用户名: 密码: 验证码:
纤维沥青混合料组成与性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过矿质混合料堆积性能、不同类型纤维沥青混合料高低温性能、水稳定性能和损伤自愈性能的系列试验,对矿质混合料堆积状态组成规律与级配性能、纤维沥青混合料配合比设计方法、路用性能以及损伤自愈性能进行了系统的理论分析,得到以下主要结论:
     (1)二元矿料颗粒体的密实填充状态和最优骨架状态分别对应不同的组成,最密填充时大小矿料的质量比为6:4,最优骨架状态时大小矿料的质量比为7:3;二元体的密实填充状态和最优骨架状态的组成规律同样适用于对矿料级配的设计和评价。
     (2)提出了直接测试矿质混合料骨架内摩阻力的方法—塑模试件抗压强度试验方法,所测抗压强度可作为反映矿质混合料骨架内摩阻力大小的力学指标;摩阻力与矿料级配中粗集料的含量具有正相关性;对公称最大粒径为13.2mm的矿料级配,应以4.75mm作为粗细集料的分界点。
     (3)提出了纤维沥青混凝土最佳油石比的预估方法。可将沥青膜厚度法计算的有效沥青用量和矿料开口孔隙吸入多余沥青含量之和作为沥青混合料的最小沥青用量,将马歇尔试模击实级配矿料所得的沥青用量作为最大沥青用量。
     (4)采用传统经验法优选SMA的矿料级配时,依据马歇尔试件的体积指标不足以做出合理评价,而塑模试件的摩阻力测试是更为适宜的方法;在确定SMA的最佳油石比时,马歇尔试件的体积指标宜采用合成矿料的有效密度计算。
     (5)提出了“主骨架间隙体积优化填充法”的骨架型纤维沥青混合料配合比设计方法。将矿料级配设计和沥青混合料的配合比设计相统一,使骨架型沥青混合料的配合比设计过程成为性能可控的对矿料级配、最佳油石比和纤维掺量的组成优化过程。与经验法相比,采用该方法设计SMA和OGFC沥青混合料是一种更经济可行的方法,可有效避免矿料级配选择和最佳油石比确定存在的盲目性,减少试验工作量。
     (6)矿料级配对沥青混合料的路用性能具有重要影响,密级配沥青混凝土具有更好的低温性能和水稳定性,而骨架结构的SMA和OGFC沥青混合料具有更好的高温稳定性。
     (7)纤维对沥青混合料的高温稳定性、低温抗裂性和水稳定性均有不同程度的改善效果,但只有在纤维掺量和相应沥青增加量达到最佳组成时才能发挥最佳改性效果。综合考虑,取得最佳改性效果时,密级配沥青混凝土中钢纤维和聚酯纤维的吸附沥青经验系数K分别取0.07和0.95;SMA和OGFC沥青混合料中添加木质素纤维的吸附沥青经验系数分别取1.7和1.7-2.0,添加玄武岩纤维时吸附沥青经验系数取1.1。
     (8)纤维可明显改变密级配沥青混凝土的低温破坏形态,由脆性破坏变为带有屈服特征的韧性破坏。纤维掺量越高对密级配沥青混凝土的破坏强度和变形的提高幅度越大。虽然采用劲度模量指标评价纤维沥青混凝土的低温抗裂性能有局限性,但劲度模量能反映纤维对沥青混凝土强度和变形的相对改善幅度。以临界弯曲应变能密度评价纤维沥青混凝土的低温破坏特性更为合理。
     (9)相同条件下,复合掺入两种纤维比单一纤维更能改善沥青混凝土的各项路用性能,展现出纤维复合改性的“叠加效果”,但不具“线性叠加”规律。
     (10)马歇尔方法确定的高纤维掺量密级配沥青混凝土的最佳油石比偏高;采用本文提出的“主骨架间隙体积优化填充法”设计的SMA沥青混合料比传统经验法设计的SMA沥青混合料具有更好的路用性能。
     (11)根据对试验结果的统计分析,建立了考虑纤维和沥青综合影响的弯拉强度和临界弯曲应变能密度预估模型、动稳定度预估模型和浸水马歇尔残留稳定度(或冻融劈裂抗拉强度比)预估模型,可供实际工程应用时参考。
     (12)纤维对温度裂缝的发展形态有重要影响,并对沥青混凝土裂缝自愈能力具有显著改善,其改善机理来自对抗裂能力的提高。自愈能力以能量的恢复率表示更为合理。自愈期的引入和纤维的复合作用对沥青混凝土裂缝修复的影响显著。根据对试验结果的统计分析,建立了考虑温度及纤维综合影响的裂缝自愈能力预估模型。
Through a series of tests on the packing characteristics of mineral aggregates, high temperature stability, low-temperature crack resistance, water stability and self-healing capability of different type of fiber reinforced asphalt mixture, A systematically theoretical analysis on the packing component laws and gradation properties of mineral aggregates, mix design method, road performances and self-healing capacity of fiber reinforced asphalt mixtures was carried out, conclusions obtained are as follows:
     (1)The closely packing status and the optimal skeleton status of a binary system correspond to different composition of the two aggregates respectively, the volume ratio of6:4corresponds to closely packing status of the two aggregates, nevertheless, the volume ratio of7:3corresponds to the optimal skeleton status of the two aggregates. The component laws on closely packing status and optimal skeleton status derived from binary system can also be applied for design and evaluation on aggregate gradation.
