用户名: 密码: 验证码:
砂卵石地层土压平衡盾构关键参数计算模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以北京地区砂卵石地层为背景,基于国内外大量盾构工程实例,借助理论推导、数值模拟和实验研究等手段,分析和建立了土压平衡盾构施工关键参数的力学模型,研究了土压平衡盾构在砂卵石地层的适应性特征。基于北京区域工程地质概况,从卵石形成、颗粒级配、密实度、渗透性以及抗压强度等物理和力学特性对砂卵石土体进行了评价分析,总结了适合砂卵石土体的盾构类型。根据盾构自身几何特征和施工特点,验证了适合砂卵石地层的土压力计算模型,建立了盾构扭矩和推力的力学模型,并阐述了各自模型的组成和影响因素。进一步借助LCPC、CAI磨蚀性试验和X射线衍射矿物质含量分析法确定了砂卵石土体的磨蚀性,通过三者间的相关性建立了砂卵石地层的磨蚀性等级分类,同时建立了LAC值与刀具磨损间的关系,为施工过程中掌握换刀时机提供了理论依据。依据现场试验和盾构掘进参数,验证了了膨润土与泡沫混合浆液为最佳的土体改良方法,同时借助CT试验观察了改良土体的孔隙分布,得到了极小的孔隙率,为砂卵石地层盾构掘进提供了合理的建议。
Based on the sandy cobble ground conditions in Beijing and other shielding casesat home and abroad, the key parameters are analysed by means of theoreticalderivation and numerical simulation, so are established the mechanical model of thekey parameters. The adaptability of EPB in the the sandy cobble ground is analysed.At first, the engineering geological conditions in Beijing are summed up, and thesandy cobble ground is assessed in the physical and mechanical terms of the graindistribution, compactness, permeability and compressive strength, and the types ofshield suited to sandy cobble ground are summarized. From the characteristics of bothgeometry and operating of the shield, the calculation model of earth pressure suitablefor the sandy cobble ground is confirmed, and the mechanical models of the torqueand thrust force of the shield are established, the components and factors of which areexplained; The abrasiveness of the sandy cobble ground is determined from theLCPC,CAI and X-ray diffraction mineral content analysis, and the abrasiveness of thesandy cobble ground is rated from the correlation among the three experimentalresults, and the relation between the LAC value and the tool wear is also determined,which provides theoretical basis for the time determination of tool replacement inoperation; According to the field experiment, it is concluded that the mixture ofbentonite and foam is the best in improving the ground, and the void distributions of the ground after improvement are obtained by CT scanning, and it was found that thevoid ratio is reduced dramatically, which gives proper suggestion to the operation inthe sandy cobble ground.
引文
1.孙钧.地下结构[M].北京:科学出版社,1991.
    2.程骁等.盾构施工技术[M].上海:上海科学技术文献出版社,1990.
    3.刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991
    4.王江涛,陈建军,吴庆红等.南水北调中线穿黄工程盾构施工技术[M].郑州:黄河水利出版社,2010.
    5.陶龙光,巴肇伦.城市地下工程[M].北京:科学出版社,1996.
    6.张凤祥,朱合华,傅德明.盾构隧道[M].北京:人民交通出版社,2004.
    7.崔玖江.隧道与地下工程修建技术[M].北京:科学出版社,2005.
    8.日本土木学会编,朱伟译.隧道标准规范(盾构篇)及解说[M].北京:中国建筑工业出版社,2001.
    9.夏明耀等.地下工程设计施工手册[M].北京:中国建筑工业出版社,1999.
    10.王春河.深圳地铁盾构始发与到达端头加固理论研究与工程实践[博士学位论文][D].北京.中国矿业大学(北京).2010.
    11.江玉生,王春河,江华等.盾构始发与到达—端头加固理论研究与工程应用[M].北京:人民交通出版社,2011.
    12.朱合华.地下建筑结构[M].北京:中国建筑工业出版社,2005.
    13.傅德明.我国隧道盾构掘进机技术的发展现状[J].地下工程技术,2003.
    14.周文波.盾构法隧道施工技术及应用[M].北京:中国建筑工业出版社,2004.
