用户名: 密码: 验证码:
盾构隧道纵向不均匀沉降及实时监测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的快速发展,地铁逐渐成为解决城市公共交通的主要手段之一。但是在已建地铁的长期运营过程中,盾构隧道的纵向沉降尤其是纵向不均匀沉降的问题逐渐凸现,隧道的纵向变形直接影响到列车运营的舒适性、安全性,因此研究隧道在荷载作用下的长期纵向变形、建立隧道长期沉降变形的监测与安全评估系统、及时发现并消除安全隐患就显得格外迫切和必要。
     导致隧道长期纵向变形的主要因素为下卧土层分布的不均匀性、隧道周围荷载的变化、列车荷载以及土体的固结流变,沉降主要包括土体的固结沉降和隧道的变形。本文采用理论分析、室内试验和有限元模拟相结合的方法,探究运营期间隧道产生纵向沉降的原因,获得了长期循环荷载作用下下隧道和下卧土体的累积变形及发展趋势,揭示了隧道的长期纵向变形规律,为建立科学有效的隧道安全监控体系提供了理论基础。主要研究内容包括:
     (1)不均匀地层下隧道的纵向变形。考虑隧道下卧土层的差异性,建立了不均匀弹性地基无限长梁和有限长梁模型,利用叠加原理和奇异函数法研究了荷载作用下隧道的纵向不均匀沉降,得到了隧道的纵向不均匀沉降曲线方程的精确解,并结合算例分析了荷载作用下隧道纵向沉降的变化规律。结果表明:当一侧地基基床系数减小时,隧道纵向整体沉降增加,沉降范围增大,沉降曲线变为不对称,且随着基床系数差异的增大,不对称愈发明显;随着基床系数的变化,隧道整体沉降曲线向较弱地基方向移动,隆起发生在土质相对较硬一侧,隧道沉降最大值及发生位置在较弱地基一侧,且均呈抛物线规律减小;不同的地层呈现的规律相同。
     (2)循环荷载作用下下卧土层的累积变形。采用DDS-70动态三轴仪,对不饱和粉质粘土进行了一系列静力三轴试验以及高循环次数的循环三轴试验,通过分析加载频率、应力水平、围压、含水率对土体累积变形特征的影响,得到隧道下卧不饱和粉质粘土层在循环荷载作用下的长期累积变形规律。结果表明:累积应变受加载频率、围压影响较小,受应力水平和含水率影响较大;当加载应力水平较高时,低频振动荷载对下卧土体的累积变形影响较大;因此适当控制列车行驶速度、隧道埋深和渗水透水将有助于减小隧道纵向沉降。
     (3)荷载-土体共同作用下隧道的变形。基于摩尔-库伦准则,考虑隧道上方局部荷载和下卧土层共同作用,建立了隧道-土体三维ADNIA有限元模型,讨论了隧道下卧土层的弹性模量、长度、宽度、局部荷载作用的长度、宽度等因素对隧道沉降的影响,揭示了隧道在两种因素下的纵向变形规律。结果表明:隧道纵向沉降最大值与软土夹层弹性模量、纵向长度以及均布荷载集度呈线性关系;隧道沉降值随均布荷载作用长度和宽度增加而增大。
     (4)隧道的纵向长期变形趋势。利用人工神经网络方法预测隧道运营期间多因素引起的沉降,确定了单个隐含层神经网络的最佳隐层结点个数的解析式,提出了与其相适应的归一化方法、最优归一区间和最优隐层神经元个数的取值范围;建立了双隐层的BP网络模型,并对预处理和归一区间进行改进,克服了以往模型的学习效果差、收敛速度慢和预测不够精确的局限性。
     (5)基于变形规律的隧道监测方案。利用长标距光纤光栅的特点和技术优势,提出了隧道纵向分段分布式长标距光纤光栅的实时监测方案,即在地质复杂和容易发生不均匀沉降地段采取分布式测量方案(光纤光栅静力水准传感器与分布式长标距光纤光栅相结合),地质情况相对较好的地段采取长标距光纤光栅准分布式测量方案;并在共轭梁法的理论基础上提出了沉降算法,通过叠加原理进行了算法验证,结果表明标距的长短和应变的测量精度是计算精度的关键,也是监测方案中的重要因素。
     图59幅,表18个,参考文献184篇。
With the rapid development of national economy, subway has becomed one of the primary means of solving the urban public transport. But during the long-term operation of the subway, the longitudinal settlement of shield tunnel, especially non-uniform longitudinal subsidence, has been emerging gradually. Because the comfort and safety of the train are affected by longitudinal deformation of tunnel directly, it is urgent and necessary to study the long-term longitudinal deformation of tunnel under loads and set up the monitoring and safety assessment system of tunnel long-term settlement for early prediction and timely elimination of the safety risks.
