用户名: 密码: 验证码:
温瑞塘河中持久性有毒物质的污染特征与源解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济发展,人类生产生活与自然过程产生的污染物越来越多,组成也越来越复杂,一些具有持久性,生物毒性的痕量污染物对水环境形成危害。持久性有毒物质是一类具有很强生物毒性与生态毒性,在环境中难以降解,并通过食物链在生态系统中不断积累、富集和放大的痕量污染物。在地球空间的固、气、液进行循环并可通过长距离大尺度的迁移,进入水环境中,可直接通过上覆水作用于生物体,也可在水体物化与生物作用下在上覆水-间隙水-沉积物之间迁移转化,对水环境质量形成持久性的影响,进一步影响到水生生态系统安全。水环境中持久性有机污染物,重金属类污染物属环境中典型的污染物,对人类与自然环境危害大,影响深远,其自然修复难度大,人工措施去除成木高且方法不成熟,受到国内外学者高度关注。
     温瑞塘河是温州市最大的城市河网,被温州人民称为“母亲河”。温州市中小企业及家庭作坊式生产十分发达,在生产过程中由于管理松散而导致的污染物无序排放,进入水环境形成污染。本研究在国家重大水专项课(2009ZX07317-006);国家自然基金委青年科学基金(41101471)支助下,以温瑞塘河为研究对象,通过对上覆水、间隙水、沉积物中持久性有毒物质检测分析,利用发光细菌与热带爪蟾胚胎表征水环境生物毒性,利用数理统计分析方法解析持久性有毒物质的污染来源。揭示温瑞塘河水环境中持久性有毒物质(Cd、Cr、Pb、Hg、As、Cu、 Zn、Ni、PAHs)的空间分布特征、污染来源,水环境生物毒性及在模式生物的表现,水环境受污染程度与生态风险,为温瑞塘河水环境污染治理、水资源可持续利用与管理提供理论参考。本研究主要得到以下结论:
     (1)在温瑞塘河上覆水与间隙水中重金属元素含量平均值大于地表水V标准,表明河流受到重金属污染,上覆水中Cd、Hg、Cr、Mn、Ni、Cu重金属元素含量低于间隙水,Zn元素例外,部分采样点上覆水中重金属含量高于间隙水,表明部分区域仍存在高浓度重金属污染。在温瑞塘河沉积物中各重金属元素的区间值(mg/kg)Hg(0.18~7.31)、Cd(0~149.53)、Cr(43.9~1892.70)、Pb(17.31~162.93)、As(2.12-17.79)、Cu(19.23-3393.81)、Zn(119.27-4934.87)、Ni(16.72~1646.09)。重金属Cd、Zn元素含量最高点位于温瑞塘河主干河道城市与工业集中区及支流河道的汇流区,其次为冶炼、电镀小企业集中的三垟湿地人口聚集区,支流源头区、农业及城市远郊区低。柱状样重金属垂直分布特征显示,重金属污染受农业污染源的影响在减轻,但农业面源污染仍存在,工业污染源、生活污染源污染呈增长趋势。Cd、Cr、Pb、Cu、Zn、Ni、Fe重金属元素形态为残渣态高于其他形态,可被生物利用有效态为Cd(66.75%)>Mn(65.90%)>Ni(63.55%)>Cu(60.24%)>Pb(59.67%)>Zn(58.61%)>Cr(54.70%)>Fe(23.69%)。
     (2)沉积物单一重金属元素污染指数(Cfi)的评价结果为Cd(76.92)>Cu(17.4)>Hg(10.66)>Zn(9.19)>Ni(5.69)>Cr(4.30)>As(1.46)>Pb(1.43)。综合污染指数(Cd)评价受到重金属严重污染的采样点达14个,受重污染采样点为7个中污染采样点为8个,严重污染的采样点中Cd、Cu、Hg、Zn、Ni元素属严重污染状态。重金属的潜在生态危害指数(Eri)评价值为Cd(2307.47)>Hg(426.25)>Cu(87.03)>Ni(28.45)>As(14.58)>Zn(9.19)>Cr(8.60)>Pb(7.14)。重金属的生态风险指数RI结果显示采样点达极强生态风险点17个,强生态风险点7个,其中8##点生态风险最强,25#点生态风险最低点,河道沉积物受重金属Hg、Cd的污染存在很强的潜在生态风险可能。
     (3)沉积物中重金属元素平均富集指数顺序为Cd(126.7)>Cu(33.1)>Zn(16.3)>Hg(14.71)>Ni(10.7)>Cr(7.80)>As(2.63)>Pb(2.6),其中As、Pb元素属于中污染,Cr、Ni、Hg、Zn属于偏重污染,Cu属于重污染,Cd属于严重污染。整个河道沉积物受Cd、Hg污染采样点区域最多,处于偏重污染程度的采样点百分比>75.86%,重金属元素As、Pb对沉积物污染最轻,其处于偏重污染程度的采样点百分比<6.90%。在内梅罗污染指数基础上建立的综合地累积指数评价表明沉积物受到Hg、Cd、Cu、Zn,Ni和Cr污染,采样点区域污染程度依次为机械工业园区>主河道城市区>三垟湿地区>城市周边区>水源地区。
     (4)温瑞塘河的重金属污染主要来自于人为活动的影响,其重金属人为贡献率为Hg(86.62%)>Cd(81.20%)>Zn(80.59%)>Cu(75.86%)>Ni(68.12%)>Cr(64.26%)>As(54.7%)>Pb(45.78%),相关性分析与主成分分析表明Hg、Cd、Cu、Zn、Ni和Cr具有极显著相关性,来源以人为源为主,但也受到地球化学组成影响。
     (5)多环芳烃在上覆水样中的含量Mean=128.13ng.L-1、Min=28.91ng.L-1、 Max=440.04ng.L-1,结构主要由低环(2+3)组成,PAHs含量机械工业园区域,城市生活与工厂混杂区域,城市生活旧城区域的含量较高。间隙水样的PAHs含量为Mean=631.87ng.L-1、Min=57.56ng.L-1、Max=1628.50ng.L-1,平均值大于上覆水样,结构以低环(2+3)为主。沉积物中PAHs含量Mean=1314.58ng.g-1、 Min=152.85ng.g-1、Max=3826.80ng.g-1,PAHs单体主要由2-6环组成,低环(2+3)结构平均占37.37%,中环(4)结构平均占37.41%,高环(5+6)结构平均占25.22%。PAHs在沉积物中的含量顺序为机械工业园区、城市生活与工厂混杂区、城市生活旧城区、支流河道交汇区、干流区与源头区。沉积物分层柱状样的PAHs含量在1#、3#、10#、14#、18#、20#点第一层高于第二和第三层,表明其污染日前处于加重趋势,2#、4#、7#、15#、16#、19#、21#、23#点第一层低于第二层或第三层,表明污染在降低。
