用户名: 密码: 验证码:
电力机车牵引电机在全速度范围的控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:电力机车牵引电机的控制是电力机车的核心技术之一,其控制性能的优劣对于电力机车的安全稳定运行具有至关重要的作用。本文以国产大功率交流传动电力机车的研究开发为背景,对电力机车牵引传动系统中牵引电机控制的关键问题进行了研究,主要有以下内容:
     在非方波调制区,系统性的针对转子时间常数误差和负载大小与磁场定向角度误差之间的关系,以及定向角度误差对电机矢量控制性能的影响进行了详细的理论推导和综合分析。在此基础上通过对不同方法的对比分析采用了一种基于q轴转子磁链的磁场定向角度误差实时校正策略,仿真和实验结果证明该策略能够对各种原因引起的磁场定向角度误差进行良好的校正。
     针对方波下逆变器输出电压不能调节导致传统矢量控制不能应用的情况,本文中提出了一种基于电流开环控制的改进型矢量控制策略,并采用基于改进的电压控制器的弱磁策略,保证了电机在方波弱磁区全速度范围的最大转矩控制。
     分析了方波工况在基于电流开环控制的改进型矢量控制下磁场定向不准对电机电流指令值和实际值之间偏差的影响,提出了一种方波下基于q轴电流误差的磁场定向误差校正策略,保证了方波下的转矩控制精度。
     对两种低载波比下的调制策略——中间60。调制策略和SHEPWM进行了对比研究。重点对两种调制方式下在不同脉冲数下的电压谐波,电机负载下的电流谐波和引起的转矩脉动的变化规律进行了详细的理论分析,比较了两种调制方式的优缺点。对SHEPWM下不同开关角分布对谐波的影响进行了分析。对不同调试方式之间的切换策略进行了分析,提出了一种三相同时切换的切换策略。
     提出了一种基于机车速度的全速度范围分段矢量控制策略,对其应用于国产大功率电力机车牵引传动系统后的现场试验情况进行了说明。并针对电力机车的几个特殊问题进行了研究,提出了一种过分相区的直流电压恒定控制策略,保证在过分相区辅助系统的不间断供电;采用了一种基于速度误差的开环转矩控制策略,保证了电力机车的准恒速控制。电力机车现场试验结果良好,已经通过铁道科学研究院的所有型式试验,目前正在上线试运行。
The control of locomotive traction motor is one of the key techonology and its performeance is of great important to the running of electrical locomotive. This dissertation is based on the research and development of domestic high power electrical lomotive and aims to solve some key problems of the motor control in the traction driving system.
     First, the relationship between incorrect rotor time constant, load and the rotor flux angle error is analyzed, and the influence of angle error to performance of vector control is detailed researched in this article. A q-axis rotor flux based correction strategy of field orientation in real-time is used based on the compareration of different methods. Simulation and experimental results proved the validity of the strategy.
     Second, the output voltage of inverter is constant and can't be adjusted any more under square wave, which make the traditional vector control can't be used. In this article, a modified vector control based on open loop current control is proposed and a max-torque control method based on modified voltage controller is used in order to get maximum torque output in the whole speed range.
     Third, based on the influence research of incorrect field orientation on current error between command and actual value, a corrention strategy for field orientation under square wave which is based on the q-axis current error is proposed, thus the accurate torque control can be get even in the one pulse mode.
     Fourth, two modulation method:central60°modulation and SHEPWM under low carrier wave ratio are learned. Most attentation is paid on the voltage harmonics and the current harmonics, resulting torque pulsation in induction machine analization. The affects of different initial swithing angle to the harmonic amplitude of the SHEPWM is also researched, and a conclusion is given. The transition between different modulation methods is an important aspent in the multi-mode modulation strategy, a transition strategy that three phases can swith at the same time is proposed.
     Fifth, a sectional vector control strategy within the whole speed range is proposed based on the speed of electrical locomotive, and the proposed control and modulation strategy are used in the domestic electrical locomotive. Besides, a constant DC bus voltage control strategy when passing the neutral section is proposed which can achieve uninterrupted power supply for auxiliary system of electric locomotive. A quasi-constant speed control ot locomotive using a proportional controller based on the speed error is used, which can guarantee that the speed error can't exceed2.5km/h. The expremental results of the locomotive using the control strategy and modulation strategy is presented and it showed that the performance of the locomotive is very good and achieves the designed goal of the traction driving system.
