用户名: 密码: 验证码:
桥式起重机机电系统动力学和控制的统一建模及其在负载升降过程分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动起重机是一种广泛用于冶金厂、机械制造厂、电站、港口、铁路等国民经济各部门的搬运设备,是在现代化生产、运输和国民经济建设和发展过程中发挥重要作用的、不可或缺的设备。正确地量化电动起重机系统在工作过程中的动力行为是起重机设计中至关重要的事情,是改进起重机控制和工作性能,保证电动起重机安全、可靠和经济性的关键。
     起重机概率设计和寿命设计是正在积极探索中的起重机设计方法,其中,必须解决的重要问题之一则是可以得到能够正确地反映工作过程中起重机组成元件或构件危险截面所受应力的时间历程。动力建模是获取这些应力时间历程的必要手段,因此,迫切需要构建能够更真实、更本质地反映起重机作业过程的动力学模型。
     基于电动起重机是机电耦合系统的认识,本文提出了考虑工作机构、金属结构、负载、电机及其驱动系统之间耦合效应的三维电动起重机机电系统动力学和控制统一建模的思想。在这个统一的三维动力模型中,不再需要事先假定电机的电磁扭矩或电机转子的转速,工作过程中起重机系统的动力响应可以在系统机电能量的交互过程中自然而然地确定,从而可以更真实地量化电动起重机中驱动机构运动的电动机的电磁扭矩时间历程以及起重机组成元件和构件的动力响应。这种方法在已公开发表的电动起重机动力学和控制的文献中还未见报道过。
     本文以转子串电阻调速系统和变频调速系统控制的单小车电动桥式起重机为例,提出了用于表达电动桥式起重机不同工作过程的负载-机构-结构系统的修正拉格朗日函数,以及应用起重机设计理论、分析力学、结构动力学、机械动力学、电机分析及其控制理论构建工作过程中的三维电动起重机机电系统动力学和控制统一模型的一般方法。这种方法不仅适合于电动起重机械,也可以推广到其它电动机械的机电系统动力学和控制的统一建模中。
     本文对由转子串电阻调速系统控制的、起升机构配置单机械制动器的32t桥式起重机吊运起升负载的全速上升过程,重载和半载全速下降过程,以及配置双机械制动器的32t桥式起重机的起升机构在双制动器作用下的异常制动过程和一个制动器失效情况下的异常制动过程进行了数值模拟。详细分析了这些动力过程中起重机系统的动力特点,讨论了正常负载升降过程中起重机司机的操作、电气控制方案、机电系统参数以及双制动器起升机构异常制动过程中机械制动器方案、负载大小、制动开始时负载的位置和起升速度等因素对起重机系统动力行为的影响。
     本文充分展示了电动起重机起升机构正常工作过程中的系统动态响应对司机操作非常敏感的特征和起升机构的起动过程中,尤其是,重物的下降制动过程中,电机的电磁扭矩和起升机构高速轴扭矩出现大幅度震荡的特点,以及起重机机电系统动力学和控制统一建模的必要性。发现:(1)降低司机的操作速度并不能导致系统动态响应峰值和幅值的单调减小;(2)对起重机自身而言,起升机构低速运行情况下发生的异常制动并不一定就比高速运行情况下的异常制动更安全;(3)对于配置双机械制动器的起升机构来说,为确保双制动器冗余功能的安全实施,一个机械制动器失效时发生的异常制动应该是设计过程中必须重视的一个重要工况。
Electric cranes are a kind of vital material-handling equipments used in steel works, manufacturing workshops, yards, power stations, ports and railways during modern manufacturing and transportation. It is very important to quantify correctly the dynamic behaviour of electric cranes during operations, to ensure the safety, reliability and economy of electric cranes in crane design.
     Crane probabilistic design and fatigue design are approaches which are being actively researched. To implement them, one of the most important problems, which must be solved, is to determine the realistic stress time histories acting on the most vulnerable sections of the components of the cranes during operations. The dynamic modeling is the necessary means to get the time histories. Therefore, it is imperative to build the dynamic models which can reflect correctly the dynamic processes during crane operations.