     (6)温瑞塘河上覆水水样的TEQ值范围在0.02-16.15ng.L-’,平均值2.62ng.L-1,平均值低于地表水质环境标准的2.8ng'L-1,毒性当量处于安全防范之内,在采样点中高于水质标准点7个,这些点具有较高生态风险。水环境中最小风险值范围15.42~1684.28,平均值为315.06,最大风险值范围0.15-16.84,平均值3.15,属高风险等级点4个,属中等风险等级点17个点,属低风险等级8个点沉积物中PAHs单体浓度值没有点超过生态效应值ERM,PAHs单体易发生生态风险的可能性小。沉积物毒性当量法的生物毒性区间(9.49-1331.09ng.g-1)平均值为158.2ng.g-1,沉积物最小风险商值平均值为438.99,风险商值区间为55.36~2833.31,属中等风险及以上样点达82.8%,具有发生潜在生态风险的可能。
     (7)聚类分析与主成分分析表明温瑞塘河水样中PAHs单体的中高环由发热源产生,2-3环低分子量或者烷基取代类PAHs来自自然源或石油泄漏等。由FIu/(Flu+Pyr), Ant/(Ant+Phe)比值表明多环芳烃主要来源为燃烧来源,其中石油燃烧源占23.1%,其余为薪材等燃烧热源为76.9%,由FIu/(Flu+Pyr), BaA/(BaA+Chr)比值分析采样点PAHs来源,石油燃烧源4个,石油、薪材、煤混合源6个,高温薪材燃烧源12个。利用聚类分析表明温瑞塘河沉积物的PAHs来源中高环单体主要是发热源产生,2-3环低分子量或者烷基取代类PAHs主要来自自然源-石油泄露等,由主成分分析沉积物中PAHs污染来源,主成分分析与柴油车和天然气、汽油燃烧排放相关,该主成分可视为交通和与交通相关的污染来源,存在薪材类燃烧与石油相关产品挥发或泄漏源。由Ant/(Ant+Phe)特征比值显示有6个点为石油类污染源,FIu/(FIu+Pyr)比值显示薪材类燃烧源占75.8%,也存在石油燃烧与石油泄漏源。由FIu/(FIu+Pyr), BaA/(BaA+Chr)比值可知,主要由薪材类物质的燃烧的源点占82.8%,石油类物质的燃烧与泄漏混合源占17.2%。由FIu/(Flu+Pyr), Inp/(Inp+BghiP)特征值可知,55%的点为薪材燃烧源,其余为石油泄漏源。
     (8)利用青海弧菌(Q7)对温瑞塘河上覆水,间隙水,沉积物生物毒性研究结果为上覆水样的平均发光强度为80.9%,属轻微毒性,间隙水相对发光强度的平均值69.7%,属中等生物毒性,沉积物相对发光强度的平均值63.3%,属中等生物毒性,上覆水相对发光强度>间隙水相对发光强度>沉积物的相对发光强度。沉积物浸出液对热带爪蟾胚胎发育毒性结果平均孵化率为75.98%,平均成活率为83.77%,平均致畸率为16.60%,平均体长为3.58cm。采样点污染源复杂与污染严重采样点对爪蟾胚胎发育生长毒性大,河流源头区及污染源单一采样点生物毒性小。
With the social and economic development, more and more pollutants with complex components are produced by human activity and natural process. Some trace pollutants which are persistent and biotoxic pose serious threat to the aquatic environmental. Persistent toxic substances are contaminants of strong biotoxicity and ecotoxicity, which are difficult to be degraded in the environment and constantly accumulate, enrich and magnify through the food chain in the ecosystem. Persistent toxic substances (PTS) can transport long distance in large scale via solid, gas and liquid. When PTS enter aquantic environment, they can affect living organisms directly through the overlying water, and also transport and transform among the overlying water-gap water-sediment through physical, chemical and biological processes of the water bodies. Thus, PTS have lasting impacts on the quality of the aquantic environment and furtherly affect the safety of the aquatic ecosystem. The persistent organic pollutants and heavy metal contaminant, two kinds of typical PTS in the aquatic environment, are hazardous to human beings and the nature since their impacts could be far-reaching and significant and their remediation is either hard and slow by nature process or costly and imperfect by artificial measures. Therefore, PTS in aquatic environment have been highly concerned worldwide.