     The long-term longitudinal deformation of tunnel mainly results from the inhomogeneous distribution of the soil under cement plies, the change of loads around the tunnel, load from trains and the consolidation and rheology of soil The settlements mainly include the consolidation of soft clay and the deformation of the tunnel. The theoretical analysis, experiments and finite element simulation are used to explore the the causes inducing the longitudinal settlement of tunnel. The cumulative deformation and development trends of tunnel and the soil under cement plies under the long-term cyclic loading are acquired, and then the characteristics of long-term longitudinal deformation of tunnel are revealed. The obtained results will provide a theoretical basis for setting up the scientific and efficient safety monitoring system.
     The contents of this dissertation are as follows:
     (1) The longitudinal deformation of tunnel under inhomogenous soil layers was studied. Both the infinite long beam model and the finite long beam model were proposed for inhomogenous elastic foundation, where the differences between underlying soils were considered. Based on the established models, the exact solutions to non-uniform longitudinal settlement of tunnel under loading were derived by superposition principle and singular function method. The numerical examples for the longitudinal settlement under loading were given. The results show that both the longitudinal total settlement and the settlement range of the tunnel increases as the foundation modulus of one side of the foundation decreases. It is further observed that the settlement curve is asymmetric and the asymmetric degree becomes more obvious when the difference of foundation modulus between two sides increases. The settlement curve of the tunnel moves to the weak side of the foundation when varying the foundation modulus. And the rebound of the foundation appears at the hard side of the foundation. The maximum value of the tunnel settlement occures at the weak side of the foundation and decrease in a parabola form. The same variation is also observed for different soft layers.
     (2) The cumulative deformation of the soil body under cement piles subject to cyclic loads was studied. Using DDS-70Dynamic Triaxial Test System, a series of static triaxial and long life cyclic triaxial experiments for the unsaturated silty clay were carried out to analyze the effects of loading frequency, stress level, confining pressure and moisture content on the cumulative deformation. From the experimental results obtained, it is concluded that:(a) The effect of loading frequency and confining pressure on the cumulative strain is weaker than that of stress level and moisture content;(b) The low frequency cyclic load has a greater influence on the cumulative deformation at higher load levels. Therefore, controlling train speed, the depth of tunnel and seepage will be helpful for reducing longitudinal settlement.
     (3)The deformation of the tunnel due to the combined action of load and soil was investigated. The three dimensional ADNIA finite element model was set up based on Mohr-Coulomb criterion, where both the local load above tunnel and soil under cement plies were considered. The effects of the elastic modulus, length and width of soil under cement plies and the length and width of local load on the tunnel settlement of were analyzed and discussed. The results show that the maximum value of longitudinal settlement increases linearly with the elastic modulus of soft soil, longitudinal length and load collection increasing. The value of settlement increases with the increase of the length and width of uniform load.
     (4)The long term deformation of the tunnel was predicted. Based on the artificial neural network, the tunnel settlement coming from several factors was predicted and analyzed. The explicit expression for determining optimum hidden layer nodes of a single hidden layer neural network was given. The relevant normalization, best normalized interval and the range of neuron web in hidden layer were proposed. The BP web model of double hidden layer was constructed and some improvements in pretreatment and normalized range were made, which overcome the limitations of poor learning efficiency, inferior convergence speed and confined prediction accuracy in previous model.
     (5) According to the properties of deformation. The monitoring scheme of tunnel was proposed. Utilizing the characteristics and technical advantages of long gauge fiber Bragg grating, the real-time monitoring scheme of sectional long gauge fiber Bragg grating along the longitudinal direction was presented. The sectional measurement program, which combines the sensor of fiber grating under static force and the sectional long gauge fiber grating, was conducted at complicated geology and prone to uneven settlement section. While, in relatively better section, the quasi distributed measurement of long gauge fiber Bragg grating was applied. Based on the conjugate beam method, the settlement algorithm was developed and verified by superposition principle. It is indicated that the gauge length and accuracy of measurement play an impotent rule in the computational precision, and monitoring scheme.
引文
[1]钱七虎.充分开发利用地下空间建设资源节约型和环境友好型城市[C]. 《钱七虎院士论文选集》,2007.
    [2]钱七虎.迎接我国城市地下空间开发高潮[J].岩土工程学报,1998,20(4):112-113.
    [3]刘建航,候学渊.盾构法隧道[M].北京:中国铁道出版社,1991.
    [4]Shirlaw J N. Observed and Calculated Pore Pressures and Deformations Induced by an Earth Balance Shield Discussion [J].Canadian Geotechnical Journal,1995, (32):181-189.