     Electric cranes are integrated electro-mechanical systems. A new dynamic modeling philosophy, that deals with the coupling effects among induction motors and their drive systems, the payload, the mechanisms and the steel structrue, is proposed in this paper. In the3D dynamic model, the electromagnetic torque or the rotating speed of the electric motor needn't be assumed anymore and the realistic dynamic responses of the components of electric cranes are determined naturally in the process of the energy exchange between the mechanical and electric systems.The idea has not been attempted in the published literature on the dynamics and control of electric cranes so far.
     In this paper, an electro-mechanical system dynamic modeling method of the electric cranes (driven by induction motors controlled by the control system by changing rotor resistance and frequency control system as specific examples) describing the dynamic behaviour during their operations is presented by applying the design theory of cranes, analytical mechanics, structural dynamics, mechanical vibration, motor analysis and drive control theory. In this method, the modified Lagrangians, which include the kinetic energy and potential energy of the crane, the magnetic co-energy of the driving motors and the constraint conditions to describe the operating processes of the overhead travelling cranes, are introduced. The method is not only suitable for dynamic modeling of the electric cranes, but also applicable to all other machineries driven by electric motors.
     As examples, the numerical simulations of dynamic processes of a32t overhead crane with a mechanical brake in the lifting mechanism are carried out in detail. These include the lifting processes of a payload at full speed and the lowering processes of a heavy payload and half a rated payload at full speed. The exceptional braking processes of the same overhead crane with two mechanical brakes in the lifting mechanism when the two brakes co-work and one of the two brakes malfunctions are also simulated elaborately. The features of these dynamic processes are analysed. The effects of the operation of crane operators, the electric motor control scheme, and the parameters of the mechanical and electric systems during normal lifting and lowering of payload on the dynamic behaviour of the crane are investigated. The effects of the magnitude of the payload, the mechanical braking schemes, the lifting speed and the position of the payload when the exceptional braking of the lifting mechanism occurs on the dynamic behaviour of the crane are discussed as well.
     It is found that the amplitudes of the system dynamic responses do not decrease monotonously while operators' operations slow down; the exceptional braking which happens at lower lifting speed might be not always safer than the exceptional braking which happens at higher lifting speed for cranes themselves. It is identified that the exceptional braking of the lifting mechanism when one of two brakes fails should be considered as a significant design conditions to ensure the secure implementation of the redundancy brake function of the lifting mechanism with two-brake.
引文
[1]GB/T3811起重机设计规范[S].1983.
    [2]胡宗武.起重机概率设计的基本问题[J].起重运输机械.1992,(9):3-8.
    [3]陈道南,张宣生.桥式起重机桥架结构动特性的有限元分析[J].起重运输机械.1989,(4):3-9.
    [4]翟甲昌,王生.桥式起重机焊接箱形梁的疲劳试验[J].起重运输机械.1994,(2):3-8.
    [5]程文明,王金诺.桥门式起重机疲劳裂纹扩展寿命的模拟估算[J].起重运输机械.2001,(2):1-4.
    [6]翟甲昌,何庆生.桥式起重机钢结构可靠性分析[J].起重运输机械.1992,(4):3-9.
    [7]仉传兴,肖汉斌.桥式起重机金属结构剩余安全使用期限估算[J].起重运输机械.2009,(1):100-103.
    [8]徐彦,刘杰,孙光复.大型起重机回转过程动态特性分析[J].机械与电子.2007,(4):3-6.
    [9]徐格宁,潘鲜.焊接箱形梁疲劳寿命分析与在线监测装置研究[J].起重运输机械.2006,(1):13-15.
    [10]于兰峰.塔式起重机结构刚性及动态优化研究[D]:(博士).成都:西南交通大学,2006.
    [11]翟甲昌,上怀建.桥式起重机焊接粱疲劳强度极限状态可靠性分析[J].大连理工大学学报.1992,32(5):615-618.
    [12]郭云志.基于极限状态法的起重机金属结构设计研究[D]:(硕士).大连:大连理工大学,2005.
