用户名: 密码: 验证码:
干扰观测器和先进控制在航空相机位角系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空相机具有机动灵活、时效性高等优点,是航空侦察的主要载荷之一。本文是XX-CCD航空相机研制项目研究内容之一,研究并解决该相机位角反射镜在低速、高精度像移补偿环节的干扰抑制及快速、高精度定位模式下的Anti-Windup等技术难题,对于提高该相机分辨率、纵向定位精度及缩短相机工作时序周期具有重要的研究意义。
     本文围绕着XX-CCD相机位角控制系统的性能指标和技术难点开展以下几方面研究工作。
     1.论述了本课题研究背景、课题来源及研究意义,阐述了学位论文涉及到的关键技术领域的国内外研究现状——航空相机的研究现状、伺服控制系统研究现状及干扰观测与抑制技术的研究现状,重点论述了控制系统的干扰观测与抑制技术的研究现状;
     2.介绍XX-CCD相机位角控制系统的系统组成、工作方式、指标分析及关键元件参数等内容。对影响位角控制系统性能的若干因素进行了分析——摩擦扰动、力矩波动、传感器性能以及载机条件等的影响。对位角控制系统的各个环节采用理论机理建模方式进行了数学建模,通过系统实际频率特性测试实验,获得了系统开环频率特性曲线,结合前面典型数学模型,对模型进行简化处理,获得系统广义开环数学模型;
     3.研究了基于摩擦模型的摩擦前馈对摩擦扰动进行补偿的方法,为了实现摩擦扰动补偿,对系统数学模型进行了简化,提出基于二进制编码的遗传算法对摩擦模型参数进行辨识方法,根据系统力矩综合点处力矩平衡原理建立了摩擦前馈补偿通道的调节器参数与辨识出来的摩擦模型参数的等价关系。针对外部力矩干扰设计了采用基于名义模型逆和低通滤波相结合的干扰观测器将外部力矩干扰观测出来,并把观测值引入控制端,即可实现外部力矩干扰的补偿,并设计带干扰观测器的像移补偿控制,主控算法采用了基于改进的离散指数趋近律的自适应滑模控制。最后,提出了基于干扰观测器反馈和摩擦模型前馈的复合控制方法,该方法将前向像移残差减小了三分之二左右,可以对干扰进行有效抑制;
     4.分析了位角位置控制系统饱和非线性导致的“Windup”现象并采用两种思路和方法实现Anti-Windup。从Windup事后补偿角度,提出了基于Anti-Windup变结构的串级主副双回路PID位置控制方法。在速度内环使用基于Anti-Windup变结构的自适应PID控制,位置外环采用Windup积分系数自适应微调的PID控制。为了弥补事后补偿的缺点,位置外环采用变速积分实现积分抗饱和措施。从Windup事前预防角度:提出了基于模糊自适应修正和遗传算法优化整定的PID位置控制方法。位置控制结构依然采用串级主副双回路的控制方法,位置外环为主回路,速度内环为副回路。位置外环控制采用遗传算法优化整定及模糊控制修正的PID控制算法,PID基本参数由遗传算法优化整定,并且在遗传算法最小目标函数中加入超调惩戒环节,模糊控制在PID基本参数邻域内对PID基本参数进行模糊修正,模糊控制采用非线性量化及中心隶属度稠密的二维模糊控制结构,在加快系统动态响应的前提下,尽可能快速消除误差,有利于改善系统性能。与常规PID算法比较,上述两种方法都具有良好的控制效果,调整时间缩短了约50%,稳态精度提高约60%,这些方法的应用有效提高了位置控制系统的快速性、准确性和鲁棒性;
     5.以XX-CCD相机为实验平台开展了各项实验,包括扰动观测器有效性检验实验、摩擦前馈控制验证实验、像移速度补偿控制实验、位置控制实验、实验室动态成像和飞行试验等。采用仿真实验对扰动观测器效果进行了验证实验,通过合理设置名义模型和低通滤波器,可对力矩干扰进行比较有效地抑制。开展摩擦前馈控制实验,验证了摩擦前馈控制在低速像移补偿环节的摩擦扰动抑制作用。像移补偿像移速度补偿控制实验采用常规非主动加扰实验和主动加扰实验,验证像移速度补偿控制算法有效性及抗干扰能力。位置控制实验分别采用固定参数PID控制方法、Anti-windup变结构自适应PID位置控制方法、基于模糊自适应修正和遗传算法整定的PID位置控制方法进行定位控制实验,分别从最大超调量、上升时间、调整时间和稳态误差方面进行对比分析。开展了实验室动态成像实验,在实验室模拟速高比分别为0.00691/s、0.01231/s和0.0231/s的条件进行了动态成像实验,动态成像分辨率均达到51lp/mm,优于实验室动态成像指标45lp/mm的要求。
     6.通过飞行试验相机获得了充足有效的飞行图像样本,相机达到飞行试验各项指标要求,图像对比度适中、影纹层次丰富、能清晰分辨铁路枕木、公路标线、车型、球场标线等细节,充分验证了位角控制系统性能。
     本论文研究工作表明,论文提出的研究方法有效地解决了该相机位角反射镜在快速、高精度定位模式下的Anti-Windup问题及低速、高精度像移补偿环节干扰抑制等技术问题,对于提高该相机成像质量、位置定位精度及缩短相机拍照周期具有重要的研究意义。
As one of the main loads of aerial reconnaissance, aerial camera has the advantagesof flexibility, high efficiency and so on. This thesis is one of the research elements ofthe XX-CCD camera research project. This thesis researches and solves thedisturbance suppression problem in image motion compensation control moderequiring low speed and high-precision and the Anti-Windup problem of the cameraposition-angle mirror in position control mode requiring fast speed. The main workhad important significance in improving the resolving power, lengthways positionprecision and shortening camera work cycle.