    [5]王如路,周贤浩.近年来上海地铁监护发现的问题及对策[C].中国土木工程学会地下铁道专业委员会第十四届学术交流会论文集,2001:239-242.
    [6]ITA-Working Group Research, Guidelines for Design of Shield Tunnel Lining[R],2000, 15(3),303-331.
    [7]ATRB. Design and Construction of Transportation Facilities[R],2000.
    [8][日]土木学会编,朱伟译.隧道标准规范(盾构篇)及解说[M].北京:中国建筑工业出版社,2001.
    [9]DGJ08-11-2010.上海市地基基础设计规范[S].上海,上海城乡建设交通委员会.
    [10]Peck R.B. Deep Excavation and Tunneling in Soft Ground [R]. Proc.7th Int. Conf. on Soil Mechanics and Foundation Engineering. Mexico City,1969:225-290.
    [11]刘干斌,谢康和,施祖元.粘弹性土体中深埋圆形隧道的应力和位移分析[J].工程力学,2004,21(5):132-138.
    [12]张云,殷宗泽.盾构法隧道引起的地表变形分析[J].岩土力学与工程学报,2002,21(3):388-392.
    [13]Ghbaoussi. Design and Construction of Transportation Facilities[R].Researching Report of ATRB,2000.
    [14]王桂芳.求解弹性力学问题的一个解析法[J].成都科技大学学报,1991,(1):23-28.
    [15]薛琳,罗有仁.圆形隧道粘弹性围岩地应力解析法分析[J].青岛建筑工程学院学报,1994,15(2):69-76.
    [16]詹美礼,陈绪禄.粘弹性地基中洞周土体固结问题的解析解[J].河海大学学报:自然科学版,1993,21(2):54-60.
    [17]李军世,林咏梅.上海淤泥质粉质粘土的Singh-Mitchell蠕变模型[J].岩土力学,2000,21(4):363-366.
    [18]张冬梅.软土隧道地表长期沉降的粘弹性流变与固结耦合分析[J].岩石力学与工程学报,2003,z1:2359-2362.
    [19]程斌,刘国彬.基坑工程施工对邻近建筑物及隧道的相互影响[J].工程力学,2000,3(A03):486-491.
    [20]张曦.地铁振动荷载下隧道周围饱和软黏土的孔压发展模型[J].土木工程学报,2007,40(4):82-86.
    [21]R.J.Mair, R.N.Taylor. Bored Tunneling in the Urban Environment[C].Proceedings of The Fourteenth International Conference on Soil Mechanics and Foundation Engineering,1997, 2353-2380.
    [22]Jozsef MECSI, Ground Deformations Resulting from Shield Tunneling in Budapest[C]. Geotechnical Engineering in Soft Ground, Shanghai, Tongji University Press.2001,138-141.
    [23]Pathegama Gamage Ranjith. Parameters and Considerations in Soft Ground Tunneling[C], Wooi Leong Tan.2003.
    [24]陈基炜,詹龙喜.上海市地铁一号线变形测量及规律分析[J].上海地质,2000,(2):51-56.
    [25]黄宏伟,藏小龙.盾构隧道纵向变形形态研究分析[J].地下空间,2002,22(3):244-251
    [26]林永国,廖少明,刘国彬.地铁隧道纵向变形影响因素的探讨[J].地下空间,2000,20(4):264-267,289.
    [27]璩继立.盾构施工引起的地面长期沉降研究[D].上海:同济大学,2000.
    [28]曾东洋,胡蔓宁,史彦文.盾构隧道施工地表沉隆变位影响因素研究[J].铁道工程学报,2006(4),34-38.
    [29]刘招伟,王梦恕,董新平.地铁隧道盾构法施工引起的地表沉降分析[J].岩石力学与工程学报,2003,22(8),1297-1301.
    [30]朱岱云.盾构隧道施工引起地层沉降的数值模拟研究[D].西安科技大学,2007.
    [31]陈敬.大跨浅埋隧道的地表变形数据分析[D].南京,东南大学,2007.
    [32]姚勇,曾东洋,晏启祥.盾构隧道施工对管片环和地表沉隆变位的影响研究[J].西南科技大学学报,2006,21(2):20-24.
    [33]Kuwahara H, Yamazaki T, Kusakabe O. Ground Deformation Mechanism of Shield Tunneling Due to Tail Void Formation in Soft Cay[C]. Proceedings of The 14th International Conference on Soil Mechanics and Foundation Engineering,1997,1457-1460.
    [34]赵慧岭,柳献,袁勇等.软土隧道长期沉降的纵向作用效应研究[J].特种结构,2008,25(1):79-84.
    [35]叶耀东.软土地区运营地铁盾构隧道结构变形及健康诊断方法研究[D].上海,同济大学,2007.
