用户名: 密码: 验证码:
高超声速进气道起动特性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以超声速燃烧冲压发动机为动力的吸气式高超声速飞行器为高速洲际旅行以及从大气层向外层空间运输物资提供了一种可行的廉价方案。国际上吸气式高超声速飞行器的研究已经进入到实质性试飞验证阶段。在不远的将来,超燃冲压发动机技术可望率先在高超声速巡航导弹上获得成功应用,对国防建设产生重要影响。进气道是超燃冲压发动机首当其冲的气动部件,发动机稳定、高效的工作以进气道起动为前提。由于高超声速进气道流动的复杂性,目前还没有较好的理论对进气道起动性能进行准确的全面预报。国际上已经开展的许多飞行试验也因不同程度的遭遇到进气道不起动而未能完全达到试验目标。进气道起动能力的预报方法、实验检测方法以及进气道不起动、自起动、起动/起动迟滞、激波振荡等现象是目前研究的热点和难点。开展高超声速进气道起动/起动以及激波振荡特性研究,对十预报进气道不起动、揭示进气道激波振荡机理、探索控制进气道不起动以及激波振荡的有效方法,达到优化进气道设计、提高进气道性能、拓宽进气道稳定工作范围的目的,具有重要意义。本文以脉冲型设备激波风洞为实验平台,发展了高超声速进气道多种流动特征的快速实验检测方法,对进气道起动/起动以及激波振荡等流动现象进行观测,并结合适当的数值模拟,分析了流动的内在机理。
     本文首先考察了激波风洞流场的非定常建立过程。为了保证激波风洞喷管的迅速起动,真空罐的初始压强通常很低,风洞流场建立过程中存在非定常高马赫数气流占主导的现象。然后开展了激波风洞与进气道流场建立过程相耦合的研究,考察了真空罐初始压强变化对风洞喷管起动波系以及进气道起动过程的影响,为进一步拓展激波风洞的研究范围,提供了依据。通过对喷管起动过程非定常波系结构的完整描述,弥补了以往进气道脉冲起动研究中使用简化波系的不足,指出风洞流场建立过程的非定常高马赫数气流对进气道起动过程有辅助作用。真空罐的初始压强越低,风洞流场建立越快,这种辅助作用越明显,也是进气道起动的直接原因。
     在充分认识激波风洞运行特征的基础上,对激波风洞辅助进气道起动的效应加以利用和抑制,可以为进气道流动研究快速地提供丰富多彩的实验数据。本文在不影响激波风洞喷管迅速起动的前提下,发展了一种在进气道内预先设置轻质堵块的方法,抑制激波风洞运行初期辅助进气道起动的效应。该方法能够迫使进气道在风洞运行初期出现不起动,待轻质堵块被吹出后,流道恢复畅通,进而考察进气道是否具有自起动能力。采用高速纹影拍摄同步壁面压强测量的手段,对二元高超声速进气道的起动特性进行了研究。通过实验结果与数值模拟以及进气道起动能力经验关系式的对比分析,考核了所发展的进气道自起动能力检测方法的可靠性。在激波风洞中进一步研究了内收缩比变化对进气道起动特性的影响。对于较大内收缩比的进气道,利用激波风洞辅助进气道起动的效应,进气道能够起动并维持在起动状态;而在预先设置轻质堵块之后,在相同的来流条件下,同一构型的进气道在轻质堵块被吹出后,进气道最终流态是不起动的。这一特点表明,在激波风洞中开展进气道起动/起动双解区实验,不需要额外的变几何机构辅助,具有一定的潜力和优势。在尖前缘进气道前缘安装钝化部件后,对钝前缘进气道的实验表明,前缘钝化后进气道的起动能力下降,其中外压缩面前缘钝化对进气道自起动能力的影响较大。外压缩面前缘钝化后,外压缩面上的边界层厚度增加,进气道内收缩段入口截面的流场畸变程度增大、平均马赫数下降,这些因素不利于进气道起动。
     进一步拓展激波风洞的潜力,延长试验时间,本文开展了进气道激波振荡研究。通过在隔离段出口事先设置固定的堵塞节流楔块模拟反压升高,观测了二元高超声速进气道在不同堵塞度下的流动特征。结果表明,在小堵塞度下,进气道能够“忍受”节流导致的反压并保持起动状态。堵塞度超过临界值,进气道不起动并出现激波振荡现象。在激波振荡过程中,隔离段后部形成向上游传播的激波,并最终导致进气道不起动。逆流而上的激波的成因与此前流道上游产生的压缩波/波在节流段的反射相关。随着隔离段出口堵塞度的增大,激波振荡的频率有所升高,主要是由于逆流而上的激波的平均速度增大。保持内流道的长度基本不变,改变进气道的内收缩比,对不同构型进气道进行的实验表明,激波振荡的流态和频率特性与进气道的几何构型相关。小内收缩比大喉道的进气道在激波振荡过程中,分离激波能够进入隔离段,振荡频率相对较高。大内收缩比小喉道的进气道(不能自起动)在激波振荡过程中,分离激波始终位于外压缩面上,唇口上方存在溢流,振荡幅度较低而振荡频率较高。
     本文的研究表明,通过采取适当的实验方法,可以进一步发挥激波风洞运行方式灵活、建造和运行费用较为低廉的特点,为高超声速进气道研究提供一种灵活快捷的途径。
The scramjet engine powered air breathing hypersonic vehicle enable a low-cost way for both high-speed air travel and space access. The status of related researches is now approaching to a phase of flight tests. The scramjet technologies may firstly achieve a success in hypersonic missile application, and make changes in defense sys-tem in the future. The hypersonic inlet is an important and first-step component of the scramjet engine. For efficient operation, the scramjet engine requires the inlet to operate in a starting mode. However, the capability to accurately predict the inlet start-ing characteristic is still lacking, due to the complexity of inlet flows. In some hy-personic air breathing propulsion flight tasks, the test vehicles encountered inlet un-starting and the flight ended prematurely. The prediction and test method of hyper-sonic inlet starting characteristic, such as starting, self-starting, hysteresis in starting, and shock wave oscillations, are still hot and difficult issues. The understanding in hypersonic inlet starting/un-starting and shock wave oscillations are important for the prediction/detection and suppression of inlet un-starting and shock wave oscillations, the improvement of inlet design and performance, and extension of inlet stable oper-ation range. Therefore, additional thorough and detailed wind tunnel experiments are necessary. In the present study, a simple way to test various behaviors of hypersonic inlets was developed in a shock tunnel (pulse facility). Then, the flow patterns of inlet starting/un-starting and shock wave oscillations were observed and discussed with the combination of CFD.