     Around the performance index technical difficulties of the XX-CCD cameraposition angle control system, the main work and contributions are given as followsin this thesis.
     1. This thesis discussed the research background, topics sources and researchsignificance. The domestic and foreign research actuality in fields of some relativeresearch involved aerial camera, servo control systems, disturbance observer andsuppression technology. Moreover, the research status of the disturbance observerand suppression technology of control systems was focused on.
     2. Introduction on system configuration, work mode, index analysis and criticalcomponent parameters were given. A number of factors, affecting position-angle control system performance index, such as friction disturbance, torque fluctuations,sensor performance and carrier aircraft conditions, were analyzed. Mathematicalmodeling for elements of position-angle control systems were completed by usingtheoretical mechanism modeling method. Through the frequency characteristicstesting experiment on the open loop system and combining with the previous typicalmathematical model, the mathematical model of generalized open loop system wasobtained after the model was simplified processed.
     3. Friction disturbance compensation method based on the friction feedforwardwas studied. In order to achieve friction disturbance compensation, a simplifiedmathematical model of systems was implemented. A friction model parametersidentification approach based on the binary-coded genetic algorithm was provided.According to balance principle in the system torque combiner, the parameterequivalence relation between the friction feedforward compensation channelregulator and the identification friction model was established. Aiming at externaltorque disturbance, the disturbance observer based on a combination of normalmodel inverse and low-pass filter was adopted. If the observation was inputted intocontrol terminal, the compensation of external torque disturbance could be achieved.Image motion compensation control based on disturbance observer and adaptivesliding mode control using improved discrete exponential reaching law was designed.Finally, compound control method based on the disturbance observer feedback andfriction model feedforward was proposed. This compound control method caneffectively restrain disturbances and make forward image motion residuals reducedabout two-thirds.