    [13]孙焕纯,宋亚新,张典仁.变质量,变阻尼,变刚度结构系统的动力响应[J].计算力学学报.1996,13(2):127-137.
    [14]胡宗武,阎以诵.起重机动力学[M].机械工业出版社,1988.
    [15]胡宗武.起重机的动态计算[J].起重运输机械.1987,(11):2-7.
    [16]陈曦.变频器纠偏控制在桥式起重机大车啃轨中的应用[J].电上技术.2010,(2):23-24.
    [17]罗俊尧,陈志梅,孟文俊.基于遗传算法的三维起重机滑模控制方法研究[J].起重运输机械.2011,(9):4-7.
    [18]钟斌,程文明,吴晓,等.桥门式起重机吊重防摇状态反馈控制系统设计[J].电机与控制学报.2007,11(5):492-496.
    [19]上晓军,邵惠鹤.基于模糊的桥式起重机的定位和防摆控制研究[J].系统仿真学报.2005,17(4):936-939.
    [20]GB3811-2008,起重机设计规范[S].2009.
    [21]BS EN 13001-2:2004+A3, Crane saftey General desigen,Part 2:Load actions[S].2009.
    [22]ISO 8686-5, Cranes--design principles for loads and load combinations[S].1992.
    [23]JIS-B8831, Cranes-Design Principles for Loads and Load Combinations, [S].2001.
    [24]Ghigliazza R M, Holmes P. On the dynamics of cranes, or spherical pendulum with moving supports[J]. International journal of non-linear mechanics.2002,37 (7):1211-1221.
    [25]Ellermann K, Kreuzer E.Nonlinear dynamics in the motion of floating cranes[J].Multibody system dynamics.2003,9 (4):377-387.
    [26]Ellermann K, Kreuzer E, Markiewicz M.Nonlinear dynamics of floating cranes[J]. Nonlinear Dynamics.2002,27 (2):107-183.
    [27]Chin C, Nayfeh A H, Abdel-Rahman E. Nonlinear dynamics of a boom crane[J]. Journal of Vibration and Control.2001,7 (2):199.
    [28]Cveticanin L. Dynamic behavior of the lifting crane mechanism [J]. Mechanism and Machine Theory.1995,30 (1):141-151.
    [29]Chin C M, Nayfeh A H, Mook D T. Dynamics and control of ship-mounted cranes [J]. Journal of Vibration and Control.2001,7 (6):891.
    [30]Clauss G F, Vannahme M. An experimental study of the nonlinear dynamics of floating cranes [C].Proc. of the 9th ISOPE Conf, Brest, France,1999:
    [31]Witz J A.Parametric excitation of crane loads in moderate sea states[J]. Ocean engineering.1995,22 (4):411-420.
    [32]Ellermann K, Kreuzer E, Markiewicz M. Nonlinear primary resonances of a floating crane[J].Meccanica.2003,38 (1):4-17.
    [33]Cha J H, Roh M I, Lee K Y. Dynamic response simulation of a heavy cargo suspended by a floating crane based on multibody system dynamics[J].Ocean Engineering.2010,37 (14-15):1273-1291.
    [34]Ouyang H.Moving-load dynamic problems:A tutorial (with a brief overview)[J]. Mechanical Systems and Signal Processing.2011,25 (6):2039-2060.
    [35]Gasic V, Milovancevi6 M, Petkovi6 Z. FEA implementation in moving load problem at bridge cranes[J]. Mechanical Design.2010,2:25-30.
    [36]Oguamanam D, Hansen J S, Heppler G R.Dynamic response of an overhead crane system[J]. Journal of sound and vibration.1998,213 (5):889-906.
    [37]Wu J J, Whittaker A R, Cartmell M P. Dynamic responses of structures to moving bodies using combined finite element and analytical methods[J]. International journal of mechanical sciences.2001,43 (11):2555-2579.
    [38]Wu J J. Dynamic responses of a three-dimensional framework due to a moving carriage hoisting a swinging object[J].International journal for numerical methods in engineering.2004,59 (13):1679-1702.