     The flow establishment in a shock tunnel was examined at first. To shorten the starting process of the tunnel nozzle, a very low initial pressure is usually used in the dump tank, which results in an unsteady flow with a high Mach number dominating the nozzle starting process. The coupling of a shock tunnel starting process and an inlet starting process were studied, to cover the shortage of some earlier investigations in literature. The effects of initial pressure in the dump tank are shown. It appears that the high Mach number unsteady flow has a capability of aiding the inlet to start. It is also found that the lower the initial pressure is, the faster the nozzle starting process is resulted, and the stronger the aid-starting capability is achieved.
     Based on the previous coupling study, a new test method was developed to suppress the aid-starting capability of the shock tunnel without affecting much of the test time. It adopts a light obstacle as a flow plug, that can be rapidly blown out of the inlet, to choke the inlet flow for un-starting at the initial stage of the shock tunnel operation. Simultaneous high speed Schlieren imaging and surface pressure measurements were applied to determine whether the inlet could be restarted after the obstacle action. The initiation of un-start and restart process were observed. A generic hypersonic inlet that was able to self-start was archived in the shock tunnel. With the help of the newly developed test method, the flow characteristics in starting/un-starting, known as dual-solution area, were also observed in an inlet with a large internal concentration ratio. The internal contraction ratio limits for inlets self-starting and un-starting were obtained and compared with the literature. The effects of leading edge bluntness on the inlet starting characteristic were also examined. It appears that the leading edge bluntness play a quite important role in the inlet starting process.
     The usable test time of the shock tunnel was extended, and a wedge shaped flow plug was pre-mounted near the isolator exit. A set of two-dimensional hypersonic inlets with different internal contraction ratios was tested with various exit throttling ratios. The results indicate that the backpressure generated by the throttling device can be toler-ated and the inlet can maintain the starting mode at low throttling ratios, whereas un-start flows are initiated from the near-choke throttling ratios and a shock wave oscillation ap-pears. The Schlieren movie demonstrates that the upstream-propagating shocks in the duct play important roles during the oscillation cycles and that the formations of the upstream-propagating shocks are related to the downstream-propagating compression waves/shock waves that encounter the throttling section. The frequency of shock wave oscillation increases with increasing exit throttling ratios, primarily because of the ac-celeration of the upstream propagation. The critical throttling ratio at which the shock wave oscillations occur varies with the inlet internal concentration ratios, and the shock wave oscillation flow patterns and frequencies also relate to the inlet configurations.
     Based on these experiments, shock tunnels with sufficiently long running times can be a useful tool to investigate various flow characteristics in hypersonic inlets.
引文
[1]William H. Heiser, David T. Pratt, Daniel H. Daley, and Unmeel B. Mehta. Hypersonic Airbreathing Propul-sion. AIAA Education Series. Washington, DC:AIAA,1994.
    [2]Laurent Serre and Sabastien Defoort. LAPCAT II:towards a Mach 8 civil aircraft concept, using advanced Rocket/Dual-mode ramjet propulsion system. In 16th AIAA/DLR/DGLR International Space Planes and Hy-personic Systems and Technologies Conference. AIAA 2009-7328,2009.
    [3]Johan Steelant. Sustained Hypersonic Flight in Europe:First Technology Achievements for LAPCAT IT. In 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. AIAA 2011-2243,2011.
    [4]战培国.美国高超声速天地运输系统新概念.航空科学技术,(1):10-12,2012.
    [5]Ajay Kothari, John Livingston, Christopher Tarpley, Venkatraman Raghavan, Kevin Bowcutt, and Thomas Smith. Rocket Based Combined Cycle Hypersonic Vehicle Design for Orbital Access. In 17th AIAA Interna-tional Space Planes and Hypersonic Systems and Technologies Conference. AIAA 2011-2338,2011.
    [6]魏子淋,刘治德,徐向东.美军临近空间快速全球打击武器现状与发展.飞航导弹,(2):7-11,2012.
    [7]蔡国飙,徐大军.高超声速飞行器技术.北京:科学出版社,2012.
    [8]李建林.临近空间高超声速飞行器发展研究.北京:中国宇航出版社,2012.
    [9]洪延姬.临近空间飞行器技术.北京:国防工业出版社,2012.
    [10]沈海军,程凯,杨莉.近空间飞行器.中航出版传媒有限责任公司,2012.
    [11]NASA Hyper-X Program Demonstrates Scramjet Technologies X-43A Flight Makes Aviation History. NASA Facts FS-2004-10-98-LaRC. http://www.nasa.gov/missions/research/x43-main.html,2004.