     (2) A direct method to measure the inner frictional resistance of aggregate skeleton using plastic mould sample compression test was developed, and the measured compressive strength can be taken as a indicator of inner frictional resistance of the aggregate skeleton, the friction resistance has a positive correlation with coarse aggregate content.4.75mm can be regarded as the dividing point between coarse aggregates and fines for aggregate gradation with the nominal maximum size of13.2mm.
     (3) A prediction method on the optimal asphalt content of fiber reinforced asphalt concrete is proposed, the sum of effective asphalt caculated by asphalt film thickness and excess asphalt inhaled by opening pores of aggregates could be as the minimum asphalt content, and the amount of asphalt obtained by compacting grading aggregates with Marshall test mould as the maximum asphalt content.
     (4) It is not enough to make a reasonable assessment on the optimal gradation of SMA using traditional method based on the volume indexes of Marshall specimens, however, friction resistance test with plastic mould samples is a more suitable method. The optimal asphalt content of SMA could be determined accurately by effective synthetic density of aggregates.
     (5) A mix design method for skeleton fiber reinforced asphalt mixture, named as "Skeleton Clearance Volume Optimization Packing Method", was put forward based on predecessors'researches, which turns the mix design process of skeleton asphalt mixture into an optimization process of aggregate gradation, optimal asphalt content and fiber content. This design method has obvious advantages over traditional design method when designing SMA and OGFC asphalt mixtures.
     (6) Aggregate gradation has important influence on road performances of asphalt mixture, dense-graded asphalt concrete has better low temperature performance and water stability, while skeleton asphalt mixtures such as SMA and OGFC have better high temperature stability.
     (7) Fibers have different improving effects on high temperature stability, low temperature crack resistance and water stability of asphalt mixtures, however, the improving effect is restricted by the correspondingly increased asphalt content. Comprehensive consideration, asphalt adsorption coefficient K for steel fiber and polyester fiber playing their best improving effects on dense-graded asphalt concrete are0.07and0.95respectively, K for cellulose fiber added to SMA and OGFC should be1.7and1.7to2, and it should be1.1for basalt fiber added to SMA and OGFC.
     (8) Fiber can significantly change the failure mode of dense-graded asphalt concrete at low temperature, from brittle failure mode to failure with somewhat yield characteristics, the higher the fiber content, the greater the improving ranges of the failure stress and strain of dense-graded asphalt concrete. Though the stiffness modulus has limitation to evaluate low temperature performance of fiber reinforced asphalt concrete, which can reflect the relative improving effects of fibers on strength and deformation of asphalt concrete, on the country, it is more reasonable to evaluate the failure characteristics of fiber reinforced asphalt concrete using critical bending strain energy density.
     (9) Under the same conditions, the improving effects of combined fibers on road performances of asphalt concrete are much better than that of a single kind of fiber, which shows the superimposed effect of the combined fibers, but not a linear superposition rule.