     Wenruitang River, the "mother river" called by the local people, is the largest urban river network in Wenzhou City. Wenzhou is famous for its small-medium sized enterprises and family workshops, pollutants are disorderly discharged to the aquatic environment in the production process due to the loose environmental management. With the support of the National Major Project (2009ZX07317-006) and the National Natural Science Youth Foundation of China (41101471), this dissertation took Wenruitang River as the research object, investigated the PTS in the surface water, pore water and sediments from Wenruitang River by chemical analysis, determined the PTS pollution sources through statistical analysis, assessed the biological toxicity of the PTS via light-emitting bacteria and tropical Xenopus embryos. It revealed the spatial distribution characteristics of PTS (Cd, Cr, Pb, Hg, As, Cu, Zn, Ni and PAHs) in Wenruitang River, pollution sources, PTS biological toxicity and the response of model organisms to PTS, assessed the contamination degree and ecological risk of PTS in Wenruitang River, hopefully to provide a theoretical reference for river pollution treatment and the sustainable use and management of river water resources. The major conclusions of this research are listed as follows:
     (1) The average heavy metal content in the surface water and pore water from Wenruitang River was higher than the corresponding value in the level V of the surface water standard of China, which showed that the river was polluted by heavy metals. The content of Cd, Hg, Cr, Mn, Ni and Cu in the surface water was less than that in the pore water. Zn was an exception, for its concentration in the surface water from some of the sampling sites was higher than that in the pore water from the same place. The interval values (mg/kg) of heavy metals from the sediments of Wenruitang River were:Hg (0.18~7.31), Cd (0~149.53), Cr (43.9~1892.70), Pb (17.31~162.93), As (2.12~17.79), Cu (19.23~3393.81), Zn (119.27~4934.87) and Ni (16.72~1646.09). The sampling site with the maximum Cd and Zn contents located in the main channel of Wenruitang River where residential area and industrial area were overlapped, following by Sanyang wetland area where small smelting and plating factories used to concentrated there, and the minimum Cd and Zn contents in agriculture and exurban area. Vertical distribution characteristics of heavy metal in core sediment samples showed that heavy metal pollution caused by agricultural sources was reduced while pollution caused by industrial sources and residential sources were increasing. Heavy metals Cd, Cr, Pb, Cu, Zn, Ni and Fe were mostly in the form of residual fraction rather than other forms. The bioavailable state of these heavy metals were Cd (66.75%)> Mn (65.90%)> Ni (63.55%)> Cu (60.24%)> Pb (59.67%)> Zn (58.61%)> Cr (54.70%)> Fe (23.69%).
     (2) The evaluation result of the sediment single element pollution index (Cf1) was Cd (76.92)> Cu (17.4)> Hg (10.66)> Zn (9.19)> Ni (5.69)> Cr (4.30)> As (1.46)> Pb (1.43). The evaluation results of integrated Pollution Index (Cd) indicated that the numer of seriously, heavily and moderately polluted sampling sites was14,7and8, respectively. Among the seriously polluted sampling sites, Cd, Cu, Hg, Zn, and Ni belonged to the serious pollution level. The order of potential ecological risk index (Er1) was Cd (2307.47)> Hg (426.25)> Cu (87.03)> Ni (28.45)> As (14.58)> Zn (9.19)> Cr (8.60)> Pb (7.14). The results of the ecological risk index RI showed that there were17sampling sites of extremely strong ecological risk,7sampling sites of strong ecological risk and no site of low ecological risk. The highest ecological risk appeared at sampling site8#while the lowest was at sampling site25#. Hg and Cd had strong potential ecological risk.
     (3) The order of the average enrichment index of heavy metals in the sediment was Cd (126.7)> Cu (33.1)> Zn (16.3)> Hg (14.71)> Ni (10.7)> Cr (7.80)> As (2.63)> Pb (2.6). According to this order, As and Pb belonged to moderate pollution, Cr, Ni, Hg and Zn belonged to moderate to heavy pollution, Cu belonged to heavy pollution, Cd belonged to serious pollution. The entire river sediments were mostly polluted by Cd and Hg in term of polluted area with more than75.86%sampling sites were no less than the level of moderately to heavily contaminated, whereas As and Pb were leastly polluted with less than6.90%sampling sites were in the level of more serious pollution. Based on the Nemerow Pollution Index, a comprehensive geoaccumulation index was established. The geoaccumulation index showed that the sediments were polluted by Hg, Cd, Cu, Zn, Ni and Cr. The pollution level order of different region was machinery industrial park> main river city downton section> Sanyang Wetland> suburban areas> drinking water source areas.
     (4) Heavy metal pollution in Wenruitang River mainly affected by human activities. The anthropogenic contribution rate of each heavy metal was Hg (86.62%)> Cd (81.20%)> Zn (80.59%)> Cu (75.86%)> Ni (68.12%)> Cr (64.26%)> As (54.7%)> Pb (45.78%). The correlation analysis and principal component analysis indicated that Hg, Cd, Cu, Zn, Ni and Cr were significantly correlated. Heavy metals in Wenruitang River were mainly originated from anthropogenic sources, and affected by geochemical process at the mean time.
     (5) The minimum, maximum and mean concentration of polycyclic aromatic hydrocarbons in the surface river water was28.91ng.L-1,440.04ng.L-1and128.13ng.L-1, respectively. PAHs structure composed mainly by low ring (2+3). PAHs had higher concentration in machinery industrial park area, residential and industrial mixed area as well as the old city area. The maximum, mean and minimum concentrations of PAHs in interstitial water were1628.50ng.L-1,631.87ng.L-1and57.56ng.L-1, respectively. The average PAHs concentration in the interstitial water was greater than that in the surface water samples. The PAHs structure composed mainly by the low ring (2+3). The minimum, maximum and mean contents of PAHs in the sediments were152.85ng.g-1,3826.80ng.g-1and1314.58ng.g-1, respectively. PAHs monomer mainly composed by2~6rings, low ring (2+3) structure accounted for37.37%by average, middle ring (4) structure accounted for37.41%, high ring (5+6) structure accounted for25.22%. The order of PAHs content in sediments were machinery industrial park area> residential and industrial mixed area> the old city area> tributary confluence area> the main river stream and the river source area.
     The PAHs content in the sediment column sample showed that the first layer had higher PAHs than the second and third layers from samples1#,3#,10#,14#,18#and20#, which revealed that the pollution was aggravating. PAHs content in the first layer was lower than that in the second and third layers from samples2#,4#,7#,15#,16#,19#,21#and23#, which indicated that the pollution was reducing.