引文
[1]冯晓云.电力牵引交流传动及其控制系统[M].北京:高等教育出版社,2009.
    [2]宋雷鸣.动车组传动与控制[M].1.北京:中国铁道出版社,2007.
    [3]中国高速铁路规划和实施情况[J].中国发明与专利,2011(8).
    [4]陈蓓.国外城市轨道交通发展规模研究[D].北京交通大学,2010.
    [5]张曙光.HXD2型电力机车[M].1.北京:中国铁道出版社,2009.
    [6]夏胜利,杨浩,张进川,等.我国重载铁路发展模式研究[J].铁道运输与经济,2011(9):9-13.
    [7]张曙光.HXDl型电力机车[M].1.北京:中国铁道出版社,2009.
    [8]李丹,汪铭,王晓,等.中国重载铁路发展纪实[N].中国铁道报.
    [9]张治中.中国铁路机车史[M].济南:山东教育出版社,2007.
    [10]唐涛.自主研发是解决我国高速铁路发展的根本途径[J].经济研究参考,2011(61):74-76.
    [11]郑琼林.电牵引传动系统研究[D].北京交通大学电力系统及其自动化,2002.
    [12]郑琼林.一代电力电子器件成就一代中国轨道交通变流技术[J].电力电子,2009(6):18-24.
    [13]丁荣军,黄济荣.现代变流技术与电气传动[M].北京:科学出版社,2009.
    [14]黄济荣.跨入21世纪的电力电子与传动技术[J].电力机车与城轨车辆,2004(2):1-5.
    [15]Mermet-Guyennet M. New power technologies for traction drives:Power Electronics Electrical Drives Automation and Motion (SPEEDAM),2010 International Symposium on, 2010[C].
    [16]郑琼林.交流传动机车牵引变流器的设计与控制[J].电力电子,2009(1):12-17.
    [17]刘建强.高速列车电气系统技术讲座第二讲高速列车牵引传动系统[J].电力电子,2011(3):56-62.
    [18]张曙光.CRH2型动车组[M].1.北京:中国铁道出版社,2008.
    [19]叶云魁.交流电机传动系统控制策略的研究[D].同济大学电力电子与电力传动,2005.
    [20]Bose B K. Modern Power Electronics and AC Drives [M]. Englewood Cliffs, NJ: Prentice-Hall,2002.
    [21]阮毅,陈维钧.运动控制系统[M].1.北京:清华大学出版社,2006.
    [22]杨耕,罗应立,等.电机与运动控制系统[M].1.北京:清华大学出版社,2006.
    [23]陈伯时.电力拖动自动控制系统——运动控制系统[M].3.北京:机械工业出版社,2006.
    [24]王庆龙.交流电机矢量控制系统滑模变结构控制策略研究[D].合肥工业大学电力电子与电力传动,2007.
    [25]周志刚.异步电机矢量控制系统研究[D].北方交通大学北京交通大学电力系统及其自动化,2003.
    [26]李威.感应电机矢量控制系统研究[D].北方交通大学北京交通大学电力系统及自动化,2001.
    [27]张曙光.HXD3型电力机车[M].1.北京:中国铁道出版社,2009.
    [28]张曙光.CRH1型动车组[M].1.北京:中国铁道出版社,2008.
    [29]张曙光.CRH5型动车组[M].1.北京:中国铁道出版社,2008.
    [30]Takahashi I, Noguchi T. A New Quick-Response and High-Efficiency Control Strategy of an Induction Motor[J]. Industry Applications, IEEE Transactions on,1986,IA-22(5):820-827.
    [31]Baader U, Depenbrock M, Gierse G. Direct self control (DSC) of inverter-fed induction machine:a basis for speed control without speed measurement[J]. Industry Applications, IEEE Transactions on,1992,28(3):581-588.
    [32]Depenbrock M. Direct self-control (DSC) of inverter-fed induction machine[J]. Power Electronics, IEEE Transactions on,1988,3(4):420-429.
    [33]黄立培,孙凯.关于矢量控制与直接转矩控制比较的一些思考[J].电力电子,2004(2):12-15.
    [34]韦克康.轨道牵引逆变器数字控制研究[D].北京:北京交通大学电气工程学院,2012.
    [35]叶斌.电力电子应用技术[M].北京:清华大学出版社,2006.
