用户名: 密码: 验证码:
重型车用增压中冷稀燃LNG发动机性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境问题和能源危机是当今世界人类所面临的两大问题,节能和减排是科研工作者水恒不变的主题和责任。进入21世纪后,中国经济高速发展,每年以两位数左右的GDP增长速度稳居世界首位,但中国经济目前的主要发展模式是以高耗能的建筑、冶金、交通等行业带动其它行业的发展,带来严重的环境污染和巨大的能源消耗。大面积的雾霾天气和过高的对外石油依存度成为困扰中国政府的两大问题。为了降低排放并提高能源多元化,汽车燃用代用燃料成为必然选择。天然气因具有良好的排放性和可获得性成为车辆的主要代用燃料。液化天然气(Liquefied natural gas, LNG)和压缩天然气(Compressed natural gas, CNG)相比因具有能量密度大、续航里程长等优点,成为重卡天然气发动机的首选燃料。本文以WP10NGE40单一燃料增压中冷、稀燃天然气发动机为对象,对LNG发动机的进气混合系统、燃烧系统、燃料供给系统、发动机性能及汽车燃气加热器和LNG发动机的联合运行进行了较为系统的数值模拟和试验研究,开发出性能良好的重型车用稀燃LNG发动机。
     本文建立了直管式和十字叉式两种混合器不同结构参数的六种模型,模拟了天然气和空气的混合过程,分析了混合孔直径、混合孔分布位置等参数对混合均匀性的影响。计算结果表明:十字叉式的混合器增加了混合过程的扰动及混合孔的分布散度,更有利于天然气与空气的均匀混合,采用十字叉式混合器后,进气管中部的混合气浓度稍高,有利于后续的掺混和燃烧。综合评价各方面的参数,优选了WP10NGE40发动机的混合器。建立了发动机的一维热力过程模型和进气管三维流动过程模型,利用ID/3D耦合瞬态模拟技术,研究了截面为矩形和梯形两种结构的进气管对发动机进气均匀性的影响,结果表明WP10NGE40发动机选用梯形截面结构的进气管,其进气均匀性更佳
     设计了四种不同结构的燃烧室,建立了包括进气道和燃烧室两部分的移动计算网格,并根据WP10NGE40发动机的过量空气系数在0.6-1.7范围内的情况,选择标准的CFM-2A模型,对发动机的进气、压缩、点火和火焰传播过程进行了瞬态模拟。研究燃烧室挤流而积、燃烧室凹坑圆角、压缩余隙、燃烧室凹坑深度对缸内气流运动及点火和火焰发展、传播的影响。研究结果表明:压缩余隙的减小、挤流面积及燃烧室四坑深度的适当增加,有利于火焰中心在燃烧室内部的发展和快速传播。分析了四种方案的缸内气流运动及燃烧过程,并对比了燃烧持续期,确定了WP10NGE40发动机的燃烧室结构参数。
     针对国内LNG加注站加注压力偏低,LNG在使用过程中存在燃料流出困难、天然气汽化后压力偏低,不能满足增压中冷后单点混合发动机的需要等问题,提出带有自增压系统的LNG燃料罐,并设计了带有LNG汽化器换热强度控制和汽化后天然气温度调节的两级调节天然气发动机燃料供给系统。对燃料供给系统进行了保温性、可靠性试验及自增压和非增压系统对供气能力影响的对比试验,试验结果表明采用该系统后供气稳定,发动机运转平稳,可满足使用需要。
     研究了燃空比、火花塞间隙、喷射压力等运行参数对发动机动力性和经济性的影响。试验结果表明:当发动机转速为1000r·min1,燃空比在0.77左右时该发动机的燃气消耗率达到最低;发动机转速为1400r·min1,燃空比在0.76左右时发动机的燃气消耗率达到最低值;当发动机的火花塞间隙为0.4mm时可以兼顾发动机的动力性、经济性和可靠性;发动机转速在800r·min-1-1200r·min-1范围内时,喷射压力降低后发动机的气耗率增加,增加的幅度在1%之内;喷射压力从6bar降低为5.5bar后,转速在1200r·min-1-1800r·min-1范围内时,随转速的提高气耗率的增加量提高,1800r·min-1工况下气耗率增加了6.8%。喷射压力从5.5bar提高到6bar后,WP10NGE40发动机的经济性得到改善,并缩短了喷射脉宽,有利于喷嘴寿命的提高。
     作者对增压中冷后进气总管单点混合天然发动机外特性及负荷特性的HC和NOx排放进行了研究。研究结果表明:进气管单点喷射增压发动机存在混合气扫气现象,外特性工况点CH4排放占THC排放的95%以上;外特性中速和高速时的碳氢排放量较低速时多,随点火提前角的减小碳氢排放减少,点火提前角对1400r·min-1(大扭矩转速)碳氢排放的影响最显著;发动机负荷率从0增加到100%,碳氢排放总体上呈增加趋势,2000r·min转速时,随负荷率的增加CH4占THC排放的比例升高。稀燃天然气发动机在外特性运行时低转速的NOx排放水平比高速运行时高,外特性安装催化转化器后发动机NOx排放升高;发动机转速为1000r·min-1和1400r·min-1时,随负荷率的增大NOx排放呈先增大后减小的趋势;发动机在1000r·min-1和1400r·min-1、(?)中等负荷率时,点火提前角对NOx排放的影响较显著,50%负荷率左右时,安装催化器后NOx排放水平显著降低,发动机转速为2000r·min-1时,在整个负荷率范围内NOx排放水平较低,安装催化器后,NOx总体排放水平升高。
     针对重卡LNG发动机在寒区运行时暴露出的冷车起动困难、供气不足、供气温度过低及取暖问题,设计了汽车燃气加热器和LNG发动机联合运行系统,开展了台架试验及车辆寒区试验。结果表明:汽车燃气加热器与LNG发动机共用一套LNG燃料供给系统,联合运行稳定,试验过程中加热器起动容易、燃烧稳定;加热器和发动机联合运行对LNG发动机的冷起动改善效果明显,在寒区汽车燃气加热器和发动机联合运行可以有效改善发动机的冷起动性。
     综上所述,课题从LNG发动机进气混合过程、燃烧过程、燃料供给系统到发动机的性能及汽车燃气加热器和LNG发动机的联合运行进行了较为详细的研究,所开发的WP10NGE40发动机在动力性、经济性、排放性和冷起动性方面均取得了较为理想的效果,掌握了LNG发动机开发的关键技术,为LNG发动机的后续研发提供了理论和试验基础。
Environmental problem and energy crisis are two major issues facing the world today. Energy conservation and pollution reduction is the eternal subject and responsibility of the scientific research workers. After entering the21st century, China's economy is developing rapidly, ranking first in the world with a double-digit or so GDP growth each year. However, the main pattern of China's economic development nowadays relies on the highly energy-consuming industries such as building, metallurgy, transport, to drive the development of other industries, which leads to serious environmental pollution and tremendous energy consumption. Large-area of haze and fog weather and over-dependence on imported oil become two main concerns of Chinese government. In order to reduce emissions and improve energy diversification, it is the inevitable choice for automobiles to adopt alternative fuel. And natural gas, with the advantages of slight emission and availability, becomes the main alternative fuel for vehicles. Compared with compressed natural gas(CNG), liquefied natural gas(LNG) has higher energy density and longer mileage, which makes it the preferred fuel for gas engine which applied in heavy trucks. Focused on WP10NGE40mono-fuel, turbocharged inter-cooled lean-burn natural gas engine, systematic numerical simulation and experimental research on the fuel supply system, intake mixing system, combustion system, engine performance of LNG engine as well as the combined operation of gas heater and LNG engine was carried out, and heavy vehicle lean-burn LNG engine with good performance was developed.