     (6) The TEQ values of surface water samples of Wenruitang River ranged from0.02to16.15ng.L-1. The average value was2.62ng.L-1, which is lower than2.8ng.L-1defined by the surface water quality environmental standards, meaning that the toxic equivalence was in security. There were7sampling sites with TEQ value higher than the surface water quality standards. These sampling sites would face higher ecological risk. The minimum risk value ranged from15.42to1684.28with the average value of315.06. The maximum risk value ranged from0.15to16.84with the average of3.15. There were4high-risk rating sties,17medium risk rating sites and8low risk rating sites. PAHs monomer concentration in sediments exceeding the ecological effects ERM was not found, so PAHs monomer in sediments was not liketly to induce ecological risk. The average biological toxicity by sediment toxicity equivalent methodwas158.2ng.g-1(ranged from9.49to1331.09ng.g-1). The average sediment minimum risk quotient is438.99, the risk quotient value ranged from55.36to2833.31. The samples had at least medium risk accounted for82.8%, indicating the possibility of potential ecological risk.
     (7) The cluster analysis and principal component analysis demonstrated that middle and high ring of PAHs monomer was generated by the heat source, the low ring with low molecular weight or alkyl substituted class of PAHs was originated from natural sources or oil spill. The FIu/(Flu+Pyr), Ant/(Ant+Phe) ratios indicated that the main source of polycyclic aromatic hydrocarbons was combustion sources, including23.1%oil combustion sources and76.9%fuelwood combustion source. The FIu/(Flu+Pyr), BaA/(BaA+Chr) ratios analyzed the sources of PAHs in the sampling sites, including4oil combustion sources,6oil, firewood and coal mixed source,12high-temperature fuelwood combustion sources. The cluster analysis showed that the high ring PAHs monomer in Wenruitang River sediments mainly originated from heating sources, the low ring PAHs or alkyl substituted class PAHs mainly originated from natural sources and oil spill. Principal component analysis of PAHs sources showed that PAHs were related to the emission from diesel, natural gas and gasoline combustion. This principal component can be regarded as traffic related pollution source, fuelwood class combustion source and volatile petroleum-related products source. Ant/(Ant+Phe) characteristic ratios illustrated there were six sites for the petroleum-based pollution sources. FIu/(FIu+Pyr) ratio illustrated source of fuelwood class combustion accounted for75.8%, and also the presence of oil burning and oil spill source. FIu/(FIu+Pyr), BaA/(BaA+Chr) ratio showed that82.8%of the samples mainly originated from the burning of fuelwood substance, the combustion and leak of petroleum substances mixed sources accounted for17.2%. TheFIu/(Flu+Pyr), Inp/(Inp+BghiP)eigenvalue showed that55%of the sampling sites were fuelwood combustion sources, the remaining were oil spill source.
     (8) The biological toxicity was measured by Qinghai Vibrio (Q7) against the surface water, interstitial water and sediment of Wenruitang River. Results showed that the average luminous intensity of the surface water was80.9%, belonging to slightly toxic; the average luminous intensity of interstitial water was69.7%, belonging to medium toxicity; the average luminous intensity of sediment was63.3%, belonging to medium toxicity. The order of relative luminous intensity was surface water>interstitial water>sediment. According to tropical Xenopus placed in sediment leaching, the toxicity results showed that the average hatching rate was75.98%, the average survival rate was83.77%, the average teratogenic rate was16.60%, and the average length was3.58cm. Sampling sites with complex pollution sources and serious pollution level had more significant toxic effect to the Xenopus embryo growth and development, whereas sampling sites with simple pollution source or sites in the river source area had less significant biological toxicity.
引文
[1]水利部.国家发展和改革委员会.中国水资源及其开发利用调查评价[M].北京,2005.
    [2]许振成.环境痕量污染物污染及其防控对策[J].环境科学与管理,2009,11,39-42.
    [3]籍国东,倪晋仁,孙铁珩.持久性有毒物污染底泥修复技术进展[J].生态学杂志,2004,23(4):118-121.
    [4]陈华林,陈英旭.污染底泥修复技术进展[J].农业环境保护,2002,21(2):179-182.
    [5]金相灿.中国湖泊环境[M].北京:海洋出版社,1995.
    [6]Li L F,Zeng X B,Li G X,et al. Heavy metal pollution of Wenyu River sediment and its risk assessment Acta [J]. Scientiae Circumstantiae,2007,27(2):289-297.
    [7]Wania F,Mackay D. Tracking the distribution of persistent organic pollutants Environment [J]. ScienceTechnology.1996,30:390-396
    [8]Muller I. Immobilization of heavy metals in sediment dredged from a seaport by iron bearing materials [J]. Water Science & Technology,1998,37 (627):379-386.
    [9]Krzysztof Loska, Danuta Wiechu. Application of principal component analysis for the estimat ion of source of heavy metal contamination in surface sediments from the Rybnik Reservoir [J]. Chemosphere,2003,51:723-733.
    [10]Yi Y J, Yang Z f, Zhang S H. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin [J]. Environment Pollution,2011,8,2575-2585.
    [11]刘建国,唐孝炎,胡建信.持久性生物累积性有毒污染物与国际相关控制策略和行动[J].环境保护,2003,4:52-56.
    [12]Akcay H, Oguz A, Karapire C. Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments [J]. Water Research,2003,37,813-822.
    [13]Emilio M,Maria C G,Elisa R,ea tl. Investigation of anthropic effects connected with metal ions concentration organic matter and grain size in Bormida River sediments [J]. Analytica Chimica Acta,2006,560,172-183.
    [14]叶旭,温瑞塘河流域水污染总量控制研究[D].硕士论文.浙江大,2002.
    [15]宋力,顾敦罡,黄民生,等.温州河网沉积物中重金属分布特征与污染评价[J].光谱学与光谱分析,2012,32(9):2540-2545.
    [16]UNEP (United Nations Environment Programme). Central and North East Asia regional report, regionally based assessment of PTS, UNEP/GEF; 2002.
    [17]宋力,黄民生.底泥中持久性有毒物质研究现状与展望[J].华东师范大学学报(自然科学版),2011,1:73-85.
    [18]Wang T Y, Lu Y L, Zhang H, ea tl. Contamination of persistent organic pollutants (POPs) and relevant management in China [J]. Environment International,2005,31,813-821.
    [19]联合国环境规划署:全球环境基金持久性有毒物的区域性评估、收集、整理及评价持究性有毒物排放源、环境程度和影响等数据的指导文件[R].2000,9.