     (10) The optimal asphalt content determined by Marshall method of dense-graded asphalt concrete with larger fiber content is higher than it needs. The road performances of SMA asphalt mixtures designed by the Skeleton Clearance Volume Optimization Packing Method are better than that designed by traditional method.
     (11) Prediction models such as bending strength, critical bending strain energy density, dymamic stability, residual Marshall stability(or freeze-thaw splitting strength ratio) considering the interaction influence of fiber and asphalt were established according to the test results, which could be a reference for practical engineering application.
     (12) Fiber has an important impact on the form of temperature cracks and has significant improving effects on cracking self-healing capacity of asphalt concrete, in fact, the improving mechanism of fiber on self-healing capacity of asphalt concrete derives from the improvement on anti-cracking ability of asphalt concrete. It is more reasonable to characterize the self-healing capacity by the energy recovery rate. The interaction of introduced rest period and fiber affects the self-healing capacity of asphalt concrete evidently. The prediction model of crack self-healing capacity was established considering the influences of temperature and fiber.
引文
[1]刘中林,田文,史建方,谭发茂.高等级公路沥青混凝土路面新技术[M].北京:人民交通出版社,2004
    [2]赵永利.沥青混合料的结构组成机理研究[D].南京:东南大学,2005.9
    [3]刘铁山,延西利,韩森.基于沥青膜厚度的纤维沥青混合料最佳油石比研究[J].中外公路,2007,27(6):152-155.
    [4]G. Fu,W. Dekelbab.3-D random packing of polydisperse particles and concrete aggregate grading[J]. Powder Technology,2003,133 (1-3):147-155
    [5]李水乡,赵健,陆鹏,谢玉.基本三维几何体的最高填充率[J].科学通报,2009,54(6):729-733
    [6]王海兵,刘咏,黄伯云,周科朝.粉末颗粒线性堆积密度模型的改进[J].粉末冶金技术,2001,19(4):208-211
    [7]叶大年,韩成,曾荣树.等大球任意堆积[J].科学通报,1986, (12):920-924
    [8]刘小燕.基于沥青混合料集料形态的骨架组构敏感性开究[D].成都:西南交通大学,2010.4
    [9]吴成宝,胡小芳,段百涛.粉体堆积密度的理论计算[J].中国粉体技术,2009,15(5):76-81
    [10]叶大年,张金民.非等大球体的任意堆积[J].地质科学,1990, (2):127-136
    [11]A. E. R. Westman, H.R.Hugill. THE PACKING OF PARTICLES [J]. Journal of the American Ceramic Society,1930,13 (10):767-779
    [12]G. David Scott. Packing of equal spheres[J]. Nature,1960,188:908-909
    [13]David A. Weitz. Packing in the spheres[J]. Science,2004,303:968-969
    [14]朱万章.粒度与最佳填充[J].黎明化工,1992,(4):14-18
    [15]Jingmin Zheng, William B. Carlson, James S. Reed. The packing density of binary powder mixtures Original Research Article[J]. Journal of the European Ceramic Society,1995, 15 (5):479-483。
    [16]Yahia A. Abdel-Jawad, Waddah Salman Abdullah. Design of maximum density aggregate grading[J]. Construction and Building Materials,2002,16 (8):495-508
    [17]刘浩斌.颗粒尺寸分布与堆积理论[J].硅酸盐学报,1991,19(2):164-172。
    [18]严家伋.道路建筑材料[M].北京:人民交通出版社,1996
    [19]王立久,刘慧.矿料级配设计理论的研究现状与发展趋势[J].公路,2008,(1):170-175
    [20]Konstantin Sobolev, Adil Amirjanov. A simulation model of the dense packing of particulate materials[J]. Advanced Powder Technology,2004,15 (3):365-376