     In this paper, six models of both straight mixer and cross mixer with different structure parameters were designed. The mixing process of natural gas and air was simulated, and the influence of parameters such as the diameter and location of mixing holes on the mixing uniformity was analyzed. The calculation results show that Cross mixer is more beneficial to the uniform mixing of natural gas and air with the advantage of increasing disturbance of mixing process and distribution scatter degree of mixing holes. Mixture concentration in the middle of the manifold is slightly higher when adopting the cross mixer, which is beneficial to subsequent mixing and combustion. Based on the comprehensive evaluation on various parameters, the mixer of WP10NGE40was selected optimally. One-dimensional model of thermodynamic process and three-dimensional model of flow process in the intake manifold were established for the engine.1D/3D coupled transient simulation technology was adopted to study the effects of intake manifold with rectangular and trapezoidal cross-section on intake distribution evenness. The simulation results indicate that when choosing the manifold with trapezoidal cross-section for WP10NGE40engine, better distribution evenness of intake charge can be obtained.
     Four kinds of combustion chamber with different structure were designed and the mesh of intake port and combustion chamber for moving calculation was established. Then a transient simulation for the process of intake, compression, ignition, and flame propagation was carried out with standard CFM-2A model which was selected based on the condition of excess air coefficient of WP10NGE40engine in the range of0.6-1.7. The effect of squeeze flow area of combustion chamber, combustion chamber recess fillet, compression clearance and combustion chamber recess depth on the gas flow movement in the cylinder, ignition, flame development and propagation was studied. The simulation results reveal that decrease of compression clearance and appropriate increase of squeeze flow area and combustion chamber recess depth is good for the development and fast spreading of the flame center within the combustion chamber. The gas flow movement and combustion process in combustion chamber of four schemes was analyzed and the combustion duration was compared. The structural parameters of combustion chamber of WP10NGE40engine were finally determined.
     Considering the flowing out difficulty in the use of LNG resulting from the low filling pressure of domestic LNG refueling station and the insufficient vaporization pressure which can't meet the working demand of the inter-cooled engine with single-point mixing system, a new kind of LNG fuel tank with self-pressurized system was put forward. What's more, a new kind of fuel supply system of nature gas engine was designed. It has a double-level regulation:one is the control for heat transfer intensity of LNG vaporizer and the other is temperature regulation of nature gas after vaporization. A series of experiments on fuel supply system were done, including experiments of heat preservation property and reliability and contrast test between the influence of LNG tank with and without self-pressurized system on gas supply capacity. According to the results, the gas supply is stable and the engine operates smoothly after the system is applied, the application requirements are satisfied.
     In this paper, the operation parameters influencing the power performance and economy of engine, including plug gap, ignition advance angle, injection pressure, were investigated. The results show that, the gas consumption rate of the engine reaches the lowest at1000r·min-1was fuel air ratios of0.77; At the speed of1400r·min-1and fuel air ratios of0.76, the gas consumption rate of the engine reaches the lowest; When the plug gap is0.4mm, the power performance, economy, reliability of the engine are balanced; At the speed of800r·min-1to1200r·min-1, the decrease of injection pressure causes the increasing of gas consumption rate with the increasing extent smaller than1%; At the speed of1200r·min-1to1800r·min-1, the increase of gas consumption rate rises with the improvement of rotary speed, further more gas consumption rate increases by6.8%at the speed of1800r·min-1. When the injection pressure rises from5.5bar to6bar, the fuel economy of WP10NGE40engine is improved. Meanwhile the injection pulse is shortened and the life of nozzle is prolonged.