    [20]史贵涛.上海市多介质环境中持久性毒害污染物的健康风险评价[D].华东师范大学博士学位论文,2009.
    [21]廖国立,吴超.矿山不同片区土壤中 Zn、Pb、Cd、Cu和As的污染特征[J].环境科学,2005,26(3):157-161.
    [22]Fan W H,Zhang B,Chen J S,ea tl. Pollution and potential biological toxicity assessment using heavy metals from surface sediments of Jin zhou Bay [J]. Acta Scientiae Circumstantiae,2006, 26,1000-1005.
    [23]Brekhovskikh V F,Volkova Z V.Kocharyan A G. Heavy Metals in the Ivan' kovo Reservoir Bottom Sediments [J]. Water Research,2001,28,278-287.
    [24]Rain U N,Tripathi R D,Vajpayee P. Bioaccumulation Of toxic Metals by Seeds of Euryale Ferox Salisb [J]. Chemosphere,2002,46,267-272.
    [25]李琳琳,单学敏,高丽.持久性有机污染物的研究进展[J].科技信息,2010,3,67-73.
    [26]董玉瑛,冯宵.持久性有机污染物分析和处理技术研究进展[J].环境污染治理技术与设备,2003,4(6):49-55.
    [27]刘征涛,持久性有机污染物的主要特征和研究进展[J].环境科学研究,2005,18(3):93-101.
    [28]王春霞,朱利中,江桂斌主编.环境化学学科前沿与展望[M].北京:科学出版社,2011.
    [29]江桂斌,蔡亚岐,张爱茜.我国环境化学的发展与展望[J].化学通报,2012,(75):4,295-300.
    [30]EPA (U.S.Environmental Protection Agency).Special Report on Environmental Endocr-ine Disruption:An Effects Assessment and Analysis.U.S. Environmental Protection Agency Office of Research and Development Report for the Risk Assessment Forum.Washington,D,C,1997.
    [31]EDSTAC(Endocrine Disruption Screening and Testing Advisory Committee). Final Report. EPA/743/R-98/003.U.S.Environmental Protection Agency.Washington,D,C,1998.
    [32]Li Y F, Bidleman T F, Barrie L A. Global hexachlorocyclohexane use trend s and their impact on the arctic atmospheric environment [J]. Geophysical Research Letters,1998a,25:39-41.
    [33]Li Y F,Cai D J,Singh A. Hexachlorocyclohexane use trends in China and their impact on the environment [J]. Arch Environment Contamination Toxicology,1998b,35:688-697.
    [34]Wei D,Kameya T, Urano K. Environmental management of pesticidal POPs in China:Past, present and future [J]. Environment International,2007,33:894-902.
    [35]Zhang H, Lu Y L, Shi Y J et al. Legal framework related to persistent organic pollutants (POPs)management in China [J]. Environmental Science & Policy,2005,8,153-160.
    [36]李国刚,李红莉.持久性有机污染物在中国的环境监测现状[J].2004,8(20):45-60
    [37]工连生,邹惠仙,韩朔暌,等.多环芳烃分析技术[M].南京:南京大学出版社,1988.
    [38]Okona-mensah K B, Battershill J, Boobis A, et al. An approach to investigating the importanc e of high potency polycyclic aromatic hydrocarbons(PAHs) in the induction of lung cancer by air pollution [J]. Food and Chemical Toxicology,2005,43(7):1103-1116.
    [39]Menzie C A, Potoki B B, Santodomato J. Exposure to carcinogenic PAHs in the environment [J]. Environmental Science & Technology,1992,26(7):1278-1284
    [40]李建新.垃圾焚烧过程重金属污染物迁移机理及稳定化处理技术研究[D].浙江大学博士学位论文,2004.
    [41]Wong J W, Li K, Fang M,ea tl.Toxicity evaluation of sewage sludges in Hong Kong [J]. Environment Internation,2001,27:373-380.
    [42]Zufiaurre R, Olivara A, Chamorro P. ea tl. Speciation of metals in sewage sludge for agricultural uses [J].Chemoshere,2002,47:765-775.
    [43]Everaarts J M,Nieuwenhuize J.Heavy metals in surface sediment and epibenthic macroinverte brates from the coastal zone and continental slope of Kenya [J]. Marine Pollution Bulletin,1995, 31 (4/12):281-289.
    [44]韩春梅,王林山,巩宗强,等.土壤中重金属形态分析及其环境学意义[J].生态学杂志,2005,24(12):1499-1502.
    [45]Jensen S, Johnels A G, Olsson M, ea tl. DDT and PCB in marine animals from Swedish waters [J]. Nature,1969,224(216):247-250.
    [46]Rychman D P,weseloh p, Fox G A,et al. Spatial and Temporal Trends in Organochlorine Contamination and Bill Deformities in Double-Crested Cormorants (Phalacrocorax Auritus) from the Canadian Great Lakes[J]. Environmental Monitoring and Assessment,1998,53,168-195.
    [47]赵红斌,周焕发,王先华,等,多氯联苯对大鼠海马神经元细胞的影响[J].癌变畸变突变,2009,21(4)298-301.
    [48]Meharg A A. Arsenic in Rice—understanding a New Disaster for South—East Asia [J]. Trends in Plant Science,2004,9:415-417.
    [49]Sam K C. Review of Arsenicosis in West BenItal India Clinical Perspective [J]. Environ Ment Science & Technology,2003,10:127-163.
    [50]Yunker,Mark B,Maedonald, et al. PAHs in the Fraser River basin:a critical appraisal of PAHs ratio as in dieators of PAHs source and compositioorganic [J]. Geochemitry,2002,33(4):489-515.
    [51]Budzinski H,Jones I,Belloeq J,et al. Evaluation of sediment contomnation by polycylic Aromatic hydrocarbons in the Gironde estuary [J]. Marine Chemistry,1997,58(1-2):85-97.