    [39]Wu J J. Transverse and longitudinal vibrations of a frame structure due to a moving trolley and the hoisted object using moving finite element[J]. International Journal of Mechanical Sciences.2008,50 (4):613-625.
    [40]Zrnic N D, Hoffmann K, Bosnjak S M. Modelling of dynamic interaction between structure and trolley for mega container cranes[J]. Mathematical and Computer Modelling of Dynamical Systems.2009,15 (3):295-311.
    [41]Zrnic N D, Bosnjak S M, Hoffmann K. Parameter sensitivity analysis of non-dimensional models of quayside container cranes[J].Mathematical and Computer Modelling of Dynamical Systems.2010,16 (2):145-160.
    [42]Younesian D, Ghafoori E, Sadeghpour M. Nonlinear vibration of a three-dimensional moving gantry crane subjected to a travelling trolley hoisting a swinging object[J]. Transactions of the Canadian Society for Mechanical Engineering.2010,34 (3-4):333.
    [43]Gasio V, Zrni6 N, Obradovi6 A, et al. Consideration of moving oscillator problem in dynamic responses of bridge cranes[J]. FME Transact ions.2011,39 (1):17-24.
    [44]Ju F, Choo Y S.Dynamic analysis of tower cranes[J].Journal of engineering mechanics.2005,131 (1):88-96.
    [45]Ju F, Choo Y S, Cui F S. Dynamic response of tower crane induced by the pendulum motion of the payload[J].International journal of solids and structures.2006,43 (2):376-389.
    [46]Jerman B, Podrzaj P, Kramar J.An investigation of slewing-crane dynamics during slewing motion--development and verification of a mathematical model[J]. International journal of mechanical sciences.2004,46 (5):729-750.
    [47]Jerman B. An enhanced mathematical model for investigating the dynamic loading of a slewing crane[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science.2006,220 (4):421-433.
    [48]Jerman B, Kramar J. A study of the horizontal inertial forces acting on the suspended load of slewing cranes[J]. International Journal of Mechanical Sciences.2008,50 (3):490-500.
    [49]Sagirli A, Bogoclu M E, Omurlu V E.Modeling the Dynamics and Kinematics of a Telescopic Rotary Crane by the Bond Graph Method:Part Ⅰ [J].Nonlinear Dynamics.2003,33 (4):337-351.
    [50]Sagirli A, Bogoclu M E, Omurlu V E. Modeling the dynamics and kinematics of a telescopic rotary crane by the bond graph method:Part Ⅱ[J].Nonlinear Dynamics.2003,33 (4):353-367.
    [51]Posiadat B. Influence of crane support system on motion of the lifted load[J]. Mechanism and machine theory.1997,32 (1):9-20.
    [52]Sun G, Kleeberger M. Dynamic responses of hydraulic mobile crane with consideration of the drive system[J]. Mechanism and machine theory.2003,38 (12):1489-1508.
    [53]Sun G, Kleeberger M, Liu J. Complete dynamic calculation of lattice mobile crane during hoisting motion[J]. Mechanism and machine theory.2005,40 (4):447-466.
    [54]Sun G, Liu J. Dynamic responses of hydraulic crane during luffing mot ion [J]. Mechanism and machine theory.2006,41 (11):1273-1288.
    [55]Marinkovie Z, Markovi6 S, Marinkovi6 D. Linearization and solving of differential motion equations of crane driving mechanisms[J].Fact a universitatis-series: Mechanical Engineering.2000,1 (7):879-886.
    [56]Ebeid A M, Moustafa K A F, Hosam E.Electromechanical modelling of overhead cranes[J]. International journal of systems science.1992,23 (12):2155-2169.
    [57]Kilicslan S, Balkan T, Ider S K.Tipping loads of mobile cranes with flexible booms[J]. Journal of sound and vibration.1999,223 (4):645-657.
    [58]Towarek Z. The dynamic stability of a crane standing on soil during the rotation of the boom[J]. International journal of mechanical sciences.1998,40 (6):557-574.
    [59]Sochacki W. The dynamic stabil ity of a laboratory model of a truck crane [J]. Thin-Wailed Structures.2007,45 (10-11):927-930.