    [21]黄晓明,潘钢华,赵永利.土木工程材料[M].南京:东南大学出版社,2001
    [22]林绣贤.沥青混凝土合理集料组成的计算公式[J].华东公路,2003,(1):82-84
    [23]张登良.沥青路面[M].北京:人民交通出版社,1998
    [24]Transportation Research Board. Bailey Method for Gradation Selection in Hot-Mix Asphalt Milture Design, TRANSPORTATION Number E-C044[R]. Washington, DC:TRB,2002
    [25]沙庆林.多碎石沥青混凝土SAC系列的设计与施工[M].北京:人民交通出版社,2005
    [26]Sungho Kim. Identification and assessment of the dominant aggregate size range DASR of asphalt mixture[D]. Gainesville:University of Florida,2006
    [27]Sungho Kim, Reynaldo Roque, Bjorn Birgisson, Alvaro Guarin. Porosity of the Dominant Aggregate Size Range to Evaluate Coarse Aggregate Structure of Asphalt Mixtures[J]. Journal of Materials in Civil Engineering,2009,21 (1):32-39
    [28]张肖宁,郭祖辛,吴旷怀.按体积法设计沥青混合料[J].哈尔滨建筑大学学报,1995,28(2): 28-36
    [29]卢永贵.沥青玛蹄脂碎石混合料研究[D].西安:长安大学,2001.6
    [30]张起森,陈强.沥青路面在美国的应用与发展[J].国外公路,2001,21(1):1-5
    [31]贾渝Superpave(?)融合料设计方法最新进展[J].中外公路,2001,21(6):58-61
    [32]美国沥青协会著;贾渝,曹荣吉,李本京编译.高性能沥青路面Superpave基础参考手册[M].北京:人民交通出版社,2005
    [33]沈金安主编.国外沥青路面设计方法总汇[M].北京市:人民交通出版社,2004
    [34]陈顺福,韩东萍,延西利.法国沥青混合料设计方法[J].国外公路,2000,20(6)49-52
    [35]Sayyed Mahdi Hejazi, Sayyed Mahdi Abtahi,Mohammad Sheikhzadeh, Dariush Semnani. Introducing two simple models for predicting fiber-reinforced asphalt concrete behavior during longitudinal loads[J]. Journal of Applied Polymer Science,2008,109(5): 2872-2881
    [36]Serfass.J.P.J.Samanos. Fiber-Modified Asphalt Concrete Characteristics, Applications and Bebavior[J]. Asphalt Paving Technologies,1996,65:193-230
    [37]Clever.M.A. Investigation of the Properties of Carbon Fiber Modified Asphalt Miirures[D]. Michigan:Michgan Technological Universiy,2000
    [38]卢瑞珍.钢纤维增强砂浆试验研究[J].华东水利学院学报,1978,(1):135-144
    [39]蔡敏,蔡键,刘效尧.短纤维加强沥青混凝土路而[J].华东公路,1995,(1):67-69。
    [40]封基良.纤维沥青混合料增强机理及其性能研究[D].南京:东南大学,2006
    [41]杨军,邓学钧.国产格栅加筋沥青混凝土抗车辙能力的研究[J].东南大学学报,1996,26(3):132-135
    [42]黄彭.木质素纤维在沥青混合料中的应用研究[J].石油沥青,1998,12(4):9-15。
    [43]李海军,吕伟民.纤维在SMA混合料中作用机理分析与试验研究[J].石油沥青,1998,12(4):1-8
    [44]陈华鑫.纤维沥青混凝土路面研究[D].西安:长安大学,2002.2
    [45]李炜光,张争奇,张登良,等.纤维加强沥青路面的研究[J].西安公路交通大学学报,1998,18(3(B)):235-238
    [46]史建方.软纤维加筋沥青混凝土性能研究[D].天津:河北工业大学,2001。
    [47]郭乃胜,赵颖华,李刚.聚酯纤维沥青混凝土的低温抗裂性能分析[[J].沈阳建筑工程学院学报(自然科学版),2004,(1):1-3
    [48]叶群山,吴少鹏,李宁.纤维沥青与混合料流变特性与路用性能研究[J].武汉理工大学学报,2009,31(8):14-16
    [49]曾梦澜,彭珊,黄海龙.纤维沥青混凝土动力性能试验研究[J].湖南大学学报(自然科学版),2010,37(7):1-6,
    [50]高丹盈,汤寄予,李花歌.纤维对沥青马蹄脂碎石混合料(SMA)路用性能的影响[J].建筑材料学报,2008,11(6):741-745
    [51]韩月明.自动纤维添加机:中国,99107583.8[P].1999-12-22
    [52]Kim, Y.R., S.L. Whitmoyer, and D.N. Little. Healing in Asphalt Concrete Pavements:Is It Real? Transportation Research Record, No.1454[R]. Washington, D.C.:Transportation Research Board, National Research Council,1995:89-96。
    [53]Bazin, P., and Saunier, J. B. Deformability, fatigue and healing properties of asphalt mixes[C]//Proc. Second International Conference on the Structural Design of Asphalt Pavements, Ann Arbor, Michigan,1967:553-569