     4."Windup" phenomenon of the position angle position control system caused bythe saturation nonlinearities was analyzed. The two ideas and methods of theAnti-Windup were proposed as follows. From the view point of compensationmeasures for occurred windup, primary and secondary dual loop cascade PIDposition control based on Anti-Windup variable structure was proposed. AdaptivePID control based on Anti-Windup variable structure was used in secondary speedloop. The PID with adaptive slight adjustments of Windup integral coefficient was used in the primary position loop. To overcome the lagging shortcomings ofcompensation measures for Anti-Windup, the variable integral PID as the integralAnti-Windup measures in the position control loop. From the view point ofpreventive measures for windup, position control scheme based on PID with fuzzyadaptive correction and optimized and tuned basic parameters by genetic algorithmwas proposed. Position control scheme still used primary and secondary loopcascade control. Position outer loop is the primary loop and speed inner loop issecondary loop. Position outer loop adopted the method based on fuzzy adaptivecorrection and optimized and tuned basic parameters by genetic algorithm. Thegenetic algorithm minimum objective function had overshoot punishment. Thesebasic parameters of PID were fuzzy corrected within the neighborhood of basicparameters by fuzzy control. Fuzzy control used2D fuzzy PID control scheme withthe nonlinear quantification and center dense membership function. Under thepremise of accelerating error elimination of the system dynamic response as much aspossible, this method helped to improve the system performance. Compared withconventional PID algorithm, these two methods proposed in this thesis have goodcontrol effect, the settling time reduced by about50%and steady-state accuracyincreased by about60%. The application of these methods effectively improve therapidity,accuracy and robustness of position control systems.
     5. On the XX-CCD camera experimental platform, various experiments includingdisturbance observer validation experiment, friction feedforward control validationexperiment, image motion speed compensation control experiment, position controlexperiment, laboratory dynamic imaging experiments and flight test experimentwere carried out. The effectiveness of disturbance observer was verified by usingsimulation experiment. The experimental results showed that disturbance observercan be more effectively to torque interference suppression by reasonable setting thenominal model and low pass filter. Friction feedforward control experiment wasconducted. The friction disturbance suppression from the friction feedforwardcontrol was verified in the low speed image motion compensation. Image motioncompensation experiment including the routine experiment without taking the initiative disturbance and the experiment with active disturbance verified the validityand capacity of resisting disturbance of image motion compensation control. Threemethod including fixed parameter PID control scheme, Anti-windup variablestructure adaptive PID position control method and PID control method based onfuzzy adaptive correction and genetic algorithm was used to do position controlexperiments respectively. From the maximum overshoot error, rise time, settlingtime and steady-state error,the performance of three methods were analyzed andcompared. Laboratory dynamic imaging experiment was done under the conditionsof flight speed-high ratio parameter respectively equal to0.00691/s,0.01231/s and0.02301/s. Dynamic imaging resolution reach up to51lp/mm superior to therequirements of laboratory dynamic imaging performance index (45lp/mm).
     6. Through flight test, camera obtained the effective enough flight image samplesand met all the requirements of flight test performance index. Image has anappropriate contrast, detailed shadow, rich graduation and clearly distinguisheddetails of railway sleepers, road markings, vehicle type, lines of stadiums and so on.The performance of position-angle control systems was fully verified.
     The main work and contributions in this thesis show that this research methodseffectively solved the camera position-angle mirror Anti-Windup problem in theposition control mode requiring fast speed and high-precision and disturbancesuppression problems in the image motion compensation control mode requiring lowspeed and high-precision. The main work had important significance in improvingthe camera imaging quality, the precision of position control and shortening theimaging cycle of camera.
引文
[1]王保存.准确把握国防信息化建设的基本点[J].中国信息界,2006,6:45-49.
    [2]肖姝.航空相机的像移补偿[D]:[硕士学位论文].长春:长春理工大学,2008.
    [3]黄文彬,高连义,王杰刚.航空摄影的走向与变化[J],西北测绘信息,2000,(1):6-8.
    [4]程晓薇,车英,薛常喜.CCD数字航空相机高分辨力成像关键技术与发展[J].光电与控制,2009,4:7-10.
    [5]刘明,修吉宏,刘钢,等.国外航空侦察相机的发展[J].光电与控制,2004,11(1):56-59.