    [36]Kenne-G, Simo R S, Lamnabhi-Lagarrigue F, et al. An Online Simplified Rotor Resistance Estimator for Induction Motors[J]. Control Systems Technology, IEEE Transactions on, 2010,18(5):1188-1194.
    [37]Krishnan R, Bharadwaj A S. A review of parameter sensitivity and adaptation in indirect vector controlled induction motor drive systems[J]. Power Electronics, IEEE Transactions on, 1991,6(4):695-703.
    [38]Toliyat H A, Levi E, Raina M. A review of RFO induction motor parameter estimation techniques[J]. IEEE Transactions On Energy Conversion,2003,18(2):271-283.
    [39]Moreira J C, Lipo T A. A new method for rotor time constant tuning in indirect field oriented control[J]. Power Electronics, IEEE Transactions on,1993,8(4):626-631.
    [40]Wade S, Dunnigan W, Williams B W. A new method of rotor resistance estimation for vector-controlled induction machines[J]. Industrial Electronics, IEEE Transactions on, 1997,44(2):247-257.
    [41]Matsuo T, Lipo T A. A Rotor Parameter Identification Scheme for Vector-Controlled Induction Motor Drives[J]. Industry Applications, IEEE Transactions on, 1985,IA-21(3):624-632.
    [42]Yongchang Z, Zhengming Z, Ting L, et al. A comparative study of Luenberger observer, sliding mode observer and extended Kalman filter for sensorless vector control of induction motor drives:Energy Conversion Congress and Exposition,2009. ECCE 2009. IEEE,2009[C].
    [43]Nayeem Hasan S M, Iqbal H. A Luenberger-Sliding Mode Observer for On-line Parameter Estimation and Adaptation in High-Performance Induction Motor Drives:Industry Applications Conference,2006.41st IAS Annual Meeting. Conference Record of the 2006 IEEE,2006[C].
    [44]Li-Cheng Z, DeMarco C L, Lipo T A. An extended Kalman filter approach to rotor time constant measurement in PWM induction motor drives[J]. Industry Applications, IEEE Transactions on,1992,28(l):96-104.
    [45]Du T, Vas P, Stronach F. Design and application of extended observers for joint state and parameter estimation in high-performance AC drives[J]. Electric Power Applications, IEE Proceedings,1995,142(2):71-78.
    [46]Rowan T M, Kerkman R J, Leggate D. A simple on-line adaption for indirect field orientation of an induction machine[J]. Industry Applications, IEEE Transactions on,1991,27(4):720-727.
    [47]Lorenz R D. A simplified approach to continuous on-line tuning of field-oriented induction machine drives[J]. Industry Applications, IEEE Transactions on,1990,26(3):420-424.
    [48]Maiti S, Chakraborty C, Hori Y, et al. Model Reference Adaptive Controller-Based Rotor Resistance and Speed Estimation Techniques for Vector Controlled Induction Motor Drive Utilizing Reactive Power[J]. Industrial Electronics, IEEE Transactions on, 2008,55(2):594-601.
    [49]Vukosavic S N, Stojic M R. On-line tuning of the rotor time constant for vector-controlled induction motor in position control applications[J]. Industrial Electronics, IEEE Transactions on,1993,40(1):130-138.
    [50]Jemli M, Boussak M, Gossa M, et al. Rotor time constant identification in vector controlled induction motor applied flux model reference adaptive system (MRAS):Electrotechnical Conference,1994. Proceedings.,7th Mediterranean,1994[C].
    [51]樊扬,瞿文龙,陆海峰,等.基于转子磁链q轴分量的异步电机间接矢量控制转差频率校正[J].中国电机工程学报,2009(9):62-66.
    [52]陆海峰,瞿文龙,张磊,等.一种基于无功功率的异步电机矢量控制转子磁场准确定向方法[J].中国电机工程学报,2005(16):116-120.
    [53]Bim E. Fuzzy optimization for rotor constant identification of an indirect FOC induction motor drive[J]. Industrial Electronics, IEEE Transactions on,2001,48(6):1293-1295.
    [54]齐丽英.异步电机矢量控制系统中电流控制器研究[D].北京:北京交通大学电气工程,2012.
    [55]Briz F, Degner M W, Lorenz R D. Analysis and design of current regulators using complex vectors[J]. Industry Applications, IEEE Transactions on,2000,36(3):817-825.