    [52]朱青青,王中良.中国主要水系沉积物中重金属分布特征及来源分析[J].地球与环境,2012,3,305-3013
    [53]王震.辽宁地区土壤中多环芳烃的污染特征、来源及致癌风险[D].大连理工大学博士学位论文,2007.
    [54]刘远.持久性有机污染物在渤海沉积物中的分布规律与来源解析[D].大连海事大学硕士学位论文,2010.
    [55]李琪,李钜源,窦月芹,等.淮河中下游沉积物PAHs的稳定碳同位素源析[J].环境科学研究,2012,25(6),672-677.
    [56]Xu J,Yu Y,Wang P, et al. Polyeyclic aromatic hydrocarbonsi n the Surface sediments from Yellow River,China[J]. Chemosphere,2007,67(7):1408-1414
    [57]Yang H H,Chen C M. Emission inventory and sources of polycyclic aromatic hydrocarbons in the atmosphere at a suburban area in Taiwan [J]. Chemosphere,2004,56(10):879-887.
    [58]Jiang Y F, Wang XT, Wang F.et al. Levels,composition profiles and sources of Polycyclic aromatic hydroearbons in urban soil of Shanghai,China [J]. Chemosphere,2009,75(8):1112-1118.
    [59]Capuano F, Cavalchi B, Martinelli, G. et al. Organochlorine Insecticides:Impacts on Human HepG2 Cytochrome Activities and Glutathione Levels [J]. Chemosphere,2005,58(11):1563-1569
    [60]Atsushi M, Akio Y. Birth Defects Risk Associated with Maternal Sport Fish Consumption: Potential Effect Modification by Sex of Offspring [J]. Chemosphere,2005,58(7):897-904
    [61]Nakata H, Hirakawa Y, Kawazoe M et al. Concentrations and Compositions of Organoch lorine Contaminants in Sediments, Soils, Crustaceans, Fishes and Birds Collected from Lake Tai, Hangzhou Bay and Shanghai city region, China [J]. Marine Pollution Bulletin,2005,50(2): 195-207.
    [62]Muller G. Schwermetalle in den Sedimenten des Rheins-Veranderungen seit 1971 [J]. Umschau,1979, (24):778-783.
    [63]Tomlinson D L,Wilson J G, Harris C R,et al.Problems in the assessment of heavy metals levels in estuaries and the formation of pollution index [J]. Helgol Wiss Meeresunters,1980,33, 566.
    [64]Hakanson L. An ecological risk index for aquatic pollution control, a sediment ecological approach [J]. Water Research,1980,14:975-1001.
    [65]Hilton J A. Mathematical Model for Analysis of Sediment Coke Data:Implications for Enrichment Factor Cal-culations and Trace-Metal Transport Mechanisms [J]. Chemical Geology, 1985,48:281-291.
    [66]贾振邦,周华.应用污染负荷指数法评价太子河沉积物中重金属污染[J].环境科技,1992,16(6):39-42
    [67]贾振邦.柴河沉积物中重金属的聚类分析研究[J].环境科技,1993,17(4):41-44
    [68]贾振邦,汪安,吴平.用脸谱图对太了河本溪市区段河流沉积物中重金属污染进行评价的研究[J].北京大学学报(自然科学版),1993,29(6):736-744.
    [69]李如忠,洪天求,熊鸿斌,等.基于未确知数学理论的沉积物重金属污染评价模式[J].农业环境科学学报,2007,26(6):2167-2172.
    [70]樊梦佳,袁兴中,祝慧娜等.基于三角模糊数的河流沉积物中重金心污染评价模型[J]l环境科学学报,2010,8,1701-1706.
    [71]郭广慧,吴丰昌,何宏平,等.太湖水体多环芳烃生态风险的空间分布[J].中国环境科学,2012,32(6):1032-1039.
    [72]李文杰,冯精兰,中君慧,等.黄河濮阳段水体中多环芳烃的健康风险评价[J].河南师范大学学报(自然科学版),2012,40(4):94-97.
    [73]武江越,刘征涛,冯流,等.太湖表层沉积物中PAHs的空间分布及风险评价[J].环境科学研究,2012,25(4):391-396.
    [74]卢腾腾,林钦,柯常亮,等.珠江口伶仃洋水域沉积物中多环芳烃及其生态风险评价[J].中国水产科学,2012,19,(2):336-347
    [91]王学彤,贾英,孙阳昭,等.典型污染区河流表层沉积物中PAHs的分布、来源及生态风险[J].环境科学,2010,31(1):56-63.
    [75]Trang T, Dong T. Byeong-Kyu Lee Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea [J]. Chemosphere,2009,74 ,1245-1253.
    [76]陈卫锋,倪进治,杨红玉,等.闽江福州段沉积物中多环芳烃的分布、来源及其生态风险[J].环境科学学报,2012,32(4):878-884.
    [77]Nicola C,Alessandro B,Santina G,ea tl. Organic pollutants (PAHs, PCBs) in sediments from the Mar Piccolo in Taranto (Ionian Sea, Southern Italy) [J]. Marine Pollution Bulletin,2007, 55,451-458.
    [78]王春香,李媛嫒,徐顺清.生物监测及其在环境监测中的应用[J].生态毒理学报,2010,5,628-638.
    [79]刘伟成,单乐州,谢起浪等.生物监测在水环境污染监测中的应用[J].环境与健康杂志,2008,25(5).
    [80]国家环保局.国家技术监督局:“中华人民共和国国家标准,水质急性毒性的测定-发光细菌法”1995.
    [81]Kuznetsov A M, Rodicheva E K, Medvedeva S E. Biotesting of effluent and river water by lyophilized luminous bacteria biotest [J]. Field Analytical Chemistry & Technology,1998,2(5): 267-275.
    [82]许道艳,李伟,张芳,等.用发光细菌检测法监测海洋沉积综合毒性的可行性研究[J].海洋环境科学,2009,28(5):570-572.
    [83]张亚旦,徐亚同,朱文杰.饮用水水质标准中14种限制物质综合毒性研究[J].安全与环境学报,2009,9(2).154-167
    [84]孙红文,邵敏.藻类对偶氮染料的降解及定量结构—生物降解性研究[J].中国环境科学,1999,4(4):289-292.
