [27]Yapici R. Experimental investigation of performance of vapor ejector refrigeration system using refrigerant R123[J]. Energy Conversion and Management,2008,49(5):953-961.
    [28]张琨.可调式喷射器性能分析与过程研究[D].大连理工大学,2009.
    [29]张琨.可调式喷射器的性能计算分析与结构设计[D].大连理工大学,2005.
    [30]钟福春.喷射式制冷的实验研究[D].大连理工大学,2011.
    [31]张博,薛凤娟,赵明海.低品位余热源新型双喷射式制冷系统研究[J].大连理工大学学报,
    2008(2):193-197.[32]王菲.新型双喷射制冷系统关键影响因素及性能研究[D].大连理工大学,2010.
    [33]Riffat S. B. H A. A NOVEL HEAT PIPEEJECTOR COOLER[J]. Applied Thermal Engineering,1998:93-101.
    [34]王兴春,施明恒.热管喷射式制冷的研究[J].东南大学学报(自然科学版),2002(4):634-637.
    [35]沈逵,施明恒.热管喷射制冷循环工质的研究[J].能源研究与利用,2004(5):3-5.
    [36]施明恒,蔡晖,王兴春.毛细驱动蒸汽喷射式制冷系统的研究[J].工程热物理学报,2004(5):745-748.
    [37]蔡辉,施明恒.热管喷射式制冷系统吸液芯的选择[J].工程热物理学报,2006(1):148-150.
    [38]施明恒,王兴春,蔡辉.太阳能毛细驱动喷射式空调器性能模拟研究[J].东南大学学报(自然科学版),2005(1):69-72.
    [39]施明恒,蔡晖,王兴春.热管喷射式空调系统中喷射器的研究[J].工程热物理学报,2005(6):20-22.
    [40]Srisastra P, Aphornratana S, Sriveerakul T. Development of a circulating system for a jet refrigeration cycle[J]. International Journal of Refrigeration,2008,31(5):921-929.
    [41]Huang B J, Chang J M, Petrenko V A, et al. A SOLAR EJECTOR COOLING SYSTEM USING REFRIGERANT R141b[J]. Solar Energy,1998,64(4-6):223-226.
    [42]Huang B J, Petrenko V A, Samofatov I Y, et al. Collector selection for solar ejector cooling system[J]. Solar Energy,2001,71(4):269-274.
    [43]Nguyen V M, Riffat S B, Doherty P S. Development of a solar-powered passive ejector cooling system[J]. Applied Thermal Engineering,2001,21(2):157-168.
    [44]田琦.太阳能喷射与压缩一体化制冷系统的研究[D].天津大学,2005.
    [45]郭建.太阳能喷射制冷系统新型喷射器工作特性的研究[D].东华大学,2009.
    [46]Sokolov M, Hershgal D. Enhanced ejector refrigeration cycles powered by low grade heat. Part 1. Systems characterization[J]. International Journal of Refrigeration,1990,13(6):351-356.
    [47]Dorantes R, Estrada C A, Pilatowsky I. Mathematical simulation of a solar ejector-compression refrigeration system[J]. Applied Thermal Engineering,1996,16(8-9):669-675.
    [48]Sokolov M, Hershgal D. Enhanced ejector refrigeration cycles powered by low grade heat. Part 2. Design procedures[J]. International Journal of Refrigeration,1990,13(6):357-363.
    [49]Sokolov M, Hershgal D. Enhanced ejector refrigeration cycles powered by low grade heat. Part 3. Experimental results[J]. International Journal of Refrigeration.1991,14(1):24-31.
    [50]Sun D. Solar powered combined ejector-vapour compression cycle for air conditioning and refrigeration[J]. Energy Conversion and Management,1997,38(5):479-491.
    [51]Huang B J, Petrenko V A, Chang J M, et al. A combined-cycle refrigeration system using ejector-cooling cycle as the bottom cycle[J]. International Journal of Refrigeration,2001,24(5): 391-399.
    [52]刘玉娜,田琦,武晓庆,等.太阳能压缩-喷射二级制冷系统的运行工况分析[J].建筑热能通风空调,2009(4):37-40.
    [53]白惠峰,田琦,王增长.太阳能喷射与压缩复合制冷系统的火用分析[J].中北大学学报(自然科学版),2008(6):558-562.
    [54]刘益才,曹立宏,杨智辉,等.新型冰箱压缩/喷射混合制冷循环的研究[J].低温与超导,2008(1):42-45.
    [55]刘敬辉,陈江平,陈芝久.压缩/喷射混合制冷系统喷射器设计及其变工况特性探讨[J].应用科学学报,2006(6):642-646.
    [56]Chen X, Zhou Y, Yu J. A theoretical study of an innovative ejector enhanced vapor compression heat pump cycle for water heating application[J]. Energy and Buildings,2011,43(12): 3331-3336.
    [57]Dorantes R, Estrada C A, Pilatowsky I. Mathematical simulation of a solar ejector-compression refrigeration system[J]. Applied Thermal Engineering,1996,16(8-9):669-675.