    [54]Little, D.N., Kim, Y. R., and Benson, F. C. Investigation of the Mechanism of Healing in Asphalt[C]//Report to the National Science Foundation, Texas A&M University.1987。
    [55]Federal Highway Administration. Microdamage Healing in Asphalt and Aasphalt Concrete, volume I:Microdamage and Microdamage Healing, Project Summary Report[R]. USA:FHWA,2001。
    [56]Si ZM, Little DN, Lytton RL. Characterization of microdamage and healing of asphalt concrete mixtures [J]. Journal of Materials in Civil Engineering,2002,14(6):461-470。
    [57]Kim YR, Little DN, Lytton RL. Fatigue and healing characterization of asphalt mixtures [J]. JOURNAL OF MATERIALS IN CIVIL ENGINEERING,2003,15 (1):75-83。
    [58]Song I, Little D, Masad E, Lytton R. Comprehensive evaluation of damage in asphalt mastics using X-ray CT, continuum mechanics, and micromechanics[J]. JOURNAL OF THE ASSOCIATION OF ASPHALT PAVING TECHNOLOGISTS,2005,74:885-920.
    [59]Abo-Qudais, Saad, Suleiman, Akram. Monitoring fatigue famage and crack healing by ultrasound wave velocity[J]. NONDESTRUCTIVE TESTING AND EVALUATION, 2005,20 (2):125-145。
    [60]Carpenter, Samuel H., Shen, Shihui. Dissipated energy approach to study hot-mix asphalt healing in fatigue [J]. Bituminous Paving Mixtures 2006:TRANSPORTATION RESEARCH RECORD-SERIES,2006,1970:178-185。
    [61]Castro M, Sanchez JA. Fatigue and healing of asphalt mixtures:Discriminate analysis of fatigue curves [J]. JOURNAL OF TRANSPORTATION ENGINEERING-ASCE,2006, 132 (2):168-174。
    [62]Seo, Youngguk, Kim, Y.Richard. Using Acoustic Emission to Monitor Fatigue Damage and Healing in Asphalt Concrete [J]. KSCE JOURNAL OF CIVIL ENGINEERING, 2008,12 (4):237-243。
    [63]Bhasin, Amit; Little, Dallas N.; Bommavaram, Rammohan; Vasconcelos, Kamilla. A Framework to Quantify the Effect of Healing in Bituminous Materials using Material Properties [J]. ROAD MATERIALS AND PAVEMENT DESIGN,2008,9 (Sp. Iss. SI): 219-242。
    [64]Qiu, J., van de Ven, M. F. C., Wu, S., Yu, J., Molenaar, A. A. A.. Investigating the Self Healing Capability of Bituminous Binders[J]. ROAD MATERIALS AND PAVEMENT DESIGN,2009,10 (Sp. Iss. SI):81-94。
    [65]Garcia A, Schlangen E, van de Ven M, Liu Q. Electrical conductivity of asphalt mastic containing conductive fibers and fillers[J]. Construction and Building Materials,2009, 23 (10):3175-3181
    [66]Liu Q, Schlangen E, van de Ven M, Garcia A. Induction heating of electrically conductive porous asphalt concrete[J]. Construction and Building Materials,2010,24(7):1207-1213
    [67]Garcia A, Schlangen E, van de Ven M. Induction heating of mastic containing conductive fibers and fillers[J]. Materials and Structures,2011,44 (2):499-508
    [68]Liu Q, Schlangen E, van de Ven M, Garcia A. Healing of porous asphalt concrete via induction heating[J]. Road Mater Pavement,2010,11:527-542
    [69]Alvaro Garcia, Erik Schlangen, Martin van de Ven, Guadalupe Sierra-Beltran. Preparation of capsules containing rejuvenators for their use in asphalt concrete[J]. Journal of Hazardous Materials,2010,184 (1-3):603-611