     Basing on turbocharged intercooled natural gas engine equipping with inlet manifold single-point mixing system, HC and NOx emission of external characteristic and load characteristic were studied. The results demonstrates that mixture scavenging phenomenon exists in turbocharged engine with inlet manifold single-point mixing system, and the percentage of CH4emission accounts for more than95%of THC emission under external characteristic of operation; under external characteristic,HC emission at medium speed and high speed is more than low speed and decreases with the reduction of ignition advance angle, however, at the speed of1400r·min-1(large torque speed), ignition advance angle has the greatest impact on HC emission; With the engine load rate increasing from0to100%, HC emission shows an overall upward trend. At the speed of2000r·min-1, the percentage of CH4emission in THC emission increases with load rate rises. Under external characteristic, NOx emission of lean-burn natural gas engine at low speed is higher compared with high speed, but NOx emission would increase when equipping with catalytic converter in the condition of external characteristic; At the speed of1000r·min-1and1400r·min-1, NOx emission firstly increases and then decreases with increase of load rate. Under medium load, the effects of ignition advance angle is obvious at the speed of1000r·min-1and1400r·min-1. at50%load rate, NOx emission decreases obviously after equipped with catalytic converter; At the speed of2000r·min-1, NOx emission would be low at the entire range of load rate, while after equipped with catalytic converter, the overall level of NOx emission would increase.
     To resolve the problems of difficult cold starting, insufficient gas supply, low supply temperature and heating that arise when LNG engine used by heavy trucks running in severe cold regions, the combined operation system was designed, and the bench test and cold region test were carried out. It can been seen from the results that the combined operation system runs steadily when the gas-fuel heater and the LNG engine share the same fuel supply system, and the heater starts easily as well as its combustion is stable during the experiment; The combined operating of heater and engine improves the cold start of LNG engine obviously. In cold region, the cold starting of LNG engine can be effectively improved by the combined operating of gas heater and engine.
     In conclusion, the WP10NGE40engine developed in this paper achieves ideal performance of dynamics, fuel economy, emission and cold starting. Through the above studies, key techniques of LNG engine development were mastered, independent development platform for LNG engine were established, and theoretical basis and operation experience of experiments were gained for continued research. The research results are conductive to advancing the core competence of domestic LNG engine and automobile product, reducing automotive industry's addiction to oil and improving energy structure.
引文
[1]2012中国汽车工业年鉴.北京:中国汽车工业学会,2012.
    [2]发改委:去年我国原油对外依存度56.4%.中国电力网2012-02-14 .http://www.chinapower.com.cn/article/1227/ar11227888.asp
    [3]雾霾引汽车发展争议 油品质量升级将提速.每日经济新闻2013-02-07.http://aulo.163.com/13/0207/22/8N55PKK700084IJQ.html
    [4]Papagiannakis R G, Rakopoulos C D, Hountalas D T, el al. Emission characteristics of high speed, dual fuel, compression ignition engine operating in a wide range of natural gas/diesel fuel proportions[J]. Fuel 2010:89:1397-1406.
    [5]Rakopoulos C D, Kyritsis D C. Hydrogen enrichment effects on the second lawanalysis of natural and landfill gas combustion in engine cylinders[J]. Int JHydrogen Energy 2006:31:1384-1393.
    [6]Srinivasan K K, Krishnan S R, Midkiff K C. Improving low load combustionstability and emissions in pilot-ignited natural gas engines[J]. Proc Inst Mech Eng(Part D), J Autom Eng 2006:220:229-239.
    [7]Papagiannakis R G, Hountalas D T, Kots iopoulos P N. Experimental andtheoretical analysis of the combustion and pollutants formation mechanismsin dual fuel DI diesel engines[J]. SAE Paper, 2005-01-1726:2005.
    [8]中国石油天然气市场需求分析.中国天然气工业网2005-10-31. http://finance.sina.com.cn/roll/20050825/0858281942.shtml
    [9]2007年中国能源分析报告.北京:中国水利水电出版社,2007.
    [10]西气东输工程成为西部资源与东部市场双赢的纽带.中央政府门户网站.2010-10-08.http://www.gov.cn/jrzg/2010-10/08/content_1717377.htm
    [11]李娜,张强,邵思东,等.重型车用稀燃天然气发动机碳氢排放特性[J].农业工程学报,2013,29(2):45-51.
    [12]李娜,佟德辉,李国祥.汽车燃气加热器与LNG发动机联合运行试验[IJ].农业机械学报,2012,43(9):27-30.
    [13]李娜,张强,邵思东,等.重型稀燃天然气发动机NOx排放试验研究[J].车用发动机,2012,6:61-64.
    [14]Arvind T, Daniel K. C, Mohan K,et al. Effect of an economical oxidation catalyst formulation on regulated and unregulated pollutants from natural gas fueled heavy duty btransit buses[J].Transportation Research Part D 2011;16:469-473.
    [15]T. Korakianitis, A.M. Namasivayam, R. J. Crookes. Natural-gas fueled spark-ignition (SI)and compression-ignition(CI)engineperformance and emissions[J]. Progress in Energy and Combustion Science 2011:37:89-112.
    [16]乔国发,李玉星,冯叔初,等.LNG在汽车代用燃料中的优势[J].油气储运,2004,23(2):46-49.
    [17]贾潞安,赵海明.LNG是机动车辆气代油的最佳选择[J].山西能源与节能,2009,(2):27-30.
    [18]Lisa A G, Greg R,Deborah R, et al. Greenhouse gas emissions from heavy-duty vehicles[J]. Atmospheric Environment 2008:42:4665-4681.
    [19]Zarante P H B,Sodre J R. Evaluating carbon emissions reduction by use of natural gas as engine fuel[J]. Journal of Natural Gas Science and Engineering,2009(1):216-220.
    [20]郑尊清,尧命发,林志强,等.满足国Ⅳ排放的电控稀燃天然气发动机燃烧系统开发[J].内燃机工程,2009,30(5):7-11.
    [21]Mello P, Pelliza G, Cataluna R, et al. Evaluation of the maximum horsepower of vehicles converted for use with natural gas fuel [J].Fuel 2006:85:2180-2186.
    [22]Liu B, Huang Z H, Zeng K, et al. Experiment al study on emissions of a spark ignition engine fueled with natural gas hydrogen blends[J]. Energy & Fuels 2008;22: 273-277.
    [23]Hu E, Huang Z H, Liu B, et al. Experimental study on combustion characteristics of a spark-ignition engine fueled with natural gas hydrogen blends combining with EGR[J]. International Journal of Hydrogen Energy 2009;34:1035-1044.