    [36]余占奎.软土盾构隧道纵向沉降设计方法研究[D].上海,同济大学,2007.
    [37]蒋通,苏亮.地震作用下盾构法隧道的弹塑性受力分析[J].岩土工程学报,1999,21(2):200-204.
    [38]姜启元,管攀峰,叶蓉.软上盾构隧道的纵向变形分析[J].地下工程与隧道,1999,(4):2-6.
    [39]刘学山.考虑接触问题的粘弹性介质中盾构隧道的抗震分析[D].上海,同济大学,2000
    [40]田敬学,张庆贺.盾构法隧道的纵向刚度计算方法[J].中国市政,2001,(3):35-37.
    [41]藏小龙.软土盾构隧道纵向结构变形研究[D].上海,同济大学,2003.
    [42]廖惠生,叶文谦,陈俊融.潜盾隧道近接施工之影响评估及分析[J].岩石力学与工程学报,2004,23(增2):4876-4881.
    [43]林永国.地铁隧道纵向变形结构性能研究[D].上海,同济大学,2001.
    [44]廖少明.圆形隧道纵向剪切传递效应研究[D].上海,同济大学,2002.
    [45]钟小春,朱伟,季亚平,等.盾构村砌管片环弯曲等效刚度的一种确定方法[J].地质与勘探,2003,增刊:185-189.
    [46]K.M.Lee, X.Y.Hou, X.W.Ge. An Analytical Solution for a Jointed Shield-Driven Tunnel Lining[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001,25:365-390.
    [47]K. M. Lee, X.W. Ge. The Equivalence of a Jointed Shield-Driven Tunnel Lining to a Continuous Ring Structure[J]. Journal of Canadian Geotechnical Engineering,2001,38: 461-483.
    [48]黄宏伟,严佳梁,徐凌.软土盾构隧道管片环接头的形式及其建议[J].地质勘探,2003,增刊:17-22.
    [49]魏纲,徐日庆.软土隧道盾构法施工引起的纵向地面变形预测[J].岩土工程学报,2005,27(9):1077-1081.
    [50]Y.Koymara. Design Method of Shield Tunnel-Present Status and Subjects[C]. The 3rd Japan-Netherlands Tunneling Seminar in 2001.2001, Kyoto University, Japan.
    [51]Y.Koymara. Present Status and Subjects Related to Shield Tunneling in Japan[C]. The 3rd Japan-Netherlands Tunneling Seminar in 2001.2001, Kyoto University, Japan.
    [52]温竹茵,周质炎.盾构法隧道的纵向受力分析[J].特种结构,2002,19(2):14-16.
    [53]Chen Bao, Wen Zhuyin. Elastic-Plastic Analysis for the Effect of Longitudinal Uneven Settlement[C]. Proceedings of the ITA World Tunneling Congress.2003, A.A.Balkema.
    [54]陈郁.基坑开挖卸荷引起下卧隧道隆起的研究分析[D].上海,同济大学,2005.
    [55]陈郁,李永盛.基坑开挖卸荷引起下卧隧道隆起的计算方法[J].地下空间与工程学报,2005,1(1):91-94.
    [56]朱合华,吴江斌,潘同燕.曲线顶管的三维力学模型理论分析与应用[J].岩士工程学报,2003,25(4):492-495.
    [57]藏小龙.软士盾构隧道纵向结构变形研究[D].上海,同济大学,2003.
    [58]徐凌.软土隧道纵向沉降研究[D].上海,同济大学,2005.
    [59]张望喜.混凝土地基板静、动力特性试验与研究:[D].长沙:湖南大学,2002
    [60]Akaqi Komiya. Finite Element Analyses of Interaction of a Pair of Shield Tunnel[C]. Proceedings of The Fourteenth International Conference on Soil Mechanics and Foundation Engineering,1997,1(13):1449-1452.
    [61]胡坚.软土隧道的纵向变形计算方法[D].上海,同济大学,2000.
    [62]黄钟晖.盾构法隧道错缝拼装衬砌受力机理的研究[D].上海,同济大学,2001.
    [63]朱合华,叶冠林.大口径急曲线钢筋混凝土顶管管节接缝张开量分析[J].施工技术,2001,30(1):36-38.
    [64]张志强.南京地铁盾构掘进施工的三维有限元仿真分析[J].铁道学报,2005,27(1):84-89.
    [65]耿耀明,刘文燕,黄鼎业.盾构隧道衬砌施工阶段的纵向受力性能分析[J].工程力学,2002,增刊:155-158.
    [66]刘文燕.盾构法隧道衬砌施工阶段受力性能分析[D].上海,同济大学,2002.