    [12]Laurie Marshall, Griffin Corpening, and Robert Sherrill. A Chief Engineer's View of the NASA X-43A Scram-jet Flight Test. In AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. AIAA 2005-3332,2005.
    13] Catherine Bahm, Ethan Baumann, John Martin, David Bose, Roger Beck, and Brian Strovers. The X-43 A Hyper-X Mach 7 Flight 2 Guidance, Navigation, and Control Overview and Flight Test Results. In AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. AIAA 2005-3275, 2005.
    14]郑耀,徐徐译,(美)柯蒂斯.皮布尔斯(Curtis Peebles)著.通向马赫数10之路:X-43A飞行研究计划的经验教训.高超声速技术译丛.中航出版传媒有限责任公司.2012.
    15] X-51 Waverider makes historic hypersonic flight. Edwards Air Force Base, Calif. http://www.wpafb.af.mil/news/story.asp?id=123206524,2010.
    16] Richard Mutzman and Scott Murphy. X-51 Development:A (?) International Space Planes and Hypersonic Systems and Technologies Conference,2011.
    17] U.S. Air Force Fact Sheet X-51A Waverider. The Official Web site of the United States Air Force. http://www.af.mil/information/factsheets/factsheet.asp?id=17986,2011.
    [18]Joseph M. Hank, James S. Murphy, and Richard C. Mutzman. The X-51A Scramjet Engine Flight Demonstra-tion Program. In 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. AIAA 2008-2540,2008.
    [19]HIFiRE scramjet research flight will advance hypersonic technology. Wright-Patterson Air Force Base, Ohio. http://www.wpafb.af.mil/news/story.asp?id=123301289,2012.
    [20]Jackson Kevin, Gruber Mark, and Buccellato Salvatore. HIFiRE Flight 2-A Program Overview. In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. AIAA 2013-695,2013.
    [21]Yentsch Robert and Gaitonde Datta. Numerical Investigation of the HIFiRE-2 Scramjet Flowpath. In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. AIAA 2013-119,2013.
    [22]Daryl Mayer. X-51 A Waverider achieves history in final flight. Wright-Patterson Air Force Base-AFRL. http://www.wpafb.af.mil/news/story.asp?id=123346970,2013.
    [23]R. T. Voland, A. H. Auslender, M. K. Smart, A. S. Roudakov, V. L. Semenov, and V. I. Kopchenov. CIAM/NASA Mach 6.5 scramjet flight and ground test. In 9th AIAA International Space Planes and Hy-personic Systems and Technologies Conference. AIAA 1999-4848,1999.
    [24]C. G. Rodriguez. Computational fluid dynamics analysis of the Central Institute of Aviation Motors/NASA scramjet. Journal of Propulsion and Power,19(4):547-555,2003.
    [25]L. D. Huebner, K. E. Rock, E. G. Ruf, D. W. Witte, and E. H. Andrews. Hyper-X flight engine ground testing for flight risk reduction. Journal of Spacecraft and Rockets,38(6):844-852,2001.
    [26]Steven Walker and Frederick Rodgers. The Hypersonic Collaborative Australia/United States Experiment (HyCAUSE). In AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. AIAA 2005-3254,2005.
    [27]Steven Walker, Frederick Rodgers, Alan Paull, and D. M. Van Wie. HyCAUSE Flight Test Program. In 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. AIAA 2008-2580, 2008.
    [28]Second hypersonic flight ends prematurely, brings new flight test data. Edwards Air Force Base, Calif. http://www.afmc.af.mil/news/story.asp?id=123260080,2011.
    [29]Dora Musielak. High-speed air-breathing propulsion. AEROSPACE AMERICA, (DECEMBER):49,2011.
    [30]白延隆,白云.X-51A飞行器飞行试验的故障分析.飞航导弹,(3):27-30+46,2012.
    [31]孟宇鹏,朱守梅,闫晓娜.出口封闭的冲压发动机进气道激波振荡现象.推进技术,32(5):606-610,2011
    [32]郭善广,柳军,金亮,罗世彬.高超飞行器内流道激波振荡问题的数值研究及试验验证.实验流体力学,26(1):7-11,2012.
    [33]Scott D. Holland. Wind-tunnel blockage and actuation systems test of a two-dimensional scramjet inlet unstart model at Mach 6. Technical Report NASA-TM-109152,1994.
    [34]D. M. Van Wie, F. T. Kwok, and R. F. Walsh. Starting characteristics of supersonic inlets. In 32nd ASME, SAE, and ASEE, Joint Propulsion Conference and Exhibit. AIAA 1996-2914,1996.
    [35]D. M. Van Wie. Scramjet inlets. In E. T. Curran and S. N. B. Murthy, editors, Scramjet Propulsion, pages 447-511. New York:AIAA,2000.
    [36]M. K. Smart. Experimental testing of a hypersonic inlet with rectangular-to-elliptical shape transition. Journal of Propulsion and Power,17(2):276-283,2001.
    [37]M. K. Smart and C. A. Trexler. Mach 4 performance of hypersonic inlet with rectangular-to-elliptical shape transition. Journal of Propulsion and Power,20(2):288-293,2004.
    [38]B. Sun and K. Y. Zhang. Empirical equation for self-starting limit of supersonic inlets. Journal of Propulsion and Power,26(4):874-875,2010.
    [39]常军涛.于达仁.鲍文.攻角引起的高超声速进气道不起动/再起动特性分析.航空动力学报,23(5):816-821,2008.
    [40]常军涛,于达仁,鲍文,曲亮.楔面转折角对高超声速进气道不起动/再起动特性的影响.固体火箭技术,32(2):135140,2009.
    [41]范轶,常军涛,鲍文.壁面温度对高超声速进气道不起动/再起动特性的影响.固体火箭技术,32(3):266-270,2009.