    [24]M. A. Kalam,H.H. Masjuki. An experimental investigation of high performance natural gas engine with direct injection[J].Energy 2011:36:3563-3571.
    [25]李国岫,张欣,夏渊,等.电控喷射天然气发动机空燃比控制策略的研究[J].内燃机学 报,2004,22(5):456-461.
    [26]窦慧莉,刘忠长,李骏,等.电控多点喷射天然气发动机的开发[J].燃烧科学与技术,2006,12(3):256-261.
    [27]魏鹏威,张建一,詹黎.基于LNG冷能利用的公交车空调制冷系统优化[J].低温与超导,2012,40(5):5-8.
    [28]王强.绿色汽车燃料—液化天然气冷量回收汽车空调系统研究[D].西安:西安交通大学,2003.
    [29]王强,厉彦忠,殷秀娓:LNG汽车冷能回收空调系统[J];天然气工业;2005,10(2):124-128.
    [30]边海军.液化天然气冷能利用技术研究及其过程分析[D].武汉:华南理工大学,2011.
    [31]Haeng Muk Cho, Bang-Quan He. Spark ignition natural gas engines-A reviow[J]. Energy Conversion and Management 2007;48:608-618.
    [32]Reynolds CCO, Evans RL. Improving emissions and performance characteristics of lean burn natural gas engines through partial stratification[J]. Int J Engine Res 2004;5(1):105-114.
    [33]Richard son S, Mc Millian MH, Woodruff SD, et al. Misfire, knock and NOx mapping of a laser spark ignited single cylinder lean burn natural gas engine[C]. SAE Paper,2004-01-1853:2004.
    [34]Chung S, Ha J, Park W, Yeom J, Lee M. A study on a spark plug forcharging of stratified mixture in a local area[C]. SAE Paper,2003-01-3213;2003.
    [35]Reynolds CCO, Evans RL, Andreassi L, et al. Theeffect of varying the injected charge stoichiometry in a partiallystratified charge natural gas engine[C]. SAE Paper,2005-01-0247:2005.
    [36]Karim GA. Combustion in gas fueled compression ignition engines of the dual 671fuel type[J]. ASME J Eng Gas Turbines Power 2003; 125:827-836.
    [37]Uma R, Kandpal TC, Kishore VVN. Emission characteristics of an electricity generation system in diesel alone and dual fuel modes[J].Biomass & Bioenergy 2004:27(2):195-203.
    [38]Singh S, Krishnan S R, Srinivasan K K, et al. Effect of pilot injectiontiming, pilot quantity and intake charge conditions on performance and emissions for an advanced low-pilot-ignited natural gas engine[J]. Int J Eng Res 2004:5:329-348.
    [39]Patterson j, Clarke A, Chen R. Experimental study of the performance and emissions characteristics of a small diesel Genset operating in dual-fuel modewith three different primary fuels[C].SAE Paper,2006-01-0050;2006.
    [40]张强,王志明.双燃料发动机性能与排放的试验研究[J]. 车用发动机,2005,158(8):14-17.
    [41]Mustaf i N N, Raine R R. A study of the emissions of a dual fuel engine operating with alternative gaseous fuels[C].SAE Paper,2008-01-1394;2008.
    [42]Papagiannakis RG, Hountalas DT. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated withpilot Diesel fuel and natural gas[J].Energy Convers Manage 2004;45(18-19):2971-2987.
    [43]Galal MG, Abdel Aal MM, El Kady MA. A comparative study between diesel and740 dual-fuel engines:performance and emissions[J]. Combust Sci Techno1741 2002:174(11-12):241-56.
    [44]Papagiannakis RG, Hountalas DT. Experimental investigation concerningthe effect of natural gas percentage on performance and emissions of aDI dual fuel diesel engine[J]. Applied Thermal Engineering 2003;23(3):353-365.
    [45]B. B. Sahoo, N. Sahoo, U. K. Saha. Effect of engine parameters and type of gaseous fuel on the performanceof dual-fuel gas diesel engines-A critical review[J]. Renewable and Sustainable Energy Reviews 2009:13:1151-1184.
    [46]徐兆坤,蒋妙范,张钰成,等.气体双燃料发动机运行模式的研究[J].天然气工业,2005(03):157-160.
    [47]苏万华,林志强,汪洋,等.气口顺序喷射、稀燃、全电控柴油/天然气双燃料发动机的研究[J].内燃机学报,2001,19(2):102-108.
    [48]夏渊,张欣,李国岫.顺序多点喷射单一燃料天然气发动机台架试验系统的研制[J].仪器仪表学报,2003,24(3):318-321.
    [49]窦慧莉,刘忠长,李骏,等.电控喷射稀燃天然气发动机的开发[J].内燃机学报,2007,25(2):137-143.
    [50]张怀东,李立顺,张天如.分隔室火花点火天然气发动机燃烧过程的试验研究[J].军 事交通学院学报,2008,10(6):53-56.
    [51]张惠明,龚英利,赵奎翰,等.天然气发动机预燃室式燃烧系统的研究[J].农业机械学报,2004.35(1):34-40.
    [52]李书泽,张武高,黄震.天然气发动机燃料供给系统研究现状[Jj.农业机械学报,2005.36(2):127-130.
    [53]Z. Huang, S. Shiga, T. Ueda, A basic behavior of CNG D1 stratified combustion using a spark-ignited rapid compression machine, JSME International Journal, Series B, Fluids and Thermal Engineering 45 (4) (2002) 891-900.
    [54]Sandeep M, Patric O, James H, et al. Direct injection of natural gas in a heavy-duty diesel engine[C]. SAE Paper,2002-01-1630;2002.
    [55]Dale G, Mark D, Sandeep M, et al. Development of a compression ignition heavy duty pilot-ignited naturalgas-fuelled engine for low NOx emissions[C], SAE Paper,2004-01-2954:2004.