    [67]张海波,殷宗泽,朱俊高.地铁隧道盾构法施工过程中地层变位的三维有限元模拟[J].岩石力学与工程学报,2005,24(5):755-760.
    [68]Peck R.B. Deep Excavation and Tunneling in Soft Ground[C]. Proc.7th Int.Conf.on Soil Mechanics and Foundation Engineering. Mexico City,1969,225-290.
    [69]Attewell P.B, Yeates J, Selby A.R. Soil Movement Induced by Tunneling and the Effects on Pipelines and Structures [J]. Blackie and Son, London,1986,78-85.
    [70]Attewll P.B. An Overview of Site Investigation and Long Term Tunneling-Induced Settlement in Soil [J]. Geological Society Engineering Geology Special Publication,1988, (5):55-61.
    [71]Attewell P.B, Selby A.R. Tunneling in Compressible Soils:Large Ground Movement and Structure Implications[J]. Tunnel and Underground Space Technology,1989,4(4):481-489.
    [72]O'Reilly M P, Mair R J, Alderman G H. Long-Term Settlements over Tunnels [C]. Proceedings of Conference Tunneling. London,1991,55-64.
    [73]藤田圭一.从基础工程角度看盾构掘进法.隧道译丛,1985,(5):49-63.
    [74]Barry M.New, O'Reilly M P.Tunneling Induced Ground Movement:Predicting the Magnitude and Effects[C]. Proc.4 International Conference Oil Ground Movement and Structure,Pentech Press'London,1992,671-697.
    [75]Eisentein Z, Ezzeldine O. The Effects of Tunneling Technology on Ground Control[J]. Tunneling and Underground Space Technology,1992,7(3),273-279.
    [76]Fang Y S, Lin S.J, Lin J.S. Tune and settlement in EPB Shield tunneling[J]. Tunnels and Tunneling,1993,(11),27-28.
    [77]Fang Y S, Lin S, J,Su C.S. An Estimation of Ground Settlement Due to Shield Tunneling by the Peck-Fujita Method[J]. Can.Geotech,1994,(3).431-443.
    [78]侯学渊,廖少明.盾构隧道沉降预估[J].地下工程与隧道,1993,(4):24-32.
    [79]Potts D M. Behaviors of Lined and Unlined Tunnels in Sands[D].England, Ambridge University,1976,120-127.
    [80]Atkinson J H, Potts D M. Subsidence above Shallow Tunnels in Soft Ground[C]. Geotech. Engrg,ASCE,1977,103:307-325.
    [81]T.Kimura, R.J.Mair. Centrifugal Testing of Model Tunnels in Soft Clay[C]. Proc Of 10th Int.Conf. Soil Mechanics & Foundation Engineering, Stockholm, Balkema,1981,55-68.
    [82]Guttler U, Sta ffers U. Investigation of the Deformation and Collapse Behavior of Circular Lined Tunnels in Centrifuge Model Tests [J]. Centrifuge in soil Mechanics.1988,183-186.
    [83]Wu B R, Chiou S Y,Lee C J,et al. Soil Movement around Parallel Tunnels in Soft Ground[A].In: Centrifuge 98 Conference[C],Tokyo,1988,739-744.
    [84]Shinichiro Imamura, Toshiyuki Hagiwara, Kenji Mito, et al. Settlement through above a Model Shield Observed in Centrifuge [A].In:Centrifuge 98 Conference[C],Tokyo,1998,23-25.
    [85]Toshi Nomoto, Shinichiro Imamura. Shield Tunnel Construction in Centrifuge[J].Journal of Geotechnical and Geoenvironmental Engineering,1999,125(4):289-300.
    [86]Kimura T, Takemura J, Hiro-oka A, et al. Stability of Unsupported and Supported Vertical Cuts in Soft Clay[C]. Proc 11th southwest Asian Geo Cont Singapore,1993,61-70.
    [87]Loh C K, Tan T S, Lee F H. Three-Dimensional Excavation Test [A]. In:Centrifuge 98 Conference[C],Tokyo,1998,85-90.
    [88]周顺华.城市地铁车站和开挖环境模拟[D].成都:西南交通大学,1996.
    [89]周小文,濮家骝.砂土中隧洞开挖引起的地面沉降试验研究.岩土力学[J].2002,(5):559-563
    [90]杨龙才,周顺华,姚燕明.变跨度隧道施工引起的地表沉降[J].同济大学学报,2003,(4):408-412.
    [91]吴波,高波,索晓明,等.城市地铁隧道施工对管线的影响研究[J].岩土力学,2004,25(4):657-662.
    [92]马亮,高波.隧道施工地表沉降控制的离心模型试验[J].施工技术,2005,34(6):6-8
    [93]Seed H B, Chan C K. Effect of Duration of Stress Application on Soil Deformation under Repeated Lloading[C]. Proceedings of the 5th International Congress on soil Mechanics and Foundations, Pairs, Dunod,1961.341-345.