    [85]Wong J W, Lai K M, Su D S, ea tl. Availability of Heavy Metals for Brassica Chinensis Grown in an Acidic Loamy Soil Amended with a Domestic and an Industrial Sewage Sludge [J]. Earth and Environmental Science,2001,128(3):339-353.
    [86]Jonsson C M,Toledo M C F. Acute toxicity of endosulfan to the FishHyphessobrycon bifasciatus and Brachydanio rerio [J]. Earth and Environmental Science,1993,25(2):151-155.
    [87]李丽君,刘振乾,徐国栋,等.工业废水的急性毒性效应研究[J].生态科学,2006,25(1):43-47.
    [88]潘力军,高世荣,宋瑞金,等.应用斑马鱼对农药污染的饮用水和地表水源水毒性快速检测[J].中国卫生检验杂志,2007,17,4-6.
    [89]徐建,玉锁,金鑫,等.应用斑马鱼和凡纳对虾诊断污染场地污水的生物毒性[J].环境监测管理与技术,2008,5(20):43-47.
    [90]Lamas M C, Castro A C, Ana M P. Cholinesterase activities in developing amphibian embryos following exposure to the insecticides dieldrin and malathion [J]. Archives of Environ ment Contamination and Toxicology,1985,14:161-166.
    [91]苑宇哲,徐仕霞,姚春生,等.应用蝌蚪快速检测环境变异的两种方法—微核试验和单细胞凝胶电泳[J].四川动物,2004,23(1),74-78.
    [92]周景明,秦占芬,徐晓白.两栖类动物在环境毒理学研究中的应用[J].环境与健康杂志,2006,23(4),368-372.
    [93]王宁,朱颜明,朴明玉等.松花江上游地区汞污染的化学生态应[J].地理科学,2005,25(6),737-741.
    [94]钟碧瑾.两种有机磷农药对沼水蚌蝌蚪毒理学效应的研究[D].福建师范大学硕士论文.2009.
    [95]刘鹏,陈辉,赵文阁.重金属对无尾两栖类蝌蚪的毒性效应研究进展[J].中国农学通报,2011,27(17):273-276.
    [96]林品.关于鹿城区温瑞塘河综合整治的思考[J].中国水运,2011,3,165-166.
    [97]刘捷,贾海.温州市河道水环境污染状况与防治对策[J].浙江水利科技,2007(4):73-74.
    [98]黄朝忠,马岳.温州模式的理论来源与构成唯实[J].中国特色社会主义,2011,7,21-24.
    [99]徐玉荣.基于多重视角的温瑞塘河水环境问题分析及其治理对策研究[D].华东师范大学硕士学位论文,2012.
    [100]http://www.wenzhou.gov.cn/art/2007/10/12/art_4276_52923.html
    [101]温州水质公报(2007-2011)
    [102]Sekabira K,Origa H,Basamba TA,ea tl. Assessment of heavy metal pollution in the urban stream sediments and its tributaries [J]. International Journal Environment Science Teleogy,2010, 7(4):435-446.
    [103]李莲芳,曾希柏,李国学等.北京市温榆河沉积物的雨金属污染风险评价[J].环境科学学报,2007,27,289-297.
    [104]李玉,俞志明,宋秀贤等.运用主成分分析(PCA)评价海洋沉积物中重金属污染来源环境科学[J].2006,27(1):137-141
    [105]M Ha WaBi,Faruque Ahmed,Hiroaki Ishiga. Assessment of metal concentrations in lake sediments of southwest Japan based on sediment quality guidelines [J]. Environment Geology. 2007,52,625-639.
    [106]Merdy P, Huclier S, Koopal L K. Modeling metal particle interactions with an emphas is on natural organic matter [J]. Environmental Science & Technology,2006,40(24):7459-7466.
    [107]Akcay H, Oguz A, Karapire C. Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments [J]. Water Research,2003,37,813-822.
    [110]田林峰,胡继伟,秦樊鑫,等.重金属元素在贵州红枫湖水体中的分布特征[J].中国环境科学,2011,31(3):481-489.
    [111]王小庆,郑乐平,孙为民.淀山湖沉积物孔隙水中重金属元素分布特征[J].中国环境科学,2004,24(4):400-404.
    [112]Burgos P, Madejon M, Perez-de-Mora A, ea tl. Horizontal and vertical variability of soil properties in a trace element contaminated area [J]. Internation Journal Applly Earth Observation 2008,10,11-25.
    [113]Bindler R, Renberg I, Rydberg J,et al. Widespread waterborne pollution in central Swedish lake and the Baltic Sea from pre-industrial mining and metallurgy [J]. Environmental Pollution,2009,157:2132-2141.
    [114]Thevenon F, Guedron S, Chiaradia M,et al. (Pre-) historic changes in natural and anthropogenic heavy metals deposition inferred from two contrasting Swiss Alpine lakes [J]. Quaternary Science Reviews,2011,30:224-233.
    [115]Zaharescu D, Hooda P S, Soler A P,et al. Trace metals and their source in the catchment of the high altitude Lake Respomuso, Central Pyrenees [J]. Science the Total Environment,2009, 407:3546-3553.
    [116]Jayaprakash M,Jonathan M P,Srinivasalu S,et al. Acid-leachable trace metals in sediments from anindustrialized region (Ennore Creek) of Chennai City, SE coast of India:An approach towards regular monitoring [J]. Estuar Coast Shelf Science,2007,22:1-12.
    [117]Janaki-Raman D,Jonathan M P,Srinivasalu S, et al. Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India:Application of acid leachable technique [J]. Environment Pollution,2007,145:245-257.
    [118]Tessier A, Campbell P G C, Bisson M, et al. Sequential extraction procedure for the speciation ofparticulate trace metals [J]. Analytical Chemistry,1979,51(7):844-851.
    [119]Ure A M,Quevauviller, Muntau H, et al. Speciation of heavy metals in solids and harmonization ofextraction techniques undertaken under the auspices of the BCR of the Commission of the EuropeanCommunities [J]. Intertion Journal Environment Analytical Chemistry,1993,51:135-151.