    15.北京地铁及地下工程建设风险管理指南[M].北京:中国建筑工业出版社,2007.
    16.尹旅超等译.日本盾构隧道新技术[M].武汉:华中理工大学出版社,1999.
    17.陈丹,袁大军,张弥.盾构技术的发展与应用[J].现代城市轨道交通,2005,(5):25–29.
    18.北京市轨道交通建设管理有限公司.安全风险技术管理体系(试行)[M].2008.
    19.刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991.
    20.施仲衡.地下铁道设计与施工[M].西安:陕西科学技术出版社,1997.
    21.竺维彬,鞠世健.复合地层中的盾构施工技术[M].北京:中国科学技术出版社,2005.
    22.陈馈,洪开荣,吴学松.盾构施工技术[M].北京:人民交通出版社,2009.
    23.乐贵平,江玉生.北京地区盾构施工技术[J].都市快轨交通,2006,19(2):18–23
    24.何川.第五届中日盾构隧道技术交流论文集[M].成都:西南交通大学出版社,2009.
    25.何川,张建刚,苏宗贤等.大断面水下隧道结构力学特征[M].北京:科学出版社,2010.
    26.竺维彬,鞠世健,史海欧.广州地铁三号线盾构隧道工程施工技术研究[M].广州:暨南大学出版社,2007.
    27.陈韶章,洪开荣,张弥.复合地层盾构设计概论[M].北京:人民交通出版社,2010.
    28.王江涛,陈建军,吴庆红等.南水北调中线穿黄工程盾构施工技术[M].郑州:黄河水利出版社,2010.
    29.江玉生,杨志勇,蔡永立.盾构/TBM隧道施工实时管理信息系统[M].北京:人民交通出版社,2007.
    30.张厚美.盾构隧道的理论研究与施工实践[M].北京:中国建筑工业出版社,2009.
    31. Maidl B, Herrenknecht M, Maidl U, Wehrmeyer G..Maschineller Tunnelbau imSchildvortrieb[M]. Berlin:Ernst&Sohn,2012.
    32. Janssen H A. Versuche über Getreidedruck in Silozellen[J]. Zeitschrift des Vereins DeutscherIngenieure,1895,39(35):1045–1049.
    33. Terzaghi K. Theoretical soil mechanics[M]. New York:Wiley&Sohns,1954.
    34. Broms B B,Benermark H. Stability of clay at vertical openings[J]. Jounral of SoilMerchanical and Foundation Engineering,1967,(93):71–94.
    35. Horn M. Horizontal earth pressure to vertical completionsurface of tunnels. in ungariannational conference for underground engineering,1961.
    36. Anagnostou G,Kovari K. The face stability of slury shield driven tunnels[J]. Tunneling andUnderground Space Technology,1994,9(2):165–174.
    37. Vermeer P,Bonnier P,M ller S. On a smart use of3D-FEM in tunneling. The8thIntenrational Symosium on Numerical Models in Geomechanics,Itality,2002.
    38. Mair R,Taylor R. Geotechnical Aspects of Underground Construction in Soft Ground[M].Roterdam:Balkema,1996:453–458.
    39. Kim S H,Burd H J et al. Interaction between closely spaced tunnels in clay[C]. In Proc Int.Symposium on Geotechnical Aspects of Underground Construction in Soft Ground,London,April1996,Retterdam:Balkema,543–548.
    40. W.BROERE.Face Stability Calculation for a Slurry Shield in Heterogeneous SoftSoils[J].Tunnels and Metropolises,1996:215–218.
    41. Grant R J,Taylor R N. Centrifuge Modelling of Ground Movements due to Tunneling inLayered Ground[C]. In Proc International Symposium on Geotechnical Aspects ofUnderground Construction in Soft Ground,London,April,Rotterdam:Balkema,507–512.
    42.徐东,周顺华,黄广军等.上海粘土的成拱能力探讨[J].上海铁道大学学报,1999,20(6):49–54.
    43. Trekova Jirina, Prochazka Petr. Experimental and numerical modeling of the face stability[J].Technology Roadmap for Rock Mechanics,2003(5):1247–1250.