    [94]France J W, Sangrey D A. Effects of Drainage in Repeated Loading of Clays[J]. Journal Of Geotechnical Engineering, ASCE,1977,103(7):769-785.
    [95]Sangrey, D A, Henkel D J. The Effective Stress Response of a Saturated Clay Soil to Repeated Loading [J]. Canadian Geotechnical Journal,1969,6(3):241-252.
    [96]Koutsoftas D C, Fisher J A. Dynamic ProPerties of Two Marine Clays [J].Journal of Geotechnical Engineering,1980,106(6):645-657.
    [97]Koutsoftas D C. Effect of Cyclic Loads on Undrained Strength of Two Marine Clays[J]. Journal of Geotechnical Engineering,1978,104(5):609-620.
    [98]Yasuhara K, Yamanouehi T. Approximate Prediction of Soil Deformation under Drained-Repeated Loading[J]. Soils and Foundations,1983,23(2):13-24.
    [99]Yasuhara K, Yamanouehi T, Hirao K. Cyclic Strength and Deformation of Normally Consolidation Clay [J]. Soils and Foundations,1982,22(3):77-91.
    [100]Fujiwara H. Consolidation of Alluvial Clay under Repeated Loading [J]. Soils and Foundations,1985,25(3):19-30.
    [101]Hyde A F L, Ward S J. A Pore Pressure and Stability Model for a Silty Clay under Repeated Loading [J]. Geotechnique,1985,35(2):113-125.
    [102]Ansal A M, Erken A. Undrained Behavior of Clay under Cyclic Shear Stresses [J]. Journal of Geotechnical Engineering, ASCE,1989,115(7):968-983.
    [103]Muhanna A S. A Testing Procedure and a Model for Resilient Modulus and Accumulated Plastic Strain of Cohesive Subgrade Soils [D]. Raleigh. North Carolina State University,1994.
    [104]Zhang wei, Per ullidtz, Macdonald Robin. Pavement Subgrade Performance Study:Part Ⅱ: Modeling Pavement Response and Predicting Pavement Performance [A].1998,87:135.
    [105]阎澎旺.往复荷载作用下重塑软粘土的变形特性[J].岩土工程学报,1991,13(1):48-53.
    [106]蔡英,曹新文.重复加载下路基填土的临界动应力和永久变形初探[J].西南交通大学学报,1996,31(1):1-5.
    [107]周建.循环荷载作用下饱和软粘土特性研究[D].浙江大学,1998.
    [108]周健,孙吉主,吴世明.往复荷载下软土的边界面广义弹塑性模型[J].岩石力与工程学报,2002,21(2):200-224.
    [109]蒋军.循环荷载作用下粘土及含砂芯复合试件性状试验研究[D].浙江大学,2000.
    [110]蒋军,陈龙珠.循环荷载作用下粘土应变速率试验研究[J].岩土工程学报,2001,24(4):528-531.
    [111]王建华,刘振纹.原状海滩粘土不固结不排水循环特性[J].天津大学学报,2001,34(2):236-240.
    [112]王建华,要明伦.软粘土不排水循环特性的弹塑性模拟[J].岩土工程学报,1996,18(3):11-18.
    [113]钟辉虹.软土结构性及蠕变特性理论研究[D].同济大学,2004.
    [114]李兴照..饱和软粘土的流变和循环流变特性研究[D].同济大学,2005.
    [115]吕秀杰.软土地基工后沉降预测模型的研究[J].岩土力学,2009,30(7):2091-2095.
    [116]Asaoka A. Observational Procedure for Settlement Prediction[J].Soils and Foundations, 1978,(4):87-101.
    [117]黄广军.分级加载条件下提早预测地基沉降的沉降差法[J].岩土工程学报,2007,29(6):811-818.
    [118]雷学文,白世伟,孟庆山.灰色预测在预测软土地基沉降分析中的应用[J].岩土力学, 2000,21(2):145-147.
    [119]张留俊,黄晓明,冯炜等.人工神经网络在路堤沉降预测中的应用[J].公路交通科技,2006,23(5):7-10.
    [120]李涛,张仪萍,张土乔.软土路基沉降的优性组合预测[J].岩石力学与工程学报,2005,24(18):3282-3286.
    [121]宋绪国,刘远锋,杨明雨,等.利用沉降观测资料推算未来沉降在秦沈客运专线中的应用[J].路基工程,2002,(5):37-44.
    [122]杜水祥,唐朝晖,刘辉.灰色Verhulst模型在隧道拱顶沉降预测中的应用[J].科技咨讯,2008,(13):35-36.