    [56]Michael RF, Edward LP, Mostafa MK, et al.An emission and performance comparison of the natural gas CumminsWestport Inc.C-Gas Plus Versus Diesel in Heavy-Duty Trucks[C].SAE Paper,2002-01-2737;2002.
    [57]Hill PG.Analysis of combustion in diesel engines fueled by directly injectednatural gas[J]. ASME Journal of Engineering for Gas Turbines and Power January2000;122:141-149.
    [58]Shiga S, Ozon S, Machacon HTC, et al. Studyof the combustion and emission characteristies of compressed-natural-gasdirect-injection stratified combustion using a rapid-compression-machine[J]. Combustion and Flame 2002:129(1-2):1-10.
    [59]Carlucci AP, Risi AD, Laforgia D, et al. Experimental investigation andcombustion analysis of a direct injection dual-fuel dieselenatural gas engine[J].Energy February 2008;33(2):256-263.
    [60]McTaggart-Cowan GP, Rogak SN, Munshi SR,et al. The influenceof fuel composition on a heavy-duty, natural-gas direct-injection engine[J]. FuelMarch 2010:89(3):752-759.
    [61]Hassan MH, Kalam MA, Mahlia TMI, et al. Experimental test of a new compressed natural gas direct injection engine[J]. Energy & Fuel 2009;23:4981-4987.
    [62]Byung HM, Chung JT, Kim HY, et al. Effects of gas composition on theperformance and emissions of compressed natural gas engines[J]. KSME International Journal, Korea 2002;16(2):219-226.
    [63]Kalam MA, Masjuki HH, Jayed MH, et al. Emission and performancecharacteristics of an indirect ignition diesel engine fuelled with waste cookingoil[J]. Energy 2011:36:397-402.
    [64]Wang Jinhua, Huang Zuohua, Fang Yu,et al.Combustion behaviors of a direct-injection engine operating on variousfractions of natural gasehydrogen blends[J].International Journal of HydrogenEnergy October 2007:32(15):3555-3564.
    [65]Alberto AB, Harry CW. The lean burn direct injection jet ignition gas engine[J]. International Journal of Hydrogen Energy September 2009:34(18):7835-7841.
    [66]Zeng K,Huang Z H,Liu B,et al.Combustion characteristics of a direct-injection natural gas engine under various fuel injection timings[J]. Applied Thermal Engineering 2006:26:806-813.
    [67]UmierskiM, StommelP.带共轨微量引燃喷射装置的节能天然气发动机[J],国外内燃机,2004,26(3):51-56.
    [68]王宇,马凡华,刘海全.天然气发动机燃烧方式分析[J].车用发动机,2007,171(10):18-21.
    [69]T. Lakshmanan, G. Nagarajan. Experimental investigation of port injection of acetylene in DI diesel engine in dual fuel mode[J].Fuel 2011:90:2571-2577.
    [70]Ivan D B, Andres A A, Francisco J C. Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance[J]. Bioresource Technology 2009:100:6624-6629.
    [71]陈燕,俞镓.一汽锡柴电控双燃料发动机打入南亚市场[J].商用汽车,2003,(01):10-11.
    [72]潍柴发布我国首台高压直喷天然气发动机.新浪网.2012-03-13.http://auto.sina.com.cn/news/2012-03-13/1649934416.shtml
    [73]T. Korakianitis, J. Grantstrom, P. Wassingbo, A. Massardo. Parametric performance of combined-cogeneration power plants with various power and efficiency enhancements Transactions of the ASME[J]. Journal of Engineering for Gas Turbines and Power 2005; 127 (1):65-72.
    [74]T. Korakiani t is, M. Boruta, J. Jerovsek, P. L. Mei tner Performance of a single nutating di sk engine in the 2 to 500 kW power range [J]. Applied Energy 2009; 86 (10): 2213-2221.
    [75]A. Traverso, A. F. Massardo. Optimal design of compact recuperators for microturbine application[J]. Applied Thermal Engineering 2005;25:2054-2071.
    [76]Junnian Zheng, Jerald A. Caton. Use of a single-zone thermodynamic model with detailed chemistry to study a natural gas fueled homogeneous charge compression ignition engine[J]. Hnergy Conversion and Management 2012;53:298-304.
    [77]P. U. Ricklin, A. Kazakov, F. L. Dryer. The Effects of NOx Addition on the Autolgnition Behavior of Natural Gas under HCCI Conditions[C]. SAE Paper,2002-01-1746,2002.
    [78]D. Yap, A. Megaritis, S. PeuchereL M. L. Wysznski. Effeet of Hydrogen Addition on Natural Gas HCCI Combustion[C].SAE Paper,2003-01-1646,2003.
    [79]Salvador M A, Daniel F, Joel M F. Fuel and AdditiveCharacterization for HCCI Combustion[C]. SAE Paper,2003-01-1814,2003.
    [80]Daesu Jun, Norimasa Lida. A Study of High Combustion Efficiency and LowCO Emission in a Natural Gas HCCI Engine[C].SAE Paper,2004-01-1974,2004.
    [81]Ryuichi Tominnaga, Satoshi Morimoto, Yasuharu Kawabata. Effects of Heterogeneous EGR on the Natural Gas Fueled IICCI Engine UsingExperiments CFD and Detailed Kinetics[C]. SAE Paper,2004-01-0945,2004.
    [82]Seref Soylu. Examination of combustion characteristics and phasing strategies of a natural gas HCCI engine[J]. Energy Conversion and Management 2005;46:101-119.
    [83]Ma FH, Wang Y, Liu HQ. Experimental study on thermalefficiency and emission characteristics of a lean burnhydrogen enriched natural gas engine[J]. Int J Hydrogen Energy2007;32:5067-5075.
    [84]Ma F H,Wang Y,Wang J J.Effects of excess air ratio on thecombustion and em ission characteristics of HCNG engines[J]. Tsinghua Uni v (Sci Tech) 2008; 48 (8).