    [6]许永森,田海英,惠守文,等.国外传输型航空相机的发展现状与展望航空侦察相机的发展分析[J].光机电信息,2010,27(12):38-43.
    [7] Farrier,Michael G,Kamasz,et al1. Megapixel image sensors with forwardmotion compensation for aerial reconnaissance applications[J].SPIE,1993,2023:80-92.
    [8] Iyengar, Mrinal1; Lange, Davis.The Goodrich3rd generation DB-110system:Operational on tactical and unmanned aircraft[J]. Proceedings of SPIE-TheInternational Society for Optical Engineering,Volume:6209
    [9] Lange, Davis; Iyengar, Mrinal; Maver, Larry. The goodrich3rd generationDB-110system: Successful flight test on the F-16aircraft[J]. Proceedings ofSPIE-The International Society for Optical Engineering, Volume:6546.
    [10] Lareau, Andre G.1; Partynski, Andrew. The International Society for OpticalEngineering Dual band framing cameras: Technology and status[C]. AirborneReconnaissance XXIV, August1,2000, Proceedings of SPIE-The InternationalSociety for Optical Engineering, v4127:148-156,2000
    [11]全球鹰无人机-武器库-中国战略网-《网络(http://arsenal.china)》[EB/OL].http://arsenal.chinaiiss.com/html/20075/10/a2f.html,2013-01-11.
    [12]卡拉什尼科夫军事沙龙《网络美军RQ-4A“全球鹰”无人机》[EB/OL].http://blog.sina.com.cn/s/blog_5031cd7e0100ca6h.html,2013-01-11
    [13]仲崇亮,丁亚林,付金宝.神经网络预测控制的航空相机前向像移补偿方法研究[J].兵工学报,2012,33(6):130-135.
    [14]黄浦,修吉宏,李军,等.航空相机镜筒位置控制的扰动估计与补偿[J].光学精密工程,2012,20(4):803-810.
    [15]黄浦,葛文奇,李友一,等.航空相机前向像移补偿的线性自抗扰控制[J].光学精密工程,2011,19(4):812-819.
    [16]张雪菲,匡海鹏,刘志明,等.模糊PID控制器在航空可见红外相机[J].红外,2009,30(4):1-4.
    [17]刘岩,李友一,陈占军,等.基于商空间理论的模糊控制在航空相机中的应用[J].南京航空航天大学学报,2006,38(1):88-90.
    [18]刘岩,李友一,陈占军,等.型参考自适应滑模控制方法在前向像移补偿中的应用[J].光学精密工程,2007,15(6):983-987.
    [19] B. Francis, B.Wonham. The internal model principle of control theory[J].Automatica1,1976,2(5):457-465.
    [20]李胜泉,杨征山,孙健国.基于内模原理的涡轴发动机状态反馈控制方法[J].航空动力学报,2007,22(5);829-832.
    [21]王晓兰,吴东佶.基于内模原理的双馈发电机功率解耦控制[J].电气自动化,2008,30(2):6-8.
    [22]潘登,郑应平.基于模型参考和内模原理的线性系统鲁棒控制设计[J].控制理论与应用,2007,24(4):651-656.
    [23] Davison, E.J.: The robust control of a servomechanism problem for lineartime-invariant multivariable systems. IEEE Transactions on Automatic Control21,25–34(1976)
    [24] Davison, E.J., Goldenberg, A.: Robust control of a general servomechanismproblem: The servo-compensator. Automatica11,461–471(1975).
    [25] Johnson, C.D.: Accommodation of external disturbances in linear regulator andservomechanism problems. IEEE Transactions on Automatic Control16,635-644(1971).
    [26] VanBrussel H, Braembussche PV (1998) Robust control of feed drives withlinear motors.CIRP Ann47(1):325-328
    [27] Elfizy AT, Bone G M, Elbestawi M A (2004) Model-based controller designfor machine tool direct drives. Int J Mach Tools Manuf44(5):465-477
    [28] Tan KK, Huang SN, Lee TH (2002) Robust adaptive numericalcompensation forfriction and force ripple in permanent-magnet linear motors. IEEE Trans Magn38(1):221-228.