    [42]梁德旺,袁化成,张晓嘉.影响高超声速进气道起动能力的因素分析.宇航学报,27(4):714-719,2006.
    [43]郭斌,张堃元.攻角动态变化对侧压式进气道起动特性影响的风洞试验.航空动力学报,24(10):2221-2227,2009.
    [44]刘凯礼,张垫元.俯仰振荡引起的二元高超声速进气道不起动/再起动特性.推进技术.31(6):676680+720,2010.
    [45]A. Kantrowitz and C. D. Donaldson. Preliminary investigation of supersonic diffusers. Technical Report NACA-WR-L-713,1945.
    [46]J. J. Mahoney. Inlets for Supersonic Missiles. AIAA Education Series. Washington, DC:AIAA,1990.
    [47]Timothy O'Brien. Viscous Performance Map of a Blunt Streamline-Traced Busemann Inlet. In 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. AIAA 2011-2255,2011.
    [48]S. Molder, E. V. Timofeev, and R. B. Tahir. Flow starting in high compression hypersonic air inlets by mass spillage. In 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. AIAA 2004-4130,2004.
    [49]X. Veillard, R. Tahir, E. Timofeev, and S. Molder. Limiting contractions(?) intakes with overboard spillage. Journal of Propulsion and Power,24(5):1042-1049,2008.
    [50]E. V. Timofeev, R. B. Tahir, and S. Molder. On recent developments related to flow starting in hypersonic air intakes. In 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. AIAA 2008-2512,2008.
    [51]丁海河,王发民.高超声速进气道起动特性数值研究.宇航学报,28(6):1482-1487,2007.
    [52]李璞,郭荣伟.一种高超声速进气道起动/再起动的数值研究.航空动力学报,25(5):1049-1055,2010.
    [53]余安远,倪鸿礼,乐嘉陵.高超声速二元进气道起动性能的定常数值评估方法研究.In第十四届全国激波与激波管学术会议,volume 1, pages 124-129,2010.
    [54]游进,夏智勋,王登攀,方传波.高超声速进气道再起动特性及其影响因素数值模拟.固体火箭技术,(02):161-166,2011.
    [55]袁化成,梁德旺.高超声速进气道再起动特性分析.推进技术,27(5):390-393+398,2006.
    [56]Tao Cui, Daren Yu, Juntao Chang, and Wen Bo. Topological geometry interpretation of supersonic inlet start/unstart based on catastrophe theory. Journal of Aircraft,45(4):1464-1468,2008.
    [57]Tao Cui, Daren Yu, Juntao Chang, and Wen Bao. Catastrophe Model for Supersonic Inlet Start/Unstart. Journal of Aircraft,46(4):1160-1166,2009.
    [58]Tao Cui, Zhong Lv, and Daren Yu. Multistability and Complex Routes of Supersonic Inlet Start/Unstart. Journal of Propulsion and Power,27(6):1204-1211,2011.
    [59]Tao Cui, Xuegang He, Daren Yu, and Shunlin Tang. Multistability and Loops-Coupled Hysteresis:Flight-Test Analysis on Error Detection of Inlet Start/Unstart. Journal of Propulsion and Power,28(3):496-503,2012.
    [60]R. B. Tahir, S. Molder, and E. V. Timofeev. Unsteady Starting of High Mach Number Air Inlets A CFD Study. In 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. AIAA 2003-5191,2003.
    [61]杨大伟,余安远.二元高超声速进气道自起动性能数值研究.In第十五届全国激波与激波管学术会议,number 2, pages 493-498,2012.
    [62]余安远,杨大伟,吴杰.超燃冲压进气道激波振荡预测数值研究.In第十五届全国激波与激波管学术会议,volume 1, pages 87-93,2012.
    [63]王成鹏,程克明.高超进气道临界起动特征.航空动力学报,23(6):997-1001,2008.
    [64]Saied Emami, Carl A. Trexler, Aaron H. Auslender, and John P. Weidner. Experimental Investigation of Inlet-Combustor Isolators for a Dual-Mode Scramjet at a Mach Number of 4. Technical Report NASA TP-3502.
    [65]P. E. Rodi, S. Emami, and C. A. Trexler. Unsteady pressure behavior in a ramjet/scramjet inlet. Journal of Propulsion and Power,12(3):486-493,1996.
    [66]潘瑾,张堃元.移动唇口变收缩比侧压式进气道反压特性和自起动性能.航空动力学报,24(1):104-109,2009.
    [67]户传喜,王铁军.蒲旭阳.焦伟.超燃冲压发动机进气道再起动性能风洞试验研究.In第十四届全国激波与激波管学术会议,volume 1, pages 118-123,2010.
    [68]杨大伟,余安远,刘伟雄,张小庆.高超声速进气道自起动特性高焓风洞试验研究.In中国力学学会学术大会’2011.
    [69]孙姝,张红英,程克明,伍贻兆.喷流反压模拟技术及在高超声速进气道实验中的应用.航空动力学报,(10):1667-1672,2007.
    [70]D. R. Buttsworth and M. K. Smart. Development of a Ludwieg Tube with Free Piston Compression Heating for Scramjet Inlet Starting Experiments. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. AIAA 2010-588.2010.
    [71]R. L. Williams. Application of pulse facilities to inlet testing. Journal of Aircraft,1(5):236-241,1964.
    [72]H. L. Atkins. Numerical and analytical study of the inlet startup process in a shock tunnel environment. In 26th Aerospace Sciences Meeting. AIAA 1988-601,1988.
    [73]童秉纲,孔祥言,邓国华.气体动力学.北京:高等教育出版社,1990.