    [58]Vidal H, Colle S. Simulation and economic optimization of a solar assisted combined ejector-vapor compression cycle for cooling applications[J]. Applied Thermal Engineering,2010, 30(5):478-486.
    [59]Chen L. A new ejector-absorber cycle to improve the COP of an absorption refrigeration system[J]. Applied Energy,1988,30(1):37-51.
    [60]蒋立本,顾兆林,牛宏新,等.吸收—喷射复合制冷循环与双效吸收式制冷循环的比较研究[J].流体机械,2000(6):45--49.
    [61]蒋立本,顾兆林,冯霄,等.吸收-喷射与吸收式制冷系统的热经济学比较[J].西安交通大学学报,2000(6):76-79.
    [62]顾兆林,蒋立本,冯诗愚,等.吸收一喷射复合制冷技术的研究进展[J].低温工程,1999(2):1-4.
    [63]顾兆林,钱永耀,李兴武,等.太阳能吸收—喷射复合制冷系统研究[J].太阳能学报,1996(1):75-80.
    [64]Shi L, Yin J, Wang X, et al. Study on a new ejection-absorption heat transformer[J]. Applied Energy,2001,68(2):161-171.
    [65]Eames I W, Wu S. A theoretical study of an innovative ejector powered absorption-recompression cycle refrigerator[J]. International Journal of Refrigeration,2000,23(6): 475-484.
    [66]Aphornratana S, Eames I W. Experimental investigation of a combined ejector-absorption refrigerator[J]. International Journal of Energy Research,1998,22(3):195-207.
    [67]顾兆林,闵东红,冯诗愚等.新型CH3OH-LiBr-ZnCl2吸收-喷射制冷系统变工况分析[J].太阳能学报,1998(3):31-36.
    [68]邹云霞,陈光明,洪大良等.两种吸收-喷射复合制冷循环的对比研究[J].流体机械,2012(2):52-56
    [69]顾兆林,冯诗愚,郁永章.LiBr-H2O吸收-喷射复合制冷循环流程的性能研究[J].西安交通大学学报,1998(1):63-66.
    [70]王彦峰,顾兆林,冯诗愚等.LiBr-H2O吸收-喷射复合制冷循环流程的热力参数研究[J].西安交通大学学报,1999(8):72-76.
    [71]王彦峰,顾兆林,冯诗愚等LiBr-H2O吸收-喷射复合制冷循环流程的热力参数研究[J].西安交通大学学报,1999(8):72-76.
    [72]顾兆林,冯诗愚,郁永章.LiBr-H2O吸收-喷射复合制冷循环流程的性能研究[J].西安交通大学学报,1998(1):63-66.
    [73]邹云霞,陈光明,洪大良等.两种吸收-喷射复合制冷循环的对比研究[J].流体机械,2012(2):52-56.
    [74]林顺荣,陈光明,洪大良等.带喷射器的澳化锂第二类吸收式热泵循环热力分析[J].低温工程,2012(1):19-24.
    [75]Khaliq A, Agrawal B K, Kumar R. First and second law investigation of waste heat based combined power and ejector-absorption refrigeration cycle[J]. International Journal of Refrigeration, 2012,35(1):88-97.
    [76]Vereda C, Ventas R, Lecuona A, et al. Study of an ejector-absorption refrigeration cycle with an adaptable ejector nozzle for different working conditions[J]. Applied Energy,2012,97(0):305-312.
    [77]李春华,王如竹,卢水庄.太阳能固体吸附-喷射制冷联合循环系统研究[J].工程热物理学报,2001,22(4):414-416.
    [78]卢允庄,上如竹,李春华等.固体吸附-蒸汽喷射式联合制冷循环热力分析[J].化工学报,2002(7):695-699.
    [79]Zhang X J, Wang R Z. A new combined adsorption-ejector refrigeration and heating hybrid system powered by solar energy[J]. Applied Thermal Engineering,2002,22(11):1245-1258.
    [80]李春华,王如竹,卢永庄.太阳能固体吸附—喷射制冷联合循环系统研究[J].工程热物理学报,2001(4):414-416.
    [81]卢允庄,工如竹,李春华等.固体吸附-蒸汽喷射式联合制冷循环热力分析[J].化工学报,2002(7):695-699.
    [82]陈金增.船舶海水淡化及节能技术研究[D].华中科技大学,2010.
    [83]刘大伟.低温多效蒸发海水淡化系统性能研究[D].大连理L大学,2011.
    [84]毛小兵.喷射器在船舶冷库节能中的应用与实验研究[D].武汉理工大学,2002.
    [85]邓申江,孙文哲,曹巍等.喷射式制冷在船舶废热制冷中的应用研究[J].能源与环境,2008(6):32-33.
    [86]董景明,潘新祥,宋立国等.喷射式制冷在船舶空调中的应用研究[J].船舶工程,2011(1):29-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700