    [123]李宏建.隧道变形预测的灰色Verhulst模型[J].石家庄铁道学院院报,2000,4(13):28-30.
    [124]黄明华,刁心宏,杨华.隧道变形预测的灰色模型研究[J].华东交通大学学报,2008,25(2):22-24.
    [125]王铁生,张立平,华锡生,等.隧道地表沉降预测的时变参数灰序模型TGM-AR[J].河海大学学报(自然科学版),2007,35(6):655-658.
    [126]朱忠隆,张庆贺,易宏伟.软土隧道纵向地表沉降的随机预测方法[J].岩土力学,2001,(3):56-59.
    [127]施成华,彭立敏.随机介质理论在盾构法隧道中纵向地表沉降预测中的应用[J].岩土力学,2004,25(2):320-323.
    [128]吴东海,龙汉,张希.盾构法隧道施工纵向地表沉降的随机预测[J].岩土工程界,2004,7(12):64-66.
    [129]璩继立,峁会勇.盾构隧道地面长期的神经网络预测[J].上海地质,2004,(3):42-46.
    [130]王穗辉,潘国荣.人工神经网络在隧道地表变形预测中的应用[J].同济大学学报,2001,29(10):1147-1151.
    [131]高永强,边亦海,李立增.人工神经网络在隧道变形预测中的应用[J].石家庄铁路工程职业技术学院学报,2004,3(1):28-31.
    [132]陈敬.人工神经网络在隧道变形预测中的应用[J].石家庄铁路工程职业技术学院学报,2004,3(1):28-31.
    [133]郁钧,郁标,黄新才.自动化监测在市政建设工程中的应用[J].上海地质,2003(3):41-46.
    [134]吴钰骅,沈林冲,金伟良.长距离光纤传感技术在地铁隧道监测中的应用[J].中国市政工程,2006(6):59-61.
    [135]涂勤昌,李涉英,顾海涛,等.分布式光纤温度传感系统及在隧道监测中的应用[J].控制工程,2010,17增,114-117.
    [136]Sakurais. Lessons Learned from Field Measurement in Tunneling[J]. Tunnelling and Underground Space Technology,1997,12(4):453-460.
    [137]D W Qiu, J G Wu. Terrestrial Laser Scanning for Deformation Monitoring of the Subway Tunnel Engineering [J]. Remote Sensing and Spatial Information Sciences.2008,37(5): 491-493.
    [138]陈敦云.变形监测应用技术[J].福建地质,2006(4):219-223.
    [139]Huang Teng, Sun Jingling, Tao Jianyue, et al. Subsidence monitoring and analyzing in subway tunnel construction[J]. Journal of Southeast University,2006,36(2):262-266.
    [140]毛巨省,唐筱慧,高涛,等.地铁车站基坑围护结构内力与变形规律分析[J].西安科技大学学报,2007,27(2):205-209.
    [141]王暖堂.盾构隧道施工中的测量技术研究[J].铁道建筑,2002(12):2-5.
    [142]成枢.地面沉降变形预计模型与监测技术研究[D].山东,山东科技大学,2005.
    [143]刘宝琛.急待深入研究的地铁建设中岩土力学课题[J].铁道建筑技术,2000(3):1-3.
    [144]王梦恕,孙恒,谭忠盛,等.城市地铁隧道工作面开挖的地层变位规律[J].岩石力学与工程学报,2005,24(3):52-56.
    [145]杨祝华.地铁变形监测[J].西部探矿工程,2006(4):16-167.
    [146]李喆,张子新.相邻隧道施工对上海地铁二号线的影响分析[J].岩石力学与工程学报,2005,24(1):5125-5129.
    [147]崔天麟,肖红渠,王刚.自动化监测技术在新建地铁穿越既有线路中的应用[J].隧道建设,2008,28(3):359-361.
    [148]包欢,卫建东,徐忠阳,等.智能全站仪网络监测系统在地铁监测中的应用[J].北京测绘,2005(3):22-25.
    [149]蒋奇.分布式光纤温度传感技术在隧道监测中的应用[J].应用光学,2005,26(3):20-22.
    [150]施斌,徐学军,王镝,等.隧道健康诊断BOTDR分布式光纤应变监测技术研究[J].岩石力学与工程学报,2005,24(15):2622-2628.
    [151]刘泉声,徐光苗,张志凌.光纤测量技术在岩土工程中的应用[J].岩石力学与工程学报,2004,23(2):310-314.
    [152]丁勇,施斌,隋海波.隧道结构健康监测系统与光纤传感技术[J].防灾减灾工程学报,2005,25(4):375-380.
    [153]欧进萍,周智.光纤光栅传感器及其在大型结构工程健康监测领域的应用.科技成果,哈尔滨工业大学,2006.