    [70]Corinna Wu. Highway, healthyself:Cracking the code of self-healing asphalt could extend the life of roads[J]. Science News,1998,153 (4):60-61
    [71]Quantao Liu, Alvaro Garcia, Erik Schlangen, Martin van de Ven. Induction healing of asphalt mastic and porous asphalt concrete[J]. Construction and Building Materials,2011, 25 (9):3746-3752
    [72]黄晓明,吴少鹏,赵永利.沥青与沥青混合料[M].东南大学出版社,2002
    [1]David A. Weitz. Packing in the spheres[J]. Science,2004,303:968-969
    [2]Francois Olard. Innovative Design Approach to High-Performance Asphalt Concretes with Long-Life Base and Binder Courses by Use of Aggregate Packing Concepts and Polymer-Modified Binders[C]. Transportation Research Board 90th Annual Meeting. Washington DC:Transportation Research Board,2011:1-14
    [3]Yahia A. Abdel-Jawad, Wada Selman Abdullah. Design of maximum density aggregate grading[J]. Construction and Building Materials,2002,16 (8):495-508
    [4]王安成.粗骨料架构特性与架构混凝土研究[D].大连:大连理工大学硕十学位论文,2006.12
    [5]叶大年,张金民.非等大球体的任意堆积[J].地质科学,1990, (2):127-136
    [6]赵永利.沥青混合料的结构组成机理研究[D].南京:东南大学博十学位论文,2005.9
    [7]陈贤辉,胡鸣琴.用三轴剪力仪测定路面粒料材料抗剪强度的研究[J].西安公路学院学报,1986,4(2):17-33
    [8]郭庆国.粗粒料的工程特性及应用[M].西安:西安交通大学出版社,1998
    [9]林绣贤.论Superpave组成配比的特色[J].华东公路,2002,(1):3-7
    [10]洪显诚,谭积青,赖见吾.按材料体积设计沥青混合料方法的研究[J].中外公路,2001,21(4): 61-63
    [11]王立久,刘慧.聚酯纤维沥青混合料级配设计的理论方法[J].公路交通科技,2009,26(1):11-15
    [12]交通部公路科学研究所JTG F40-2004公路沥青路面施工技术规范[S].北京:人民交通出版社,2004.11
    [13]沙庆林.多碎石沥青混凝土SAC系列的设计与施工[M].北京:人民交通出版社,2005.5
    [14]Sungho Kim, Reynaldo Roque, Bjorn Birgisson, and Alvaro Guarin. Porosity of the Dominant Aggregate Size Range to Evaluate Coarse Aggregate Structure of Asphalt Mixtures[J]. Journal of Materials in Civil Engineering,2009,21 (1):32-39
    [15]马登成,刘洪海,马尉倘等.贝雷参数对混合料级配特征与施工特性的影响[J].武汉理工具大学学报,2010,32(5):67-71
    [16]邓振伟,于萍,陈玲.SPSS软件在正交试验设计、结果分析中的应用[J].电脑学习,2009,(5):15-17
    [1]刘铁山,延西利,韩森.基于沥青膜厚度的纤维沥青混合料最佳石比研究[J].中外公路,2007,27(6):152-155
    [2]王晓磊,肖维,李春雷,黄晓明.沥青混合料最佳油石比确定方法试验研究[J].中南公路工程,2007,32(1):74-79
    [3]吕伟民.沥青混合料设计原理与方法[M].上海:同济大学出版社,2001
    [4]沙庆林.多碎石沥青混凝土SAC系列的设计与施工[M].北京:人民交通出版社,2005
    [5]沈金安.改性沥青与SMA路面[M].北京:人民交通出版社,1999
    [6]林绣贤.SMA目标合比快速确定法[J].华东公路,2001,(2):75-80
    [7]侯全岐.陕西多雨地区高速公路上OGFC的应用研究[D].西安:长安大学,2005。
    [5]李闯民.开级配沥青耗层(OGFC)的研究[J].公路,2002, (3):70-75
    [9]郭留红.高等级公路路面结构内部排水系统的研九与探讨[J].交通标准化,2003,124(12): 78-80
    [10]姚祖康,毕艳祥,庄少勤,郭亚兵.沥青碎石排水基层的设计与施工[J].公路,2001,(12):1-6
    [11]Mahis, D.M.Permeable base design and construction[C]//proceedings,4th International Conference on Concrete Pavement Design and Rehabilitation. Purdue University,1989: 663-670
    [12]汤寄予,高丹盈,夏丹.用水泥改善开级配路面面抗滑耗层水稳定性的的试验[J].新型建筑材料,2008,(3):9-13。
    [13]严军,章洪庆,周翔.骨架型沥青混合料的设计要点[A].第八届国际交通技术应用大会论文集[C].北京,2004:297-302
    [14]朱朝辉.外掺纤维沥青混合料的路用性能研究[D].西安:长安大学,2004
    [15]CHEN J S, LIN K Y. Mechanism and behavior of bitumen strength reinforcement using fibers[J]. Journal of Materials Science,2005,40 (1):87-95.