    [29] Otten G, Veries T, Amerongen J, Rankers A, Gaal E (1997) Linear motor motioncontrol using a learning feedback controller. IEEE/ASME Trans Mechatron2(3):179-187.
    [30] Lin FL, Lin CH, Hong CM (2000) Robust control of linear synchronous motorservodrive using disturbance observer and recurrent neural network compensator.IEE Proc Electr Power Appl147(4):263-272.
    [31] Tan KK, Lee TH, Dou HF, Chin SJ, Zhao S (2003) Precision motion control withdisturbance observer for pulse-width-modu-lated-driven permanent magnetlinear motors. IEEE Trans Magn39(3):1813-1818.
    [32] Su WT, Liaw CM (2006) Adaptive positioning control for a LPMSM drive basedon adapti ve inv erse mode l and robust disturbance observer. IEEE Trans PowerElectron21(2):505-517
    [33] Mu-Tian Yan, Kuo-Yi Huang,Yau-Jung, et al.. Disturbance observer and adaptivecontroller design for a linear-motor-driven table system[J]. Int J Adv ManufTechnol (2007)35:408-415.
    [34]张雪菲,丁亚林,匡海鹏,等.状态观测器在航空相机中的应用[J].激光与红外,2012,42(9):1016-1020.
    [35] Hippe, P.: The design of observer-based controllers in view of a reducedsensitiv-ity to errors in its realization parameters (in German). Ph.D. Thesis,Universit t Erlangen-Nürnberg (1976)
    [36] O’Reilly, J.: Observers for Linear Systems. Academic Press, London (1983).
    [37] Kailath, T.: Linear Systems. Prentice Hall, Englewood Cliffs, NJ (1980).
    [38] C.J.Kempf,S.Kobayashi.Disturbance Observer and Feedforward Design forHigh-Speed Direct-Drive Positioning Table.IEEE Transactions on ControlSystems Technology,1999,7:513-526.
    [39]刘金琨.先进PID控制MATLAB仿真[M].第三版.北京:电子工业出版社.
    [40] Brian Armstrong,Bimal Amin.PID control in the presence of static friction:acomparison of algebraic and describing function analysis[J]. Automatica,1996,32(5):679-692.
    [41]刘强,尔联洁,刘金琨.摩擦非线性环节的特性、建模与控制补偿综述[J].系统工程与电子技术,2002,24(11):45-52.
    [42]袭著燕,路长厚,潘伟.带有摩擦前馈补偿的伺服控制器设计的研究[J].组合机床与自动化加工技术,2006,12:33-37.
    [43]李声晋,芦刚,刘卫国,等.宽调速直流伺服电机低速力矩波动的计算[J].西北工业大学学报,1993,11(2):204-210.
    [44]宋新波,姚晓先,林玉光.力矩马达静特性研究[J].战术导弹控制技术,2004,1:39-42.
    [45]徐月同,傅建中,陈子辰.永磁直线同步电机推力波动优化及实验研究[J].中国电机工程学报,2005,25(12):122-126.
    [46]张文海,李家会,徐丽.永磁直流力矩电机力矩波动的实验分析[J].微电机,2004,37(6):64-66.
    [47]刘丰文,邓文和.25位绝对式编码器[J].光电工程,2000,27(6):66-68.
    [48]吴凡,刘恩海,方玉廷. GBJ280高精度绝对式光电轴角编码器[J].光电工程,2000,27(6):62-65.
    [49] Ronald H.B, Susan C.S, Michael G.M. Analysis of algorithms for velocityestimation formdiscrete position versus time data[J]. IEEE Transactions onIndustrial Electronics,1992,39(1):11-19.