    [74]陈强.激波管流动的理论和实验技术.合肥:中国科学技术大学五系讲义,1979.
    [75]R. J. McGregor, S. Molder, and T. W. Paisley. Hypersonic Inlet Flow Starting in the Ryerson/University of Toronto Gun Tunnel. In Investigations in the Fluid Dynamics of Scramjet Inlets, pages 4.1-4.50,1992.
    [76]S. Molder, R. J. McGregor, and T. W. Paisley. Investigations in the fluid dynamics of scramjet inlets. Technical Report USAF F33615-87-C-2748.
    [77]范晓樯.高超声速进气道的设计、计算与实验研究.国防科学技术大学博士学位论文,2006.
    [78]范晓樯,贾地,冯定华,李桦.脉冲风洞中进气道起动过程试验研究.推进技术,28(1):60-64,2007.
    [79]蔡佳,苏纬仪,张堃元.高超声速二元进气道脉冲起动双波结构的理论与数值研究.In第五届全国高超声速科技学术会议CSTAM 2012-B03-0238,2012.
    [80]Weixing Wang and Rongwei Guo. Numerical study of unsteady starting characteristics of a hypersonic inlet. Chinese Journal of Aeronautics (In press),2013.
    [81]C. Edward Smith. The starting process in a hypersonic nozzle. Journal of Fluid Mechanics,24(4):625-640, 1966.
    [82]R. B. Tahir. Starting and unstarting of hypersonic air inlets. Phd, Ryerson University (Canada),2003.
    [83]李宇飞,何国强,刘佩进.一种辅助高超音速进气道起动方法研究.固体火箭技术,30(5):392-395,2007.
    [84]H. Ogawa, A. L. Grainger, and R. R. Boyce. Inlet starting of high-contraction axisymmetric scramjets. Journal of Propulsion and Power,26(6):1247-1258,2010.
    [85]A. L. Grainger, R. R. Boyce, S. C. Tirtey, H. Ogawa, G. Paniagua, and S. Paris. The unsteady flow physics of hypersonic inlet starting processes. In 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. AIAA 2012-5937,2012.
    [86]Guillermo Paniagua. Starting processes of high contraction ratio scramjet inlets. Technical Report AFRL-AFOSR-UK-TR-2011-0061,2012.
    [87]卢洪波.岳连捷,肖雅彬,陈立红,张新宇.高超声速进气道唇缘钝化流动的数值研究.In第四届高超声速科技学术会议.CSTAM 2011-2749,2011.
    [88]Weixing Wang, Lvrong Xie. and Rongwei Guo. Influence of blunting manner of the lip highlight of hyper-sonic inlet on the aerothermodynamic performance. In 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. AIAA 2011-2306,2011.
    [89]周忠平.钝化对高超声速进气道性能的影响.南京航空航天大学硕士学位论文,2007.
    [90]王金光,张垫元.前缘非对称钝化对高超进气道气动性能影响分析.In第四届高超声速科技学术会议.CSTAM 2011-2741,2011.
    [91]王金光,张堃元,李永洲,章隆泰.钝化对二元高超声速进气道阻力的影响.In中国力学学会学术大会’2011,2011.
    [92]陈雪冬,王发民.钝化前缘对高超声速进气道/前体组合特性的影响.In中国力学学会学术大会’2011,2011.
    [93]王晓栋,乐嘉陵.前缘对进气道性能影响的数值模拟.推进技术,23(6):460-462,2002.
    [94]D. A. Ault and D. M. Van Wie. Experimental and computational results for the external flowfield of a scramjet inlet. Journal of Propulsion and Power,10(4):533-539,1994.
    [95]D. M. Van Wie and D. A. Ault. Internal flowfield characteristics of a scramjet inlet at Mach 10. Journal of Propulsion and Power,12(1):158-164,1996.
    [96]Vladimir P. Starukhin and Alexander Ph. Chevagin. Appendix D:Leading-Edge Bluntness effect on Perfor-mance of Hypersonic Two-Dimensional Air Intakes. In E. T. Curran and S. N. B. Murthy, editors, Scramjet Propulsion, pages 353-367. New York:AIAA,2000.
    [97]何继宏.高超声速进气道试验研究与数值模拟.国防科学技术大学硕士学位论文,2008.
    [98]张红军,袁湘江,沈清.高超声速楔面边界层流动稳定性分析·推进技术,33(5):671-675,2012.
    .[99]王卫星,郭荣伟.基于边界层转捩的高超声速进气道特性研究.航空学报,33(10):1772-1780,2012.
    [100]H. J. Tan, L. G, Li, Y. F. Wen, and Q. F. Zhang. Experimental investigation of the unstart process of a generic hypersonic inlet. AIAA Journal,49(2):279-288,2011.
    [101]H. J. Tan, S. Sun, and H. X. Huang. Behavior of shock trains in a hypersonic inlet/isolator model with complex background waves. Experiments in Fluids,53(6):1647-1661,2012.
    [102]J. L. Wagner, K. B. Yuceil, and N. T. Clemens. Velocimetry Measurements of Unstart in an Inlet-Isolator Model in Mach 5 Flow. AIAA Journal,48(9):1875-1888,2010.
    [103]Heeseok Koo. Large-eddy simulations of scramjet engines. PhD thesis. University of Texas at Austin,2011.
    1104] H. Koo and V. Raman. Large-Eddy Simulation of a Supersonic Inlet-Isolator. AIAA Journal.50(7):1560-1574, 2012.
    1105) J. L. Wagner. Experimental studies of unstart dynamics in inlet/isolator configurations in a Mach 5 flow. PhD thesis, The University of Texas at Austin,2009.