    44.于宁,朱合华.盾构隧道施工地表变形分析与三维有限元模拟[J].岩土力学,2004,25(8):1330–1334.
    45.任松,姜德义,杨春和,基于遗传算法的浅埋隧道开挖地表沉降神经网络预测[J].郑州大学学报(工学版),2006,27(3):46–48.
    46.胡新朋,孙谋,李建华等.地铁EPB盾构不同地层土舱压力设置问题研究[J].地下空间与工程学报,2006,8(2):1413–1417.
    47.胡国良,龚国芳,杨华勇.盾构掘进机土压平衡的实现[J].浙江大学学报(工学版),2006,40(5):874–877.
    48.徐前卫,朱合华等.砂土地层盾构法施工的地层适应性模型试验研究[J].岩石力学与工程学报,2006,25:2903–2905.
    49.张向东,刘国明,基于遗传算法的软土施工动态预测[J].福州大学学报(自然科学版),2006,34(3):745–750.
    50.李向红,傅德明.土压平衡模型盾构掘进试验研究[J].岩土工程学报,2006,28(9):1101–1105.
    51.魏纲.盾构施工中土体损失引起的地面沉降预测[J].岩土力学,2007,28(11):2375–2379.
    52. Chambon P,Cort’e J F. Shallow tunnels in cohesionless soil:stability of tunnel face [J].ASCE Journal of Geotechnical Engineering,1994,(120):1148–1165.
    53.武力,屈福政,孙伟等.基于离散元的土压平衡盾构密封舱压力分析[J].岩土工程学报,2010,32(1):18–23.
    54.周尚荣.砂砾底层土压平衡盾构施工地表沉降分析与控制[硕士学位论文][D].长沙.中南大学.2010.
    55.上官子昌,李守巨,栾茂田.土压平衡盾构机密封舱土压力优化设置问题[J].建筑技术,2009,40(12):1068–1073.
    56. Herrenknecht M. Innovationen bei Tunnelvortriebs–maschinen–dargestellt am Beispiel der4.R hre Elbtunnel. Forschung und Praxis[C]. Neue Akzente im unterirdischen Bauen. Vortr geder STUVA-97Tagung,Düsseldorf:Alba Fachverlag,1998:67–71.
    57. Krause T. Schildvortrieb mit flüssigkeits-und erdgestützter Ortsbrust [Ph.D.Thesis][D].Braunschweig,TU Braunschweig,1987.
    58. Wilms J. Zum Einfluss der Eigenschaften des Stützmediums auf das Verschlei verhalteneines Erddruckschildes[D]. Essen. Universit t Gesamthochschule Essen.1995.
    59. Schumacher L. Skriptauszug–Drehmoment von Tunnelvortriebsmaschinen[R]. Freiberg,TUBergakademie Freiberg–Institut für Maschinenbau,2003.
    60. Rehm U. Schriftliche Information zur Absch tzung des Drehmoments für Schneidr der vonEPB–Schilden[R]. Schwanau,2003.
    61.凌京蕾,樊丽珍.盾构技术及其在广州地铁的应用[J].广重科技,2000,21(1):25–32.
    62.于颖,徐宝富,奚鹰.软土地基土压平衡盾构切削刀盘扭矩的计算[J].岩石力学与工程学报,2004,2(3):314–317.
    63.张厚美,吴秀国等.土压平衡式盾构掘进试验及掘进数学模型研究[J].岩石力学与工程学报,2005,24(增刊2):5763–5764.
    64.吕强,傅德明.土压平衡盾构掘进机刀盘扭矩模拟试验研究[J].岩石力学与工程学报,2006,25(增1):3137-3143.
    65.邢彤,龚国芳,杨华勇.盾构刀盘驱动扭矩计算模型及实验研究[J].浙江大学学报,2009,43(10):1795–1799.
    66.徐前卫,朱合华,丁文其等.均质地层中土压平衡盾构施工刀盘切削扭矩分析[J].岩土工程学报,2010,32(1):47–54.
    67.曾晓星,余海东,张凯之等.盾构机复合岩土层掘进刀盘弯矩特征分析[J].上海交通大学学报,2010,44(1):51–55.