    [50] Paul S.C, Ronald H.B, James A.Heinen, et al.. On algorithms for velocityestimation using discrete position encoders[J]. Proceeding of the1995IEEEIndustrial Electronics, Control and Instrumentation21st InternationalConference,1995,2:844-849.
    [51] Tjahjowidodo, T., Al Bender, F., Van Brussel, H., Symens, W.: FrictionCharacterization and Compensation In Electro-Mechanical Systems.J. of Soundand Vibration308(3-5),632–646(2007).
    [52] Armstrong-Hélouvry, B.P., Dupont, Canudas de Wit, C.: A Survey of Models,Analysis Tools,and Compensation Methods for the Control of Machine withFrictions. Automatica30(7),1083-1138(1994).
    [53] E.D.Tung, G.Anwar, M.Tomizuka.Low-Velocity Friction Compensation andFeedforward Solution Based on Repetitive Control[J]. Dynamics SystemMeasurement and Control.1993,115,279-284(1993).
    [54] WIT C C,OLSSON H,ASTROM K J.A new model for control of systems withfriction[J]. IEEE Transactions On Automatic Control,1995,40(3):419-42
    [55]克晶,苏宝库,曾鸣.一种直流力矩电机系统的自适应摩擦补偿方法.哈尔滨工业大学学报,2003,35(5):536-540.
    [56]翟林培,刘明,修吉宏.考虑飞机姿态角时倾斜航空相机像移速度计算[J].光学精密工程,2006,14(3):490-494.
    [57]刘明,匡海鹏,吴宏圣,等.像移补偿技术综述[J].光电与控制,2004,11(4):46-49.
    [58]闫得杰,徐抒岩,韩诚山.飞行器姿态对空间相机像移补偿的影响[J].光学精密工程,2008,16(11):2199—2203.
    [59]仲崇亮,丁亚林,付金宝.神经网络预测控制的航空相机前向像移补偿方法研究[J].兵工学报.2012,33(6):130-135.
    [60]韩京清著.自抗扰控制技术——估计补偿不确定因素的控制技术[M].北京:国防工业出版社.
    [61]韩京清.自抗扰控制器及其应用[J].控制与决策,1998,l3(1):19-23.
    [62] ATSUO K, HIROSHI I, KIYOSHI S. Chattering reduction of disturbanceobserver based sliding mode control[J]. IEEE Transactions on IndustryApplications.1994,30(2):456-461
    [63]王新华,陈增强,袁著祉.基于扩张观测器的非线性不确定系统输出跟踪[J].控制与决策.2004,19(10):1113-1116.
    [64] KHALIL H K. Nonlinear System[M].3th edition, Prentice Hall, Upper SaddleRiver, New Jersey,2002
    [65]徐向波,房建成.基于角加速度的陀螺框架伺服系统干扰观测器[J].北京航空航天大学学报.2009,35(6):669-672.
    [66] C.J.Kempf,S.Kobayashi. Disturbance Observer and Feedforward Design forHigh-Speed Direct-Drive Positioning Table.IEEE Transactions on ControlSystems Technology,1999,7:513-526.
    [67]刘金琨.先进PID控制MATLAB仿真[M].第三版.北京:电子工业出版社.
    [68] Armstrong B,Dupont P,Canudas de Wit C.Survey of models,analysis tools andcompensation methods for the control machines with friction[J].Automatica,1994,30(7):l083-1113
    [69]肖斌安,龚烈航,张沙.某飞行模拟转台伺服系统的摩擦模型仿真研究[J].润滑与密封,2009,34(3):76-77.
    [70]叶军.伺服系统在摩擦条件下的模拟复合正交神经网络控制[J].中国电机工程学报,2005,25(17):127-130.
    [71]刘红,高伟.伺服系统的前馈摩擦力补偿研究[J].科学技术与工程,2007,7(4):1671-1815.
    [72]陈国良,王煦法,庄镇泉,等编著.遗传算法及其应用[M].北京:人民邮电出版社,1996.