    [106]W. R. Hawkins and E. J. Marquart. Two-dimensional generic inlet unstart detection at Mach 2.5-5.0. In 6th International Aerospace Planes and Hypersonics Technologies Conference. AIAA 1995-6019,1995.
    1107] Jeffrey M. Donbar, Graham J. Linn, Sukumar Srikant, and Maruthi R. Akella. High-frequency pressure mea-surements for unstart detection in scramjet isolators. In 46th AIAA/ASME/SAE/ASEE Joint Propulsion Con-ference & Exhibit. AIAA 2010-6557,2010.
    [108]John Hutzel and Douglas Decker. Scramjet Isolator Shock-Train Leading-Edge Location Modeling. In 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. AIAA 2011-2223, 2011.
    [109]John Hutzel, Douglas Decker, Richard Cobb, Paul King, Michael Veth, and Jeffrey Donbar. Scramjet Isolator Shock Train Location Techniques. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. AIAA 2011-402,2011.
    [110]J. Chang, B. Li, W. Bao, and D. Yu. Shock train leading-edge detection in an isolator using genetic algorithm. In Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering,2011.
    [111]Agustin Valdivia, Kemal Yuceil, Justin Wagner, Noel Clemens, and David Dolling. Active Control of Super-sonic Inlet Unstart Using Vortex Generator Jets. In 39th AIAA Fluid Dynamics Conference. AIAA 2009-4022, 2009.
    [112]S. Srikant, J. L. Wagner, A. Valdivia, M. R. Akella, and N. Clemens. Unstart Detection in a Simplified-Geometry Hypersonic Inlet-Isolator Flow. Journal of Propulsion and Power,26(5):1059-1071,2010.
    [113]D. Yu, J. T. Chang, W. Bao, and Z. X. Xie. Optimal classification criterions of hypersonic inlet start/unstart. Journal of Propulsion and Power,23(2):310-316,2007.
    [114]李留刚,谭慧俊,孙姝,张悦.二元高超声速进气道不起动状态的信号特征及预警.航空学报,31(12):2324-2331,2010.
    [115]S. Trapier, S. Deck, P. Duvcau, and P. Sagaut. Time-frequency analysis and detection of supersonic inlet buzz. AIAA Journal,45(9):2273-2284,2007.
    [116]Juntao Chang, Lei Wang, Daren Yu, and Wen Bao. Real-time Unstart Prediction and Detection of Hypersonic Inlet Based on Recursive Fourier Transform. In 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA 2012-4150,2012.
    [117]K. Oswatitsch. Pressure recovery for missiles with reaction propulsion at high supersonic speeds (the effi-ciency of shock diffusers). Technical Report NACA-TM-1140,1947.
    [118]A. Ferri and L. M. Nucci. The origin of aerodynamic instability of supersonic inlets at subcritical conditions. Technical Report NACA-RM-L50K30,1951.
    [119]C. L. Dailey. Supersonic diffuser instability. PhD thesis, California Institute of Technology,1954.
    [120]H. J. Lee, B. J. Lee, S. D. Kim, and I. S. Jeung. Flow characteristics of small-sized supersonic inlets. Journal of Propulsion and Power,27(2):306-318,2011.
    [121]P. J. Lu and L. T. Jain. Numerical investigation of inlet buzz flow. Journal of Propulsion and Power,14(1): 90-100,1998.
    [122]S. Trapier, P. Duveau, and S. Deck. Experimental study of supersonic inlet buzz. AIAA Journal,44(10): 2354-2365,2006.
    [123]S. Trapier, S. Deck, and P. Duveaut. Delayed detached-eddy simulation and analysis of supersonic inlet buzz. AIAA Journal,46(1):118-131,2008.
    [124]刘占生,张云峰,田新.冲压发动机超声速进气道流动自激振荡研究.航空动力学报,23(9):1595-1602,2008.
    [125]廉筱纯,吴虎.航空发动机原理.西北工业大学出版社,2005.
    [126]S. A. Fisher, M. C. Neale, and A. J. Brooks. On the Sub-Critical Stability of Variable Ramp Intakes at Mach Numbers Around 2. Technical Report National Gas Turbine Establishment Rept. ARC-R/M-3711,1970.
    [127]C. Hirschen, D. Herrmann, and A. Gulhan. Experimental investigations of the performance and unsteady behavior of a supersonic intake. Journal of Propulsion and Power,23(3):566-574,2007.
    [128]H. J. Tan, S. Sun, and Z. L. Yin. Oscillatory flows of rectangular hypersonic inlet unstart caused by downstream mass-flow choking. Journal of Propulsion and Power,25(1):138-147,2009.
    [129]B. U. Reinartz, C. D. Herrmann, and J. Ballmann. Aerodynamic performance analysis of a hypersonic inlet isolator using computation and experiment. Journal of Propulsion and Power,19(5):868-875,2003.
    [130]谢旅荣,郭荣伟.一种高超声速二元混压式进气道的研究.航空学报,30(12):2288-2294,2009.
    [131]J. Haberle and A. Gulhan. Experimental investigation of a two-dimensional and a three-dimensional scramjet inlet at Mach 7. Journal of Propulsion and Power,24(5):1023-1034,2008.
    [132]C. Fischer and H. Olivier. Experimental investigation of the internal flow field of a scramjet engine. In 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. AIAA 2009-7369,2009.
    [133]C. Fischer and H. Olivier. Experimental Investigation of the Shock Train in an Isolator of a Scramjet Inlet. In 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. AIAA 2011-2220,2011.
    [134]H. J. Tan and R. W, Guo. Experimental study of the unstable-unstarted condition of a hypersonic inlet at Mach 6. Journal of Propulsion and Power,23 (4):783-788,2007.