    68. Szechy K. The art of tunneling[M]. Budapest:Akademiai kiado,1996:891.
    69. MHI. Manufacturing Record on shield Machine. Mitsubishi Heavy Industry Ltd,1988.
    70.李强,曾德顺.盾构千斤顶推力变化对地面变形的影响[J].地下空间,2002,22(1):12–15.
    71.李向红,傅德明.土压平衡模型盾构掘进试验研究[J].岩土工程学报,2006,28(9):1101–1105.
    72.晏启祥,耿萍,何川.地铁砂卵石地层采用加泥式土压平衡盾构机的设备配置及顶推力检算[J].隧道建设,2007,27(6):19–21.
    73.苏健行,龚国芳,杨华勇.土压平衡盾构掘进总推力的计算与试验研究[J].工程机械,2008,39:13–15.
    74.徐前卫,朱合华,廖少明等.均匀软质地层条件下土压平衡盾构施工的合理顶进推力分析[J].岩土工程学报,2008,30(1):79–85.
    75.邓颖聪.盾构推进系统的分区建模与性能评价[硕士学位论文][D].上海.海交通大学.2010.
    76. Bruland A. Hard rock tunnel boring advance rate and cutter wear[Ph. D. Thesis][D]. Norway.University of Trondheim–The Norwegian Institute of Technology.1998.
    77. DIN52108(2007). Prüfung anorganischer nichtmetallischer Werkstoffe–Verschleisspruefung mit der Schleifscheibe nach Boehme–Schleifscheiben–Verfahren[S].
    78. Cerchar–Centre d’ Etudes et des Recherches des Charbonages de France.1986. The Cercharabrasiveness index. Verneuil.
    79. Thuro K, Plinninger R J. Klassifizierung und Prognose von Leistungs-undVerschleissparametern im Tunnelbau. Taschenbuch für den Tunnelbau2003[M]. Essen:Glückauf,2002:62–126.
    80. Nilsen B,Dahl F,Holzhaeuser J,Raleigh P. Abrasivity of soils in TBM Tunneling[J]. Tunnels&Tunneling int.,2006(3):36–38.
    81.张明富,袁大军,黄清飞等.砂卵石地层盾构刀具动态磨损分析[J].岩土力学与工程学报,2008,27(2):397–402.
    82.管会生,高波.盾构切削刀具寿命的计算[J].工程机械,2006,37(1):25–28.
    83.宋克志,汪波,孔恒等.无水砂卵石地层土压盾构施工泡沫技术研究[J].岩土力学与工程学报,2005,24(13):2327–2332.
    84.石本弘治,栗林恭嗣.制纸スラツジた添加材に用いた土压系シールド工法开发[J].土基础,1993,41(5):37–42.
    85. Kail T. Theoretical soil mechanics[M]. New York:John Wiley&Sons,1997.
    86.路石.采用化学泡沫改善土压平衡盾构的掘进[J].铁道建筑,2004,12(4):58–62.
    87. Sotiris P. Properties of foam/sand mixture for tunneling application[J]. Master Thesis.England, Oxford University.2001.
    88. Robert M,Xavier B. Soil Conditioning for Clay Soil[J]. Tunnels and Tunnling Inernational,2003,(4):29–32.
    89. S.Queband et al. Use of chemical foam for Improvements in Drilling by earth-Pressurebalance shields in granular soils, Tunneling and underground space technology,1998,13(2):173-180.
    90.魏康林,朱伟.盾构隧道施工技术发展新方向[J].河海大学学报(自然科学版),2001,(29):28–31.
    91.虞海珍,李小青.膨胀土化学改良试验研究分析[J].岩土力学,2006,11:35–40.
    92.林健.土体改良降低土压平衡式盾构刀盘扭矩的机理研究[硕士学位论文][D].南京.河海大学.2006.
    93.许恺,秦建设,卢廷浩.砂土中盾构开挖面变形与破坏数值模拟研究[J].岩土工程学报,2005,27(8):897–902.
    94.刘明月,赵维刚,张筑平.全断面隧道掘进机工作参数匹配规律的挖掘与利用[J].石家庄铁道学院学报,2006,19(3):55–59.