    [85]郑清平.压燃式天然气发动机燃烧过程模拟计算和试验研究[D].天津:天津大学,2006.
    [86]高莹,于秀敏,李君,等。发动机不同工况下三效催化器的温度场和转化效率试验[J].吉林大学学报(工学版),2006,36(4):488-492.
    [87]王建昕,帅石金.车用催化转化器非稳态温度场的试验研究[J].内燃机学报,2001,19(6):541-546.
    [88]任红云.增压稀燃天然气发动机催化器的快速选型和匹配[J].柴油机设计与制造,2011,17(2):21-28.
    [89]高莹.三效催化器转换特性的试验与仿真研究[D].长春:吉林大学汽车工程学院,2003.
    [90]张力,闫云飞,冉景煜,等.天然气汽车三效催化器流场均匀性数值模拟及催化剂优化[J]化工学报,2005,56(9):1679-1684.
    [91]Alexander W, Panayotis D, Roland H,et al. Catalytic activity and aging phenomena of three-way catalysts in a compressed natural gas/gasoline powered passenger car[J]. Applied Catalysis B:Environmental 2008:84:162-169.
    [92]Xiaoyu Zhang, Enyan Long,Yile Li,et al. Ce02-ZrO2-La203-A1203 composite oxide and its supported palladium catalyst for the treatment of exhaust of natural gas engined vehicles[J]. Journal of Natural Gas Chemistry 2009;18:139-144.
    [93]John W. Hoard, Robert H. Hammerle, Christine Lambert, etc. Economic comparison of LNT versus urea SCR for light duty diesel vehicles in US market[R]. DEER,2004.
    [94]Jim Parks, Matt Swartz, Shean Huff. Infra-catalyst Reductant Chemistry in Lean NOx Traps:A Study on Sulfur Effects[R]. DEER,2006.
    [95]Mokoto I, Akira M, Toshiaki,et al.Activities of V205/TiO2 and V2O5/Al2O3 catalysts for the reduction of NO and NH3 in the presence of 02 [J].Ind. Eng. Che. Prod. Res. Dev.,1982,21(3):424-428.
    [96]Akira M, Kan K, Mokoto I, et al. Nitrogen-15 tracer investigation of the mechanism of the reduction of NO with NH3 on vanadium oxide catalysts[J]. Phys. Chem.,1982,86(15):2945-2950.
    [97]In-Sik Nam, John W. Eldridge and J. R. Kittrell. Deactivation of a vanadia-alumina catalyst for NO reduction by NH3 [J]. Ind. Deng. Chem. Pro. Res. Dev.,1986,25(2):192-197.
    [98]Jean W. Beeckman and L. Louis Hegedus. Design of monolith catalysts for power plant NOx emission control[J]. Ind. Deng. Chem. Res.,1991(30):969-978.
    [99]G. Ramis, G. Busca, C. Cristiani, et al. Characterization of Lungsta-ti tania catalysts[J]. Langmuir,1992,8(7):1744-1749.
    [100]John Marangozis. Comparison and analysis of intrinsic kinetics and effectiveness factors for the catalytic reduction of NO with ammonia in the presence of oxygen[J]. Ind. Chem. Pro. Res.,1992,31(4):987-994.
    [101]Jiri Svachula, Natale Eerlazzo, Pio Forzatti, et al. Selective reduction of NOx by NH3 over honeycomb DeNOxing catalysts[J]. Ind. Chem. Pro. Res. 1993,12(6):1053-1060.
    [102]C. U. Ingemar Odenbrand, Ana Bahamonde, Pedro Avila, et al. Kinetic study of the selective reduction of nitric oxide over vanadia-tungsta-titania/sepiolite catalyst[J]. Applied catalysis B: Environmental,1994(5):117-131.
    [103]M. Koebel, M. Elsener, and M. Kleemann. Urea-SCR:a promising technique to reduce NOx emissions from automotive diesel engines[J].Catalysis Today,2000(59):335-345.
    [104]loannis Gekas, Par Gabrielsson and Keld Johansen, et al. Performance of a Urea SCR system combined with a PM and fuel optimized heavy-duty diesel engine able to achieve the Euro V emission limits[C].SAE Paper,2002-01-2885,2002.
    [105]Rinie van Helden, Marcel van Genderen, and Marc van Aken, et al. SCR-system for heavy-duty truck engines [C].SAE Paper,2002-01-0286,2002.
    [106]C. M. Schar, C. H. Onder, H. P. Geering. Control of a Urea SCR catalytic-converter system for a mobile heavy duty diesel engine[C]. SAE Paper,2003-01-0776, 2003.
    [107]Christian Winkler, Peter Florchinger, M. D. Patil.Modeling of SCR DeNOx catalyst-looking at the impact of substrate attributes[C]. SAE Paper, 2003-01-0845,2003.
    [108]Dieter H. E. Seher, Michael Reichelt and Stefan Wickert. Control strategy for NOx emission reduction with SCR[C].SAE Paper,2003-01-3362,2003.
    [109]刘清雅,刘振宇,李成岳.NH3在选择性催化还原NO过程中的吸附与活化[J].催化学报,2006,27(7):636-646.
    [110]陶泽民,宋崇林,吕刚,等。钒基SCR催化剂动态反应特性的发动机试验研究[J].内燃机学报,2009,27(5):417-422.
    [111]Preshit Gawade,Anne-Marie C.Alexander, Ryan Clark, et al. The role of oxidation catalyst in dual-catalyst bed for after-treatmentof lean burn natural gas exhaust[J]. Catalysis Today 2012;197:127-136.
    [112]B. Mirkelamoglu, U.S. Ozkan. Applied Catalysis B:Environmental 96 (2010)421-433.
    [113]E. M. Holmgreen, M. M. Yung, U.S. Ozkan.Journal of Molecular Catalysis A:Chemical 270 (2007) 101-111.
    [114]0. Pozdnyakova, D. Teschner, A. Wootsch.Journal of Catalysis237 (2006) 1-16.