    [60]Soderberg E, Jordan M.Seismic response of jumbo container cranes and design recommendations to limit damage and prevent collapse[C]. Ports 2007:Conference Proceedings of the Eleventh Triennial International Conference. San Diego. ASCE. 2007:25-28
    [61]Jacobs L D, DesRoches R, Leon R T. Shake table testing of container cranes[C]. Proceedings of the 14th World Conference on Earthquake engineering, Beijing, China.2008:12-17
    [62]Kosbab B D, Jacobs L D, DesRoches R, et al. Analysis and Testing of Container Cranes under Earthquake Loads[C]. Lifeline Earthquake Engineering in a Multihazard Environment. Oakland, California.2009:842-852
    [63]Jacobs L D, DesRoches R, Leon R T. Experimental Study of the Seismic Response of Container Cranes[C].Ports 2010:Building on the Past, Respecting the Future Proceedings of the Ports 2010 Conference. ASCE.2010:91-99
    [64]Malamoreanu M, Vasilescu A.Behavior of tower cranes under seismic actions[J]. Scientific Bulletin Series D.2010,72:55-64.
    [65]Otani A, Nagashima K, Suzuki J. Vertical seismic response of overhead crane[J]. Nuclear engineering and design.2002,212 (1):211-220.
    [66]Huang H C, Marsh L. Slack rope analysis for moving crane system[C].13 WCEE:13 th World Conference on Earthquake Engineering Conference Proceedings. Vancouver, B.C., Canada.2004:
    [67]Kobayashi N, Kuribara H, Honda T, et al.Nonlinear seismic responses of container cranes including the contact problem between wheels and rails [J]. Journal of pressure vessel technology.2004,126 (1):59-65.
    [68]Jacobs L D, Kosbab B D, Leon R T, et al. Seismic behavior of a jumbo container crane including uplift[J]. Earthquake Spectra.2011,27 (3):745-773.
    [69]阎以诵,靳晓雄.工程机械动力学[M].上海:同济大学出版社,1986.
    [70]Riikonen I. The new way,Hoist, http://www.hoistmagazine.com/story.asp?storyCode =2032625.
    [71]Cho S K, Lee H H.A fuzzy-logic antiswing controller for three-dimensional overhead cranes[J]. ISA transactions.2002,41 (2):235-243.
    [72]Auernig J W, Troger H. Time optimal control of overhead cranes with hoisting of the load[J]. Automatica.1987,23 (4):437-447.
    [73]Masoud Z N, Nayfeh A H.Sway reduction on container cranes using delayed feedback controller[J]. Nonlinear dynamics.2003,34 (3):347-358.
    [74]Masoud Z N. Effect of hoisting cable elasticity on anti-sway controllers of quay-side container cranes[J]. Nonlinear Dynamics.2009,58 (1):129-140.
    [75]Ebrahimi M, Ghayour M, Madani S M, et al. Swing angle estimation for anti-sway overhead crane control using load cell[J].International Journal of Control, Automation and Systems.2011,9 (2):301-309.
    [76]Ngo Q H, Hong K S, Jung I H. Adaptive control of an axially moving system[J]. Journal of mechanical science and technology.2009,23 (11):3071-3078.
    [77]Abdel-Rahman E M, Nayfeh A H, Masoud Z N.Dynamics and control of cranes:A review[J].Journal of Vibration and Control.2003,9 (7):863-908.
    [78]Omar H M, Nayfeh A H. Gantry cranes gain scheduling feedback control with friction compensation[J]. Journal of sound and vibration.2005,281 (1-2):1-20.
    [79]Neupert J, Arnold E, Schneider K, et al. Tracking and anti-sway control for boom cranes[J].Control Engineering Practice.2010,18 (1):31-44.
    [80]Uchiyama N. Robust control of rotary crane by partial-state feedback with integrator[J]. Mechatronics.2009,19 (8):1294-1302.
    [81]Sawodny 0, Aschemann H, Lahres S. An automated gantry crane as a large workspace robot[J].Control Engineering Practice.2002,10 (12):1323-1338.