    [56]Holtz J, Juntao Q, Pontt J, et al. Design of fast and robust current regulators for high-power drives based on complex state variables[J]. Industry Applications, IEEE Transactions on, 2004,40(5):1388-1397.
    [57]Jinhwan J, Kwanghee N. A dynamic decoupling control scheme for high-speed operation of induction motors[J]. Industrial Electronics, IEEE Transactions on,1999,46(1):100-110.
    [58]Lorenz R D, Lawson D B. Performance of Feedforward Current Regulators for Field-Oriented Induction Machine Controllers[JJ. Industry Applications, IEEE Transactions on, 1987,IA-23(4):597-602.
    [59]马志文.电力牵引交流传动互馈试验系统的研究[D].北京交通大学电力系统及其自动化,2007.
    [60]Hongrae K, Degner M W, Guerrero J M, et al. Discrete-Time Current Regulator Design for AC Machine Drives[J]. Industry Applications, IEEE Transactions on,2010,46(4):1425-1435.
    [61]Del Blanco F B, Degner M W, Lorenz R D. Dynamic analysis of current regulators for AC motors using complex vectors[J]. Industry Applications, IEEE Transactions on, 1999,35(6):1424-1432.
    [62]Harnefors L, Nee H P. Model-based current control of AC machines using the internal model control method[J]. Industry Applications, IEEE Transactions on,1998,34(1):133-141.
    [63]周志刚.一种感应电机的解耦控制方法[J].中国电机工程学报,2003(2):125-129.
    [64]周渊深,姜建国.异步电动机的动态解耦控制[J].中小型电机,2001(2):22-26.
    [65]Holtz J, Juntao Q. Drift-and parameter-compensated flux estimator for persistent zero-stator-frequency operation of sensorless-controlled induction motors[J]. Industry Applications, IEEE Transactions on,2003,39(4):1052-1060.
    [66]Holtz J, Juntao Q. Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification[J]. Industry Applications, IEEE Transactions on,2002,38(4):1087-1095.
    [67]Vasic V, Vukosavic S N, Levi E. A stator resistance estimation scheme for speed sensorless rotor flux oriented induction motor drives[J]. Energy Conversion, IEEE Transactions on, 2003,18(4):476-483.
    [68]Holtz J. Sensorless Control of Induction Machines &—With or Without Signal Injection?[J]. Industrial Electronics, IEEE Transactions on,2005,53(l):7-30.
    [69]Foo G, Sayeef S, Rahman M F. Sensorless direct torque and flux control of an IPM synchronous motor at low speed and standstill:Power Electronics and Motion Control Conference,2008. EPE-PEMC 2008.13th,2008[C].1-3 Sept.2008.
    [70]Bon-Ho B, Gi-Bum K, Seung-Ki S. Improvement of low speed characteristics of railway vehicle by sensorless control using high frequency injection:Industry Applications Conference, 2000. Conference Record of the 2000 IEEE,2000[C].2000.
    [71]Silva C, Araya R. Sensorless Vector Control of Induction Machine with Low Speed Capability using MRAS with Drift and Inverter Nonlinearities Compensation:EUROCON,2007. The International Conference on "Computer as a Tool ",2007[C].9-12 Sept.2007.
    [72]Leppanen V M, Luomi J. Speed-sensorless induction Machine control for zero speed and frequency[J]. Industrial Electronics, IEEE Transactions on,2004,51(5):1041-1047.
    [73]Holtz J. Sensorless control of induction motor drives[J]. Proceedings of the IEEE, 2002,90(8):1359-1394.
    [74]刘志刚,叶斌,梁辉.电力电子学[M].北京:北京交通大学出版社,2004.
    [75]Holmes D G, Thomas A Lipo. Pulse Width Modulation for Power Converters:Principles and Practice[M]. Wiley-IEEE Press,2003.
    [76]丁荣军.中间60°SPWM控制的特点及其电路的实现[J].机车电传动,1995(1):13-17.
    [77]汤钰鹏,郝荣泰.16位单片机控制的多模式PWM控制器[J].机车电传动,1993(3):26-29.
    [78]Patel H S, Hoft R G. Generalized Techniques of Harmonic Elimination and Voltage Control in Thyristor Inverters:Part I-Harmonic Elimination[J]. Industry Applications, IEEE Transactions on,1973,IA-9(3):310-317.