    [115]M. M. Yung, Z. Zhao, M. P. Woods. Journal of Molecular Catalysis A:Chemical 2008; 27(9):1-9.
    [116]Amr Ibrahim, Saiful Bari. An experimental investigation on the use of EGR in a supercharged natural gas SI engine[J]. Fuel 2010;89:1721-1730.
    [117]The Engine Manufacturers Association, USA, The Use of Exhaust GasRecirculation Systems in Stationary Natural Gas Engines[C], technical report, web information:;2004 [accessed in August 2008].
    [118]Nellen C, Boulouchos K. Natural Gas Engines for Cogeneration: HighestEfficiency and Near-Zero-Emissions through Turbocharging, EGR and 3-Way Catalytic Converter[C]. SAE Paper,2000-01-2825,2000.
    [119]Ibrahim A, Bari S. Optimization of a natural gas SI engine employing EGRstrategy using a two zone combustion model[J]. J Fuel 2008;87:1824-1834.
    [120]Ibrahim A, Bari S, Bruno F. A Study on EGR Utilization in Natural Gas SI Engines Using a Two-zone Combustion Model[C]. SAE Paper,2007-01-2041,2007.
    [121]Einewall P, Tunestal P,Johansson B. Lean Burn Natural Gas Operation vs. Stoichiometric Operation with EGR and a Three Way Catalyst[J].SAE Paper,2005-01-0250,2005.
    [122]Reppert T, Chiu J. Heavy Duty Waste Hauler with Chemically Correct Natural Gas Engine Diluted with EGR and Using a Three-Way Catalyst, NationalRenewable Energy Laboratory Report[C], report no. NREL/SR-540-38222, USA,2005.
    [123]Saanum I,Bysveen M,Tunestal P, et al.Lean Burn versus StoichiometricOperation with EGR and 3-Way Catalyst of an Engine Fueled with Natural Gas and Hydrogen Enriched Natural Gas[C].SAE Paper.2007-01-0015.2007.
    [124]Ugur Kesgin. Study on prediction of the effects of design and operating parameters on NOx emissions from a leanhurn natural gas engine[J]. Energy Conversion and Management 2003;44,907-921.
    [125]Allenby S, Chang WC, Megaritis A,, et al. Hydrogen enrichment:a way to maintain combustion stability in a natural gas fuelled engine with exhaust gas recirculation, the potential of fuel forming[J]. Automob Eng2001;215:405-418.
    [126]Czarnigowski J. A Simple Method of Analysis and Modeling of Cycle-to-Cycle Variation of Engine Work-The Example of Indicated Pressure[C]. SAE Paper,2007-01-2079,2007.
    [127]Xiaoyu Zhang, Enyan Long, Yile Li, et al. The effect of CeO2 and BaO on Pd catalysts used for lean-burnnatural gas vehicles[J].Journal of Molecular Catalysis A:Chemical 2009;308:73-78.
    [128]Hongyan Shang, Yun Wang, Maochu Gong,et al.Pd catalysts supported on modified ZrO.5A10.501.75 used for lean-burn natural gas vehicles exhaust purification[J]. Journal of Natural Gas Chemistry2012;21:393-399.
    [129]Wang Y, Tang S Y, Long E Y, Lin Z E, Gong M C, Chen Y Q. Chin J Catal (Cuihua Xuebao),2011,32:303-309.
    [130]Kulyova S P, Lunina E V, Lunin V V, Kostyuk B G, MuravyovaG P, Kharlanov A N, Jilinskaya E A, Aboukais A. Chem Mater,2001,13:1491-1499.
    [131]Simplicio L M T, Brandao S T, Sales E A, Lietti L, Bozon-Verduraz F. Appl Catal B,2006,63:9-15.
    [132]Hessam Z A, Abbasali K, Parvaneh E A, et al. Effects of Pd on enhancement of oxidation activity of LaB03 (B=Mn, Fe,Co and Ni) pervoskite catalysts for pollution abatement from natural gas fueled vehicles[J]. Applied Catalysis B:Environmental 2011;102:62-70.
    [133]Djamela B, Gianpiero G, Pio F, et al. Effect of periodic lean/rich switch on methane conversion over a Ce-Zr promoted Pd-Rh/Al2O3 catalyst in the exhausts of natural gas vehicles[J]. Applied Catalysis B:Environmental 119-120 (2012) 91-99.
    [134]P. Castellazzi.G. Groppi,P. Forzatti,et al. Catal 2010:275:218-227.
    [135]余小草,刘忠长,王忠恕.不同稀释方式降低天然气发动机NOx排放的研究[J].内燃机工程,2012.33(6):22-27.
    [136]Lev-On, M, LeTavec C, Uihlein J, et al.Effect of Fuel and After-treatment on Vehicle Emissions Profile[J]. SAE Paper,2002-01-2873,2002
    [137]Crookes RJ. Comparative bio fuel performance in internal combustionengines. Int J Biomass Bioenergy 2006:30:461-468 [UK].
    [138]Horvath Andras, Horvath Zoltan. Application of CFD numerical simulation for intake port shape design of a diesel engine[J]. Journal of Computational and Applied Mechanics,2003,4(2):129-146.
    [139]马凡华,汪俊君,程伟,等.增压稀燃天然气发动机排放特性[J].内燃机工程,2008,29(2):10-14.
    [140]Kaleemuddin M. S., Rao G. A. Conversion of diesel engine into spark ignition engine to work with CNG and LPG fuels for meeting new emission norms[J]. Thermal Science,2010,14 (4):913-922.
    [141]焦运景,张惠明,杨志勇,等.配气相位对天然气发动机燃烧和排放的影响[J].农业机械学报,2009,40(8):13-17.
    [142]司鹏鵾,张惠明,杨志勇,等.燃烧室结构对稀燃天然气发动机性能的影响[J].农业机械学报,2009,40(4):53-57.