    [82]Yu W, Moreno-Armendariz M A, Rodriguez F O. Stable adaptive compensation with fuzzy CMAC for an overhead crane[J]. Information Sciences.2011,181 (21):4895-4907.
    [83]Park H, Chwa D, Hong K. A feedback linearization control of container cranes:Varying rope length[J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS.2007,5(4): 379-387.
    [84]Nayfeh N A, Baumann W T. Nonlinear analysis of time-delay position feedback control of container cranes[J]. Nonlinear Dynamics.2008,53 (1):75-88.
    [85]Daqaq M F, Masoud Z N. Nonlinear input-shaping controller for quay-side container cranes[J]. Nonlinear Dynamics.2006,45 (1):149-170.
    [86]Sorensen K L, Singhose W, Dickerson S.A controller enabling precise positioning and sway reduction in bridge and gantry cranes[J]. Control Engineering Practice.2007,15 (7):825-837.
    [87]Terashima K, Shen Y, Yano K. Modeling and optimal control of a rotary crane using the straight transfer transformation method[J]. Control engineering practice.2007,15 (9):1179-1192.
    [88]Nayfeh A H, Masoud Z N, Nayfeh N A.A delayed-position feedback controller for cranes[C]. IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics,2005:385-395.
    [89]Vaughan J, Kim D, Singhose W. Control of tower cranes with double-pendulum payload dynamics[J]. Control Systems Technology, IEEE Transactions on.2010,18 (6):1345-1358.
    [90]Moustafa K A F, Gad E H, El-Moneer A, et al. Modelling and control of overhead cranes with flexible variable-length cable by finite element method[J]. Transactions of the Institute of Measurement and Control.2005,27 (1):1-20.
    [91]Al-Garni A Z, Moustafa K, Javeed Nizami S. Optimal control of overhead cranes[J]. Control Engineering Practice.1995,3 (9):1277-1284.
    [92]Moustafa K A F, Emara-Shabaik H E. Control of crane load sway using a reduced order electromechanical model[C]. American Control Conference,1992. IEEE.1992:1980-1981
    [93]Niu CM, Zhang HW, Ouyang H. A comprehensive dynamic model of electric overhead cranes and the lifting operations [J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science.2012,226 (6):1484-1503.
    [94]Niu CM, Zhang HW, Ouyang H. Electro-mechanical dynamic simulation of overhead cranes during the operation of lifting mechanism [CD]. Proceedings of the 23rd International Congress of Theoretical and Applied Mechanics. Beijing,19-24 August2012.
    [95]Singer N, Singhose W, Kriikku E. An input shaping controller enabling cranes to move without sway[C]. ANS 7th topical meeting on robotics and remote systems,1997:225-231.
    [96]Singhose W, Porter L, Kenison M, et al. Effects of hoisting on the input shaping control of gantry cranes[J]. Control Engineering Practice.2000,8 (10):1159-1165.
    [97]Hong K T, Huh C D, Hong K S. Command shaping control for limiting the transient sway angle of crane systems[J]. International Journal of Control, Automation, and Systems.2003,1 (1):43-53.
    [98]Blackburn D, Lawrence J, Danielson J, et al. Radial-motion assisted command shapers for nonlinear tower crane rotational slewing [J]. Control Engineering Practice.2010,18 (5):523-531.
    [99]裘为章,吴锡忠.实用起重机电气技术手册[M].北京:机械工业出版社,2001.
    [100]Krause P C. Analysis of electric machinery[M]. McGraw-Hill New York,1986.
    [101]Lepka J, Stekl P.3-Phase AC Induction Motor Vector Control Using a 56F80x,56F8100 or 56F8300 Device. Freescale Semiconductor Application Note AN1930 Rev.2[R]. Freescale Semiconductor.2005.
    [102]dqo transformation. http://en.wikipedia.org/wiki/Dqo_transformation#Park.27s_Transformation. http://en.wikipedia.org/wiki/Dqo_transformation#Park.27s_Transfor mation.