    [73]梁青,张剑,王永.基于遗传算法的伺服系统摩擦模型参数辨识[J].仪表技术,2011,6:34-36
    [74]黄浦,葛文奇,李友一等.航空相机前向像移补偿的线性自抗扰控制[J].光学精密工程,2011,19(4):812-819.
    [75] TESFAYE A,LEE H S,TOMIZUKA M.A sensitivity optimiza-tion app—roachto design of a disturbance observer in digital motion control systems[J].IEEETransactions on Mechatronics,2000,5(1):32-38.
    [76] PANDA S P,ENGELMANN A P.Minimization of tape transient disturbances intrack following tape drives with a disturbance observer[J].Microsystem,2003,10(1):11-l6.
    [77] BERTOLUZZO M,BUJA G S,STAMPACCHIA E.Performance analysis of ahigh-band width torque disturbance compensator[J]. IEEE ASME Transactionson Mechatronics,2004,9(4):653-660.
    [78] LEE K B,BALAABJERG F.Robust and stable disturbance ob-server of servosystem for low speed operation using the radial basis function network[C]//IEEE Industry Applications Society Annual Meeting,October2-6,2005,HongKong,China.2005:l705-1710.
    [79] Schrijver E,Van D J.Disturbance observers for rigid mechanical systems:equivalence stability,and design[J].J.of Dynamic Systems,Measurement,andControl,2002,124:539-543
    [80] LEE H S.Robust Digital Tracking Controllersfor High-Speed/High-AccuracyPositioning systems [D].California:University of California Berkeley,1994.
    [81]翟长连,吴智铭.不确定离散时间系统的变结构控制设计[J].自动化学报,2000,26(2):184-191
    [82] J.H. Ahrens,H.K.Khalil.High-gain observers in the presence of meansurementnoise: A switch-gain approach,Automatica,2009,45:936-943
    [83]杨明,徐殿国,贵献国.控制系统Anti-Windup设计综述[J].电机与控制学报.2006,10(6):622-626.
    [84] CAMPO P J, MORAR I M. Robust control of processes subject to saturationnonlinearities[J]. Computers and Chemical Engineering,1990,14(4):343-358.
    [85] ZHANG G H, QIAN F, SHAO H H.Anti-windup scheme for the controller ofintegrating process with dead-time[J].Journal of Donghua University:EnglishEdition,2006,23(3):79-83.
    [86] HODEL A S,HALL C E. Variable-structure PID Control to prevent integratorwindup[J].IEEE Transactions on Industrial Electronics.2001,48(2):442-451
    [87]傅信,主编.过程计算机控制系统[M].西安:西北工业大学出版社,1995.
    [88] Astrom K J,Hagglund T. PID Controllers:Theory,Design and Tuning,2nd Edition.Research Triangle Park.North Carolina:Instrument Society of America,1995
    [89] Ziegler J G, Nichols N B.Optimum settings for automatic cotrollers. Transcationof ASME,1942,64:759-768
    [90]王广雄,何朕著.控制系统设计[M].北京:清华大学出版社,2008
    [91] J. Chen,T.C. Huang.Applying neural networks to on-line updated PID controllersfor nonlinear process control. Journal of Process Control,2004,14(2):211-230,2004
    [92] T.H.Kim, I.Maruta, T.Sugie. Robust PID controller tuning based on the constrain-ed particle swarm optimization[J]. Automatica,2008,44(4):1104-1110
    [93] F.Zheng, Q.G.Wang,T.H.Lee. On the Design of the multivariable PID controllersvia LMI approach[J]. Automatica,2002,38(3):517-526
    [94] T.K. Teng,J.S. Shieh,C.S.Chen.Genetic algrorithms applied in online autotuningPID parameters of a liquid-level control system.Transactions of the Institute ofMeasurement and Control,2003,25(5):433-450.
    [95] K.S Tang,K.F.Man,G. Chen,S.K.Wang.An optimal Fuzzy PID Controller.IEEETransactions on Industrial Electronics,2001,48(4):757-765.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700