    95.闫鑫,龚秋明,姜厚停.土压平衡盾构施工中泡沫改良砂土的试验研究[J].2010,6(3):449–453.
    96.韩月旺,钟小春等.压力舱土体改良对盾构开挖面稳定影响研究[J].岩土力学,2007,28(增刊):45–52.
    97. Jancsecz S,Steiner W. Face support for a large mix-shield in heterogeneous groundconditions, In Proc. Tunnelling’94,Chapman&Hall,London,1994:531–550.
    98. Jancsecz S,Steiner W. Face support for a large mix-shield in heterogenous groundconditions[A]. In Conference Proceeding Instititute of Mining and Metallurgy and BritishTunnelling Society[C]. London,1994:531–549.
    99. Kirsch A. On the face stability of shallow tunnels in sand[M]. Berlin: Logos Verlag BerlinGmbH,2009.
    100. Rowe R J,Barnes K K. Influences of speed on elements of draft of a tillage tool[J].Transaction of the ASAE,1961,(4):55–57.
    101. Lee K M,Rowe R K,Lo K Y. Subsidence owing to tunnelingⅠ:Estimating the gapparameter [J]. Canadian Geotechnical Journal,1992,29:929–940.
    102. Beretitsch S. Kr ftspiel im System Schneidwerkzeug–Boden. Institut für Maschinenwesen imBaubetrieb, Universitaet Friedericiana in Karlsruhe,1992,41(1):22–27.
    103. Houska J. Beitrag zur Theorie der Erddrücke auf das Tunnelmauerwerk[N]. SchweizerischeBauzeitung.196078(38):607–609.
    104. Herzog M. Die Pressenkr fte bei Schildvortrieb und Rohrvorpressung im Lockergestein[J].Baumaschinen
    105. Adams M. Versuchstechnik zur Bestimmung von Adh sion bzw. Verklebung in Tonboden[Ph.D. Thesis][D]. Aachen. Geotechnik im Bauwesen RWTH.2009.
    106. Thewes M. Adh sion von Tonb den beim Tunnelvortrieb mit Flüssigkeitsschilden[D].Aachen. Bergischen Universit t Wuppertal.1999.
    107. Tucker M. Methoden der Sedimentologie[M]. Stuttgart:Enke,1996.
    108. Buechi E,Mathier J F,Wyss C. Gesteinsabrasivit t-ein bedeutender Kostenfaktor beimmechanischen Abbau von Fest-und Lockergestein[J]. Tunnel,1995,5:38–44.
    109. West G,A relation between abrasiveness and quartz content for some coal measuressediments[J]. International Journal of Mining and Geological Engineering,1989,(4):73–78.
    110. Rosival A. Neuere Untersuchungsergebnisse über die H rte von Mineralien undGesteinen[M]. Wien,1896:475–491.
    111. Rosival A. Neuere Ergebnisse der H rtebestimmung von Mineralien und Gesteinen. Einabsolutes Mass für die H rte spr der K rper. Wien,1916:117–147.
    112. S hne W. Einige Grundlagen für eine landtechnische Bodenmechanik. Grundlagen derLandtechnik[M]. Düsseldorf,1956,(7):11–27.
    113. Bruland A. Hard rock tunnel Boring: Drillability test methods[R]. NTNU Trondheim.1998.
    114. Schimazek J,Knatz H. Der Einfluss des Gesteinsaufbaus auf die Schnittgeschwindigkeit undden Meisselverschleiss von Streckenvortriebsmaschinen[M]. Essen:Glückauf Verlag,1970:274–278.
    115. Nilsen B,Dahl F,Holzhaeuser J,Raleigh P. Abrasivity testing for rock and soils[J]. Tunnels&Tunneling Int.,2006,(4):47–49.
    116. Normalisation Francaise. Granulats: Essai d’abrasivite et de broyabilite[S].
    117. German Industry Form4085(2007). Determination of earth pressure[S].
    118.德国IBECO材料股份有限公司.膨润土和泡沫的结构和机理简介(内部资料)[R].斯图加特:德国海瑞克隧道股份有限公司,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700