    [103]Alpha-beta transformation, http://en.wikipedia.org/wiki/Alpha%E2%80%93beta_transformation, http://en.wikipedia.org/wiki/Alpha%E2%80%93beta_transformation.
    [104]Trzynadlowski A M. Control of induction motors[M]. Academic Press,2001.
    [105]李海发,王岩.电机与拖动基础[M].北京:清华大学出版社,1994.
    [106]杨长驳.起重机械[M].北京:机械出版社,1984.
    [107]徐克晋.金属结构[M].北京:机械出版社,1982.
    [108]Severin D, Dorsch S. Friction mechanism in industrial brakes[J]. Wear.2001,249(9): 771-779.
    [109]Van Wittenberghe J, Ost W, De Baets P. Testing the Friction Characteristics of Industrial Drum Brake Linings[J]. Experimental Techniques.2012,36 (1):43-49.
    [110]DIN 15434 Power Transmission Engineering:Principles for Drum-and Discbrakes Calculation[S].1989.
    [111]Kleinjan O.Design of brakes of industrial machines in consideration of lining material, (dissertation in German)[D]:(Technical University of Berlin,1996.
    [112]舍费尔,M.,等.起重运输机械设计基础(第六版)[M].范祖尧,倪庆兴译.北京:机械工业出版社,1991.
    [113]刘晓星.西门子矢量型变频器在起重机中的应用[J].重上科技.2005,(1):30-34.
    [114]3-Phase Induction Vector Control Drive with Single Shunt Current Sensing, http: cache, freescale.com/files/microcontrollers/doc/ref_manual/DRM092. pdf?fsrch=1.
    [115]AN2388 Application note" Sensor Field Oriented Control (IFOC) of Three-Phase AC Induction Motors Using ST10F276" [R].STMicroelectronics.2006.
    [116]Field orientated control of 3-phase ac-motors[R]. Texas Instruments Europe.1998.
    [117]Yu Z. Space-vector PWM with TMS320C24x/F24x using hardware and software determined switching patterns[R]. Texas Instruments.1999.
    [118]马志源.电力拖动控制系统[M].北京:科学出版社,2004.
    [119]IRMCK203 Application Developer's Guide[R]. International Rectifier.2004.
    [120]Holmes D G, Lipo T A, Lipo T A. Pulse width modulation for power converters:principles and practice[M]. Wiley-IEEE Press,2003.
    [121]Implementation of Vector Control for PMSM Using the TMS320F240 DSP[R].Texas Instruments.1998.
    [122]AVR494:AC Induction Motor Control Using the constant V/f Principle and a Natural PWM Algorithm[R]. Atmel.2007.
    [123]Yu Z, Figoli D.AC Induction Motor control using constant V/Hz principle and Space Vector PWM technique with TMS320C240[R].1998.
    [124]Drury W.The Control Techniques Drives and Controls Handbook[M].London:The Institution Of Electrical Engineers,2001.
    [125]Bose B K.Power electronics and motor drives:advances and trends[M]. Academic Press,2006.
    [126]Krishnan R. Electric Motor Drives:Modeling, Analysis, and Control[M]. New Jersey: Prentice Hall. Inc,2001.
    [127]Stekl P.3-Phase Induction Vector Control Drive with Single Shunt Current Sensing. Freescale Semiconductor Designer Reference Manual DRM092 Rev.0.7/2007. http:// cache.freescale.com/files/microcontrollers/doc/ref_manual/DRM092.pdf?fsrch=1.
    [128]Drury W.The Control Techniques Drives and Controls Handbook[M].London:The Institution Of Electrical Engineers,2001.
    [129]Amin B. Induction motors analysis and torque control[M].Berlin:Springer,2001.
    [130]钱伟长.变分法及有限无限 [M].Beijing:科学出版社,1980.
    [131]俞载道.结构动力学基础[M].Shanghai:同济大学出版社,1987.
    [132]畅启仁.起重机起升机构过渡过程内驱动高速轴的载荷[J].上海海运学院学报.1984.3):
    [133]BS EN13001-1:2004+A1,Cranes-General design-Part 1:General principles and requirements[S].2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700