    [135]Juntao Chang, Daren Yu, Wen Bao, Cong Wang, and Tianrui Chen. Mathematical modeling and rapid recog-nition of hypersonic inlet buzz. Aerospace Science and Technology,23(1):172-178,2012.
    [136]李留刚.典型高超声速进气道的不起动特征研究.南京航空航天大学硕士论文,2010.
    [137]J. L. Wagner, K. B. Yuceil, A. Valdivia, N. T. Clemens, and D. S. Dolling. Experimental Investigation of Unstart in an Inlet/Isolator Model in Mach 5 Flow. AIAA Journal,47(6):1528-1542,2009.
    [138]余安远,杨大伟,张小庆,倪鸿礼,刘伟雄,乐嘉陵.高超声速前体进气道动态特性研究.In中国力学学会学术大会’2011,2011.
    [139]郭善广,柳军,金亮,罗世彬.吸气式高超声速推进助推段内流振荡及其抑制.推进技术,33(1),2012.
    [140]Juntao Chang, Lei Wang, Wen Bao, Jiang Qin, Jun Niu, and Wei Xue. Novel oscillatory patterns of hypersonic inlet buzz. Journal of Propulsion and Power,28(6):1214-1221,2012.
    [141]J. A. Copper. Experimental investigation of the equilibrium interface technique. Physics of Fluids,5(7): 844-849,1962.
    [142]G. S. Settles. Schlieren and shadowgraph techniques:visualizing phenomena in transparent media. Springer, Berlin Heidelberg,2006.
    [143]范洁川.近代流动显示技术.近代空气动力学丛书.国防工业出版社,北京,2002.
    [144]李桂春.风洞试验光学测量方法.国防工业出版社,北京,2008.
    [145]姜宏亮.基于LabVIEW的激波风洞数据采集系统的设计与开发.中国科学技术大学本科学位论文,2011.
    [146]ANSYS FLUENT 12.0 User's Guide. ANSYS, Inc.,2009.
    [147]南向军,张堃元,金志光,孙波.压升规律可控的高超声速内收缩进气道设计.航空动力学报,26(3):518-523,2011.
    [148]N. Om Prakash Raj and K. Venkatasubbaiah. A new approach for the design of hypersonic scramjet inlets. Physics of Fluids,24(8):086103--15,2012.
    [149]李永洲,张堃元,南向军,张林.类水滴进口高超声速内收缩进气道设计及数值研究.航空动力学报,27(6):1355-1361,2012.
    [150]向有志,张堃元,王磊,高雄.壁面压升可控的高超轴对称进气道优化设计.航空动力学报,26(10):2193-2199,2011.
    [15l]张晓嘉,岳连捷,张新宇.大内收缩比二元高超声速进气道波系配置特性.推进技术,(04):505-509,2012.
    [152]岳连捷,叶青、徐显坤,陈立红,张新宇.三面压缩高超进气道附面层抽吸研究.航空动力学报,27(2):372-378,2012.
    [153]J. Haberle and A. Giilhan. Internal flowfield investigation of a hypersonic inlet at Mach 6 with bleed. Journal of Propulsion and Power,23(5):1007-1017,2007.
    [154]李程鸿,谭慧俊,孙姝,张启帆,田方超.流体式高超声速可调进气道流动机理及工作特性分析.宇航学报,32(12):2613-2621,2011.
    [155]潘瑾,张堃元.可变内收缩比侧压式进气道自起动性能.推进技术,28(3):278-281+321,2007.
    [156]赵湘恒,夏智勋,方传波,胡建新,王德全,游进.攻角变化对超音速进气道再起动特性的影响.固体火箭技术,34(3):290-294,2011.
    [157]王翼,范晓樯,何继宏,陈逖,梁剑寒,王振国.侧板构型对二维高超声速进气道启动性能的影响.航空学报,31(2):217--222,2010.
    [158]南向军,张堃元,金志光,李永洲.矩形转圆形进气道马赫5正8。攻角启动性能分析.南京航空航天大学学报,44(2):146-151,2012.
    [159]曹学斌,张堑元.非对称来流下带斜楔的短隔离段数值研究.推进技术,30(6):677-681,2009.
    [160]张航,谭慧俊,孙姝.进口斜激波、膨胀波干扰下等直隔离段内的激波串特性.航空学报,31(9):1733-1739,2010.
    [161]谭杰,金捷,杜刚,徐惊雷.单边膨胀喷管试验和数值模拟.航空动力学报,26(6):1223-1230,2011.
    [162]文科,李旭昌,马岑睿,马海英,宋亚飞.不同入口马赫数对超燃冲压发动机尾喷管的性能影响研究.火箭推进,37(3):18-21,2011.
    [163]卢鑫,岳连捷,肖雅彬,张新宇.超燃冲压发动机尾喷管流线追踪设计.推进技术,32(1):91-96,2011.
    [164]俞凯凯,徐惊雷,马静.非对称喷管超声速流场的PIV实验与数值模拟.航空动力学报,27(9):2041-2047,2012.
    [165]ANSYS FLUENT 12.0 Theory Guide. ANSYS, Inc. 2009.
    [166]E. Schulein. Skin-friction and heat flux measurements in shock/boundary-layer interaction flows. AIAA Journal,44(8):1732-1741,2006.
    [167]N. N. Fedorova, I. A. Fedorchenko, and E. Schulein. Experimental and Numerical Study of Oblique Shock-Wave/Turbulent Boundary Layer Interaction at M=5. Computational Fluid Dynamics Journal,10(3):376 381,2001.