    [154]赵星光,邱海涛.光纤Bragg光栅传感技术在隧道监测中的应用[J].岩石力学与工程学报,2007,26(3),587-593.
    [155]孙新民,孙红月,严细水.FBG传感器在量测围岩内部位移中的应用[J].岩石力学与工程学报,2008,增(2),3847-3851.
    [156]魏广庆,施斌,胡盛,等.FBG在隧道施工监测中的应用及关键问题探讨[J].岩土工程学报,2009,31(4),571-576.
    [157]徐万鹏.隧道位移监测新方法的可行性探索[J].铁道工程学报,2000,(2):65-68.
    [158]龙驭球.弹性地基梁的计算[M].北京,人民教育出版社,1981.
    [159]黄义,何芳社.弹性地基上的梁板壳[M].北京,科学出版社,2005.
    [160]王燮山.奇异函数及其在力学中的应用[M].北京,科学出版社,1993.
    [161]边学成,蒋红光,申文明,等.基于模型试验的高铁路基动力累积变形研究[J].土木工程学报,2011,44(6),112-119.
    [162]Thiers G R, Seed H B. Strength and Stress-Strain Characteristics of Clays Subjected to Seismic Loading Conditions [A]. Vibration Effects of Earthquakes on Soils and Foundations [C], ASTM STP450,1969,32-56.
    [163]Hyodo M, Yasuhara K. Analytical Procedure for Evaluating Porewater Pressure and Deformation of Saturated Clay Ground Subjected to Traffic Loads[C]. Proceedings of the 6th International Conference on Numerical Methods in Geomechanics, Rotterdam, Balkema, 1988.653-658.
    [164]宫全美,廖彩凤.地铁行车荷载作用下地基土动孔隙水压力实验研究[J].岩石力学与工程学报,2001,20(增):1154-1157.
    [165]张曦,唐益群,周念清,等.地铁振动荷载作用下隧道周围饱和软黏土动力响应研究[J].土木工程学报,2007,40(2):85-88.
    [166]边学成,陈云敏.列车移动荷载作用下分层地基响应特性[J].岩石力学与工程学报,2007,26(1):182-189.
    [167]唐益群,赵化,王元东,等.地铁荷载下隧道周围加固软黏土应变累积特性[J].同济大学学报(自然科学版),2011,39(7):972-977.
    [168]曾艳华,王英学,王明年.地下结构ANSYS有限元分析[M].成都,西南交通大学出版社,2008.
    [169]张金菊.盾构隧道引起土体变形分析研究[D].浙江大学,2006.
    [170]白玉兵.基于神经网络的位移反演分析在隧道稳定分析中的应用研究[D].昆明理工大学,2003.
    [171]朱忠隆.软土盾构法隧道施工变形的数值解析与智能方法研究[D].同济大学,2002.
    [172]虞兴福.城市浅埋隧道工程地表变形及其智能预测研究[D].同济大学,2005.
    [173]周瑞忠,邱高翔.基于BP网络的深基坑支护位移反分析[J].土木工程学报,2001,34(6):60-62.
    [174]苏巧荣.基于MATLAB下BP神经网络的边坡稳定分析[J].河南大学学报(自然科学版),2007,37(6):595-600.
    [175]汤梅芳,王炳龙.BP神经网络在悬浮桩复合地基沉降预测中的应用[J].华东交通大学学报,2006,23(2):17-18.
    [176]王志亮,许可.高速公路沉降预测神经网络法应用研究[J].低温建筑技术,2004(1):37-39.
    [177]焦淑华,夏冰,徐海静,等.BP神经网络预测的MATLAB实现[J].哈尔滨金融高等专科学校学报,2009(1):56-59.
    [178]孙崎峰,周栩,孙晓峰.基于改进BP神经网络的公路旅游客流量预测[J].山东理工大学学报(自然科学版),2008,22(6):75-79.
    [179]安宁.基于BP神经网络的黄土湿陷性预测研究[J].路基工程,2009(1):72-73.
    [180]刘红兵,王李管,张良辉,等.基于人工神经网络技术的隧道地表沉降预测[J].矿业研究与开发,2007,27(2):26-28,78.
    [181]欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用[J].中国科学基金,2005(1),8-12.
    [182]杨俊超.水下悬浮隧道管段结构分析与健康监测方案设计[D].哈尔滨工业大学,2008.
    [183]沈圣,吴智深,杨才千,等.基于分布式光纤应变传感技术的改进共轭梁法监测结构变形分布研究[J].土木工程学报,2010,43(7),63-70.
    [184]胡荣明.城市地铁施工测量安全及安全监测预警信息系统研究[D].陕西师范大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700