    [143]郝利君,葛蕴珊,黄英,等.天然气发动机可变喷嘴涡轮增压器匹配研究[J].内燃机 工程,2010,31(1):47-50.
    [144]郑建军,王金华,王彬,等.压缩比对直喷天然气发动机燃烧与排放特性的影响[J].内燃机学报,2010,28(1):20-25.
    [145]张强,李娜.沼气发动机进气均匀性数值分析[J].农业工程学报,2010,26(8):145-149.
    [146]李娜,张强,王志明.燃烧室结构对天然气发动机燃烧过程的影响[J].农业机械学报,2007,38(2):52-55.
    [147]李国祥,李娜,王伟,等.消声器内部流场及温度场的数值分析[J].内燃机学报,2003,21(5):337-340.
    [148]T. Tahtouh, F. Halter, E. Samson, et al. Effects of hydrogen addition and nitrogen dilution on the laminar flame characteristics of premixed methane-air flames[J]. international journal of hydrogen energy 2009;34:8329-8338.
    [149]T. Boushaki,Y. Dhue',L. Selle, et al. Effects of hydrogen and steam addition on laminar burning velocity of methane air premixed flame:Experimental andnumerical analysis[J]. international journal of hydrogen energy 2012;37:9412-9422.
    [150]Erjiang Hu, Zuohua Huang, jiajia He,et al. Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames[J]. int ernational journal of hydrogen energy 2009;34:4876-4888.
    [151]Erjiang Hu, Jin Fu, Lun Pan, et al. Experimental and numerical study on the effect of composition on laminar burning velocities of H2/CO/N2/CO2/air mixtures[J]. international journal of hydrogen energy,2012:1-11.
    [152]Law C K,Kwon O C. Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation[J]. Int J Hydrogen Energy 2004:29:867-879.
    [153]Hu E J, Huang Z H, He,J J, et al. Measurement of laminar burning velocities and analysis of flame stabilities for hydrogeneairediluent premixedmixtures[J].Chin Sci Bull 2009:54:846-857.
    [154]Ren JY,Qin W, Egolfopoulos FN,et al. Methane reforming and its potential effect on the efficiency and pollutant emissions of lean methaneeair combustion[J].Chem Eng Sci 2001;56:1541-1549.
    [155]Law CK.Combustion physics[J]. New York:Cambridge University Press;2006.
    [156]Li J, Zhao Z, Kazakov A, et al. Acomprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion[J]. Int J Chem Kinet 2007:39:109-136.
    [157]Davis S G,Joshi A V,Wang H, et al. An optimized kinetic model of H2/CO combustion[J]. Proc Combust Inst 2005:30:1283-1292.
    [158]Wang H,You X Q,Joshi A V, et al. USC Mech Version Ⅱ. High-temperature combustion reaction model of H2/CO/C1eC4 compounds[J], http://ignis.use. edu/USC_Mech_Ⅱ.htm;May 2007.
    [159]吴佩英.LNG汽车加气站设计的探讨[J].煤气与热力,2006,26(9):7-9.
    [160]李多金.LNG汽车燃料罐压力过程的模拟计算[J].制冷技术,2008,35(5):433-435.
    [161]王蕾,李帆.LNG气化站的安全设计[J].煤气与热力,2005,25(6):3-6.
    [162]李娟,魏蔚,汪荣顺.车用小型液化天然气燃料罐及其关键技术研究[J].低温技术,2006,33(4):15-18.
    [163]佟德辉,李娜,李国祥,等.液化燃料动力系统和用于操作该液化燃料动力系统的方法[Z].中国,发明专利,ZL201010166647.3,2012.
    [164]Fredrik K,Ahmad K N,Rune B,et al.Palladium based catalysts for exhaust aftertreatment of natural gas powered vehicles and biofuel combustion[J]. Applied Catalysis A:General 2001:209:301-316.
    [165]Erik M H,Matthew M Y,Umit S O. Dual-catalyst aftertreatment of lean-burn natural gas engine exhaust[J]. Applied Catalysis B:Environmenta 12007:74:73-82.
    [166]Jan S, Petr K, Franti P, et al. Investigation of combined DOC and NSRC diesel car exhaust catalysts[J]. Computers and Chemical Engineering 2010:34:744-752.
    [167]Burcu M, Meimei L, Umit S O. Dual-catalyst aftertreatment of lean-burn engine exhaust[J]. Catalysis Today 2010;151:386-394.
    [168]Holmgreen E M, Yung M M, Ozkan U S. Pd-supported on sulfated monocliniczirconia for the reduction of NO2 with methane under lean conditions[J].Catal.Lett,2006 (111):19-26.
    [169]Lee T W. Engine controller for the hydrocarbon reduction during cold start in SI engine[A].2002-01-1666.
    [170]Liu H Q. Simulation of diesel engine cold start[A].2003-01-0080.
    [171]Liu Z M, Li L G, Deng B Q. Cold start characteristics at low temperatures based on the first firing cycle in an LPG engine[J]. Energy Conversion and Management, 2007(48):395-404.
    [172]Gong C M, Li J, Li,J K, et al. Effects of ambient temperature on firing behavior and unregulated emissions of spark-ignition methanol and liquefied petroleum gas/methanol engines during cold start[J]. Fuel, 2011 (90): 19-25.
    [173]Daniel K, Kevin H, Joseph K,et al. Heated injectors for ethanol cold starts[C]. SAE Paper, 2009-01-0615, 2009.
    [174]Andrews G E, Zhu G, Li H, et al. The effect of ambient temperature on cold start urban traffic emissions for a real world SI car[C]. SAE Paper, 2004-01-2903, 2004.
    [175]佟德辉,张强,李娜,等.液化燃料动力系统和包括该液化燃料动力系统的车辆系统[Z].中国,发明专利,ZL201010166657.7,2012.
    [176]冯还红.汽车DIESEL/CNG双燃料液体加热器的研究与开发[D],西安:长安大学,2005.
    [177]赵侃.汽车液体CNG加热器的研究与开发[D],西安:长安大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700