    [16]高丹盈,汤寄予,李花歌.纤维对沥青马蹄脂碎石头混合料(SMA)路用性能的影响[J].建筑材料学报,2008,11(6):741-745
    [1]沈金安主编.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2001
    [2]付力强,王子灵,张锐.SBS与纤维在沥青及沥青混凝土中改性效果对比分析[J].公路交通科技,2007,24(5):26-29
    [3]Huaxin Chen, Qinwu Xu. Experimental study of fibers in stabilizing and reinforcing asphalt binder[J]. Fuel,2010,89 (7):1616-1622
    [4]田泽峰,陈晓龙,韩跃新,谷传宏.松散状木质纤维路用性能研究[J].矿冶学报,2006,15(2) : 35-39
    [5]沈金安.改性沥青与SMA路面[M].北京:人民交通出版社,1999
    [6]JIAN-SHIUH CHEN, KUEI-YI LIN. Mechanism and behavior of bitumen strength reinforcement using fibers[J]. JOURNAL OF MATERIALS SCIENCE,2005,40 (1) 87-95
    [1]吕伟民.沥青混合料设计原理与方法[M].上海:同济大学出版社,2001
    [2]JTG F40-2004,公路沥青面施工技术规范[S].北京:人民交通出版社,2004
    [3]郝培文,张登良,胡西宁.沥青混合料低温抗裂性能评价指标[J].西安公路叫交通大学学报,2000,20(3):1-5
    [4]蔡四维,蔡敏.混凝土的损伤断裂[M].北京:人民交通出版社,1999
    [5]葛折圣,黄晓明,许国光.用弯曲应变能方法评价沥青混合料的低温抗裂性[J].东南大学学报(自然科学版),2002,32(4):653-655
    [6]张肖宁,沥青与沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社,2006
    [7]黄晓明,吴少鹏,赵永利.沥青与沥青混合料[M].南京:东南大学出版社,2002
    [8]埃伦斯坦(Ehrenstcin, G·W·)[德].聚合物材料—结构.性能.应用[M].张萍,赵树高,译.北京:化学工业出版社,2007
    [1]沈金安主编.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2001
    [2]汤寄予,高丹盈,赵军,朱海堂.消石灰改善OGFC水稳定性的试验研究[J].中外公路,2008,28(6):232-236
    [3]薛明,朱玮玮,张俊,杨保兴.基于掺量优化设计的聚酯纤维沥青混合料性能评价[J].公路交通科技(应用技术版),2008, (6):5-13
    [1]封基良.纤维沥青混合料增强机理及其性能研究[D].南京:东南大学.2006
    [2]Alvaro Garcia. Self-healing of open cracks in asphalt mastic[J]. Fuel,2012,93:264-272
    [3]Amit Bhasin, Dallas N. Little, Rammohan Bommavaram, Kamilla Vasconcelosa. A framework to quantify the effect of healing in bituminous materials using material properties[J]. Road Materials and Pavement Design,2008,9 (S1):219-242
    [4]Amit Bhasin, Rammohan Bommavaram, Michael L. Greenfield, Dallas N. Little. Use of Molecular Dynamics to Investigate Self-Healing Mechanisms in Asphalt Binders[J]. Journal of Materials in Civil Engineering,2011,23 (4):485-492

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700