    [79]Patel H S, Hoft R G. Generalized Techniques of Harmonic Elimination and Voltage Control in Ihyristor Inverters-Part 2-Voltage Control Techniques [J]. Industry Applications, IEEE Transactions on,1974,IA-10(5):666-673.
    [80]Buja G S, Indri G B. Optimal Pulsewidth Modulation for Feeding AC Motors[J]. Industry Applications, IEEE Transactions o,1977,IA-13(1):38-44.
    [81]Buja G S. Optimum Output Waveforms in PWM Inverters[J]. Industry Applications, IEEE Transactions on,1980,IA-16(6):830-836.
    [82]Zach F C, Ertl H. Efficiency Optimal Control for AC Drives with PWM Inverters[J]. Industry Applications, IEEE Transactions on,1985,IA-21(4):987-1000.
    [83]Taniguchi K, Irie H. Trapezoidal Modulating Signal for Three-Phase PWM Inverter[J]. Industrial Electronics, IEEE Transactions on,1986,IE-33(2):193-200.
    [84]李永东.脉宽调制(PWM)技术——回顾、现状及展望[J].电气传动,1996(3):2-12.
    [85]Ong C M. Dynamic Simulation of Electric Machinery[M]. New Jersey:Prentice Hall,1998.
    [86]Lorenz R D, Etc. Motion control with induction motors [J]. Proceedings of the IEEE, 1994,82(8):1215-1240.
    [87]Chakrabarti S, Ramamoorty M, Kanetkar V R. A method for correction of rotor time constant in indirect field orientation of an induction motor:Power Electronics and Drive Systems,1997. Proceedings.,1997 International Conference on,1997[C].26-29 May 1997.
    [88]韦克康,周明磊,郑琼林,等.基于复矢量的异步电机电流环数字控制[J].电工技术学报,2011(6):88-94.
    [89]李永东.交流电机数字控制系统[M].北京:机械工业出版社,2003.
    [90]Degner M W, Guerrero J M, Briz F. Slip-gain estimation in field-orientation-controlled induction machines using the system transient response [J]. Industry Applications, IEEE Transactions on,2006,42(3):702-711.
    [91]Al-Tayie J K, Acarnley P P. Estimation of speed, stator temperature and rotor temperature in cage induction motor drive using the extended Kalman filter algorithm [J]. Electric Power Applications, IEE Proceedings,1997,144(5):301-309.
    [92]Du T, Vas P, Stronach F. Design and application of extended observers for joint state and parameter estimation in high-performance AC drives[J]. Electric Power Applications, IEE Proceedings,1995,142(2):71-78.
    [93]Umanand L, Bhat S R. Adaptation of the rotor time constant for variations in the rotor resistance of an induction motor:Power Electronics Specialists Conference, PESC'94 Record., 25th Annual IEEE,1994[C].
    [94]Gadoue S M, Giaouris D, Finch J W. Sensorless Control of Induction Motor Drives at Very Low and Zero Speeds Using Neural Network Flux Observers[J]. Industrial Electronics, IEEE Transactions on,2009,56(8):3029-3039.
    [95]Ohtani T, Takada N, Tanaka K. Vector control of induction motor without shaft encoder: Industry Applications Society Annual Meeting,1989., Conference Record of the 1989 IEEE, 1989[C].1-5 Oct 1989.
    [96]Jun H, Bin W. New integration algorithms for estimating motor flux over a wide speed range[J]. Power Electronics, IEEE Transactions on,1998,13(5):969-977.
    [97]李彪,刘新正,李黎川.具有低通滤波的改进电压型磁链观测器[J].西安交通大学学报,2009(12):91-95.
    [98]张星,瞿文龙,陆海峰.一种能消除直流偏置和稳态误差的电压型磁链观测器[J].电工电能新技术,2006(1):39-43.
    [99]Zaky M S, Khater M M, Shokralla S S, et al. Wide-Speed-Range Estimation With Online Parameter Identification Schemes of Sensorless Induction Motor Drives[J]. Industrial Electronics, IEEE Transactions on,2009,56(5):1699-1707.
    [100]陈伟,于泳,徐殿国,等.基于自适应补偿的异步电机静止参数辨识方法[J].中国电机工程学报,2012.
    [101]Levi E, Mingyu W. Online identification of the mutual inductance for vector controlled induction motor drives[J]. Energy Conversion, IEEE Transactions on,2003,18(2):299-305.