    [168]X. Xiao, H. A. Hassan, J. R. Edwards, and R. L. Gaffney. Role of turbulent prandtl numbers on heat flux at hypersonic mach numbers. AIAA Journal,45(4):806-813,2007.
    [169]Ryan B. Bond, Frederick G. Blottner, and Thomas M. Smith. Validation of a Wall-Layer Model for a Shock-Wave/Boundary-Layer Interaction. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. AIAA 2010-115,2010.
    [170]张悦,谭慧俊,张启帆,程代姝.一种进气道内激波/边界层干扰控制的新方法及其流动机理.宇航学报,33(2):265-274,2012.
    [171]James L. Brown. Hypersonic shock wave impingement on turbulent boundary layers:Computational analysis and uncertainty. Journal of Spacecraft and Rockets,50(1):96-123,2013.
    [172]Benjamin S. Kirk and Todd A. Oliver. Validation of SUPG Finite Element Simulations of Shock-wave/Turbulent Boundary Layer Interactions in Hypersonic Flows. In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings. AIAA 2013-0306,2013.
    [173]James D. Ott, Donald C. Kenzakowski, and Sanford M. Dash. Evaluation of turbulence modeling extensions for the analysis of hypersonic shock wave boundary layer interactions. In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings. AIAA 2013-0983,2013.
    [174]J. Haberle and Ali Gulhan. Investigation of the Flow Field of a 2D SCRAM-Jet Inlet at Mach 7 with optional Boundary Layer Bleed. In 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. AIAA 2007-5068,2007.
    [175]J. Haberle and A. Gulhan. Investigation of two-dimensional scramjet inlet flowfield at Mach 7. Journal of Propulsion and Power,24(3):446-459,2008.
    [176]Martin Krause and Josef Ballmann. Numerical Simulations and Design of a Scramjet Intake Using Two Different RANS Solvers. In 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. AIAA 2007-5423,2007.
    [177]李世珍,唐硕.高超声速进气道壁面开缝对边界层分离影响研究.空气动力学学报,29(1):68-72,2011.
    [178]杨钧.高超声速二维进气道性能研究.国防科学技术大学硕士学位论文,2011.
    [179]O. Hohn and A. Gulhan. Experimental Investigation on the Influence of Yaw Angle on the Inlet Performance at Mach 7. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. AIAA 2010-938,2010.
    [180]T. Saito and K. Takayama. Numerical simulations of nozzle starting process. Shock Waves,9(2):73-79,1999.
    [181]Leslie A. Yates. Images constructed from computed flowfields. AIAA Journal,31 (10):1877-1884,1993.
    [182]Z. Jiang and K. Takayama. An investigation into the validation of numerical solutions of complex flowfields. Journal of Computational Physics,151(2):479-497,1999.
    [183]M. Sun and K. Takayama. A holographic interferometric study of shock wave focusing in a circular reflector. Shock Waves,6(6):323-336,1996.
    [184]陈强.高超音速风洞实验技术.合肥:中国科学技术大学五系讲义,1979.
    [185]邓振瀛,李延林泽,(美)波普(A.Pope),戈因(K.L.Goin)著.高速风洞试验.北京:科学出版社,1980.
    [186]D. W. Holder and D. L. Schultz. The duration and properties of the flow in a hypersonic shock tunnel. In Frederick R. Riddell, editor, Hypersonic Flow Research, Progress in Astronautics and Aeronautics, pages 513-546. AIAA,1962.
    [187]Timothy J. McIntyre, Michael M. Mallon, and Troy N. Eichmann. High speed imaging of flow establishment and duration in impulse facilities. In 26th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. AIAA 2008-4132,2008.
    [188]王翼,范晓樯.梁剑寒,刘卫东,王振国.开启式高超声速进气道启动性能试验.航空动力学报,23(6):1014-1018.2008.
    [189]王翼.高超声速进气道启动问题研究.国防科学技术大学博士学位论文,2008.
    [190]张涵信.分离流与漩涡运动的结构分析.北京:国防工业出版社,2005.
    [191]T. Goruney and D. Rockwell. Flow past a delta wing with a sinusoidal leading edge:near-surface topology and flow structure. Experiments in Fluids,47(2):321-331,2009.
    [192]R. H. Korkegi. A simple correlation for incipient-turbulent boundary-layer separation due to a skewed shock wave. AIAA Journal,11 (11):1578-1579,1973.
    [193]R. H. Korkegi. Comparison of shock-induced two-and three-dimensional incipient turbulent seperation. AIAA Journal,13(4):534-535,1975.
    [19.4]B. Edney. Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock. Technical Report FFA Report 115, Aeronautical Research Institute of Sweden, 1968.
    [195]John D. Anderson Jr. Hypersonic and High-Temperature Gas Dynamics. AIAA Education Series,2nd edition, 2006.
    [196]Nadir T. Bagaveyev, William A. Engblom, and Vishal A. Bhagwandin. Parametric Investigation of Racetrack-to-Circular Cross-Section Transition of a Dual-mode Ramjet Isolator. In 48th AIAA Aerospace Sciences Meet-ing Including the New Horizons Forum and Aerospace Exposition. AIAA 2010-942,2010.
    [197]张林,张堃元,王磊,南向军,李永洲.非均匀来流对新型高超弯曲激波二维进气道的影响.推进技术,33(3):338-345,2012.
    [198]Stephen J. Alter. Investigation of "6X" Scramjet Inlet Configurations. Technical Report NASA/TM-2012-217761,2012.
    [199]J. W. Cnossen and R. L. Obrien. Investigation of the diffusion characteristics of supersonic streams composed mainly of boundary layers. Journal of Aircraft,2(6):485-492,1965.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700