    [102]Levi E, Sokola M, Vukosavic S N. A method for magnetizing curve identification in rotor flux oriented induction machines[J]. Energy Conversion, IEEE Transactions on, 2000,15(2):157-162.
    [103]Levi E, Vukosavic S N. Identification of the magnetising curve during commissioning of a rotor flux oriented induction machine[J]. Electric Power Applications, IEE Proceedings-,1999,146(6):685-693.
    [104]Huang M S, Liaw C M. Transient performance improvement control for IFO induction motor drive in field-weakening region[J]. Electric Power Applications, IEE Proceedings-, 2003,150(5):521-530.
    [105]韩利,温旭辉,郭希铮.电压源逆变器输出电压重构技术研究[J].电力电子技术,2007(11):94-96.
    [106]孙向东,尚媛,钟彦儒,等.三相电压源逆变器输出电压重构技术的研究[J].西安理工大学学报,2005(2):122-124.
    [107]Nakazawa Y, Toda S, Yasuoka I, et al. One-pulse PWM mode vector control for traction drives:Power Electronics in Transportation,1996. IEEE,1996[C].24-25 Oct.1996.
    [108]Kitanaka H, Negoro H. Vector control device of induction motor, vector control method of induction motor, and drive control device of induction motor:JP, May 25,2010.
    [109]Holtz J, Juntao Q, Pontt J, et al. Design of fast and robust current regulators for high-power drives based on complex state variables[J]. Industry Applications, IEEE Transactions on, 2004,40(5):1388-1397.
    [110]Xu X, Novotny D W. Selecting the flux reference for induction machine drives in the field weakening region:Industry Applications Society Annual Meeting,1991., Conference Record of the 1991 IEEE,1991[C].28 Sep-4 Oct 1991.
    [111]Myoung-Ho S, Dong-Seok H, Soon-Bong C. Maximum torque control of stator-flux-oriented induction machine drive in the field-weakening region[J]. Industry Applications, IEEE Transactions on,2002,38(1):117-122.
    [112]Sang-Hoon K, Seung-Ki S. Maximum torque control of an induction machine in the field weakening region[J]. Industry Applications, IEEE Transactions on,1995,31(4):787-794.
    [113]Grotstollen H, Wiesing J. Torque capability and control of a saturated induction motor over a wide range of flux weakening[J]. Industrial Electronics, IEEE Transactions on, 1995,42(4):374-381.
    [114]Jul-Ki S, Seung-Ki S. Optimal flux selection of an induction machine for maximum torque operation in flux-weakening region[J]. Power Electronics, IEEE Transactions on, 1999,14(4):700-708.
    [115]Peroutka Z, Zeman K. New field weakening strategy for AC machine drives for light traction vehicles:Power Electronics and Applications,2007 European Conference on,2007[C].2-5 Sept.2007.
    [116]Bunte A, Grotstollen H, Krafka P. Field weakening of induction motors in a very wide region with regard to parameter uncertainties:Power Electronics Specialists Conference,1996. PESC '96 Record.,27th Annual IEEE,1996[C].23-27 Jun 1996.
    [117]Sang-Hoon K, Seung-Ki S. Voltage control strategy for maximum torque operation of an induction machine in the field-weakening region[J]. Industrial Electronics, IEEE Transactions on,1997,44(4):512-518.
    [118]Blasko V. A hybrid PWM strategy combining modified space vector and triangle comparison methods:Power Electronics Specialists Conference,1996. PESC'96 Record.,27th Annual IEEE,1996[C].23-27 Jun 1996.
    [119]Blasko V. Analysis of a hybrid PWM based on modified space-vector and triangle-comparison methods[J]. Industry Applications, IEEE Transactions on,1997,33(3):756-764.
    [120]Keliang Z, Danwei W. Relationship between space-vector modulation and three-phase carrier-based PWM:a comprehensive analysis [three-phase inverters][J]. Industrial Electronics, IEEE Transactions on,2002,49(1):186-196.
    [121]Bowes S R, Yen-Shin L. The relationship between space-vector modulation and regular-sampled PWM[J]. Industrial Electronics, IEEE Transactions on,1997,44(5):670-679.
    [122]Bon-Ho B, Seung-Ki S. A compensation method for time delay of full-digital synchronous frame current regulator of PWM AC drives[J]. Industry Applications, IEEE Transactions on, 2003,39(3):802-810.
    [123]董玮.电流环采样时间对伺服系统快速性影响的研究[J].电气传动,2004(1):15-16.
    [124]王剑,李永东,马永健.一种显著增加变换器电流环带宽的新方法[J].电气传动,2009(6):34-38.
    [125]王宏佳,杨明,牛里,等.永磁交流伺服系统电流环带宽扩展研究[J].中国电机工程学报,2010(12):56-62.
    [126]李春龙,沈颂华,卢家林,等.具有延时补偿的数字控制在PWM整流器中的应用[J].中国电机工程学报,2007(7):94-97.
    [127]李威,车向中,郝荣泰.交-直-交电力机车PWM调制方法研究[J].铁道学报,2000(6):26-31.
    [128]徐宗祥.牵引电机转矩脉动对机车粘着利用的影响分析[J].机车电传动,2009(3):14-16.
    [129]佟为明.PWM逆变器特定消谐式谐波抑制技术的研究[D].哈尔滨工业大学,1999.
    [130]Bowes S R, Holliday D, Grewal S. Regular-sampled harmonic elimination PWM control of single-phase two-level inverters[J]. Electric Power Applications, IEE Proceedings-, 2001,148(4):309-314.
    [131]Bowes S R, Grewal S. A novel harmonic elimination PWM strategy:Power Electronics and Variable Speed Drives,1998. Seventh International Conference on (Conf. Publ. No.456), 1998[C].21-23 Sep 1998.
    [132]Bowes S R, Grewal S. Novel harmonic elimination PWM control strategies for three-phase PWM inverters using space vector techniques[J]. Electric Power Applications, IEE Proceedings-,1999,146(5):495-514.
    [133]Bowes S R, Clark P R. Simple microprocessor implementation of new regular-sampled harmonic elimination PWM techniques [J]. Industry Applications, IEEE Transactions on, 1992,28(1):89-95.
    [134]Bowes S R, Clark P R. Transputer-based harmonic-elimination PWM control of inverter drives[J]. Industry Applications, IEEE Transactions on,1992,28(1):72-80.
    [135]S. R B. Efficient microprocessor real-time PWM drive control using regular-sampled harmonic minimisation techniques:Industrial Electronics,1993. Conference Proceedings, ISIE'93 Budapest., IEEE International Symposium on,1993[C].1993.
    [136]孙宁强,梁大开,丁伟.基于CPLD的特定消谐PWM数字触发电路的分析和实现[J].电气应用,2005(12):116-119.
    [137]桂红云,姚文熙,吕征宇.三电平SHE-PWM调制方法的DSP实现[J].电力电子技术,2005(2):13-14.
    [138]陈远华,谢小荣,宋强,等.基于DSP实现的特定消谐PWM脉冲发生器[J].清华大学学报(自然科学版),2003(3):349-352.
    [139]Sun J, Beineke S, Grotstollen H. DSP-based real-time harmonic elimination of PWM inverters: Power Electronics Specialists Conference, PESC'94 Record.,25th Annual IEEE, 1994[C].20-25 Jun 1994.
    [140]Bowes S R, Davies T. Microprocessor-based development system for PWM variable-speed drives[J]. Electric Power Applications, IEE Proceedings B,1985,132(1):18-45.
    [141]王颖曜,刘兴民,刘扩军,等.大功率变频器输出电压转入方波工况策略的仿真研究[J].机车电传动,1998(3):12-16.
    [142]刘连根.涉及交流传动电力机车运行工况平稳过度的两个问题的研究[J].铁道学报,1996(3):116-119.
    [143]邱关源,罗先觉.电路[M].北京:高等教育出版社,2006.
    [144]贺明智,许建平,游小杰,等.环路延时对数字峰值电压控制开关变换器瞬态性能的影响[J].中国电机工程学报,2009(6):1-7.
    [145]严云升.电力机车和电动车组自动过分相方案的发展方向[J].机车电传动,2004(6):7-10.
    [146]李官军,冯晓云,王利军,等.高速动车组自动过分相控制策略研究与仿真[J].电工技术学报,2007(7):181-185.
    [147]窦新立.机车过分相区辅助系统不间断供电技术[J].机车电传动,2007(2):31-32.
    [148]高吉增,杨玉磊,崔学深.感应电动机失电残压的研究及其对重合过程的影响[J].电力系统保护与控制,2009(4):45-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700