    [120]Yuan C G,Shi J B,Liu J F,et al. Speciation of heavy metals in marine sediments from the East ChineSea by ICP-MS with sequential extraction [J]. Environment Internation,2004,30 (6): 769-783.
    [121]Adamo P, Arienzo M, Imperato M, et al. Distribution and partition of heavy metals in surface andsub-surface sediments of Naples city port [J]. Chemosphere,2005,61:800-809.
    [122]Cuong D T, Obbard J P. Metal speciation in coastal marine sediments from Singapore using a modified BCR-sequential extraction procedure [J]. Applly Geochemistry,2006,21(8):1335-1346.
    [123]于瑞莲.泉州湾潮间带沉积物中重金属元素的环境地球化学研究[D].东北师范大学博士学位论文,2009
    [124]隆茜,张经.陆架区沉积物中重金属研究的基本方法及其应用[J].海洋湖沼通报,2002,3(3):25-35.
    [125]Liu E F, Shen J, Liu X Q. Geochemical features of heavy metals in core sediments of northwestern Taihu Lake, China [J]. Chinese Journal Geochemistry,2005,24(1):73-81.
    [126]吴攀,刘丛强,张国平,等.碳酸盐岩矿区河流沉积物中重金属的形态特征及潜在生态风险[J].农村生态环境,2004,20(3):28-31.
    [127]莫争,王春霞,陈琴,等.重金属Cu、Pb、Zn、Cr、Cd在土壤中的形态分布和转化[J].农业环境保护,2002,21(1):9-12.
    [128]Mao M Z. Speciation of metals in sediments along the Le An River,CERP Final Report [R]. France:Imprimerie Jouve Mayenne,1996,55-57.
    [129]王岚,王亚平,许春雪等.长江水系表层沉积物重金属污染特征及生态风险性评价[J].环境科学,2012,33(8):2599-2605.
    [130]赵智杰,贾振邦,张宝权.应用脸谱图与地积累指数法综合评价沉积物中重金属污染的研究[J].环境科学,1993,14(4):48-52.
    [131]张婧,王淑秋,谢琰,等.辽河水系表层沉积物中重金属分布及污染特征研究[J].环境科学,2008,29(9):2413-2417.
    [132]Susana O R,Daniel de la R,Lazaro L,ea tl. Assessment of heavy metal levels in Almendares River sediments—Havana City,Cuba [J]. Water Research,2005,39,3945-3953.
    [133]Hakanson L. An ecological risk index for aquatic pollution control-A sediment ecological approach [J], Water Research,1980,14(8):975-1001.
    [134]刘芳文,颜文,王文质,等.珠江口沉积物重金属污染及其潜在生态危害评价[J].海洋环境科学,2002,21(3):34-38.
    [135]刘成,王兆印,何耘,等.环渤海湾诸河口潜在生态风险评价[J].环境科学研究,2002,15(5):33-37.
    [136]崔毅,辛福言,马绍赛,等.乳山湾沉积物重金属污染及其生态危害评价[J].中国水产科学,2005,12(1):83-89.
    [137]范文宏,张博,陈静生,等.锦州湾沉积物中重金属污染的潜在生物毒性风险评价[J].环境科学学报,2006,26(6):1001-1005.
    [138]徐争启,倪师军,庹先国等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,31(2):112-115.
    [139]汪庆华,董岩翔,周国华等.浙江省土壤地球化学基准值与环境背景值[J].生态与农村环境学报,2007,23(2):81-88
    [140]Sutherland R A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii [J]. Environment Geology,2000,39,330-341.
    [141]Reimann C, De Caritat P. Distinguishing between natural and anthropogenic sources for elements in the environment:regional geochemical surveys versus enrichment factors [J]. Science Total Environment,2005,33,791-107.
    [142]Liu W X, Li X.D, Shen Z G,et al. Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary [J]. Environment Pollution,2003,121:377-388.
    [143]Roussiez V, Ludwig W, Probst J L, et al. Background levels of heavy metals in surficial sediments of the Gulf of Lions (NWMediterranean):an approach based on 133Cs normalization and lead isotope measurements [J]. Environment Pollution,2005,138,167-177.
    [144]Cevik F, Goksu M Z L, Derici O B,ea tl. An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses [J]. Environment Monitor Assessment,2009,152,309-317.
    [145]战玉柱,姜霞,陈春霄,等.太湖西南部沉积物重金属的空间分布特征和污染评价[J].环境科学研究,2011,4,2663-2670.
    [146]N'guessan Y M, Probst J L,T. Bur,ea tl. Trace elements in stream bed sediments from agricultural catchments (Gascogne region, S-W France):Where do they come from? [J]. Science Total Environment,2009,407,2939-2952.
    [147]Nriagu J O, Pacyna J M, Quantitative assessment of worldwide contamination of air, water and soils with trace metals [J]. Nature,1988,333,134-139.
    [148]Xu S,Liu W,Tao S. Emission of polycyclic aromatic hydrocarbons in China [J]. Environmen t Science & Technology,2006,40,702-708.
    [149]Wilcke W. Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil [J]. Geoderm a,2007,141,157-166.
    [150]Lang C,Tao S, Liu W, et al. Atmospheric transport and outflow of polycyclic aromatic hydrocarbons from China [J]. Environmnt Science & Technology,2008,42,5196-5201.
    [151]冯精兰,牛军峰.长江武汉段不同粒径沉积物中多环芳烃(PAHs)分布特征[J].环境科学,2007,28(7):1573-1577.
    [152]麦碧娴,林峥,张干,等.珠江三角洲河流和珠江口表层沉积物中有机污染物研究-多环芳烃和有机氯农药的分布特征[J].环境科学学报,2000,20(2):192-197.
    [153]程远梅,祝凌燕,田胜艳,等.海河及渤海表层沉积物中多环芳烃的分布与来源[J].环境科学学报,2009,29(11):2420-2426.
    [154]韩菲,马溪平,刘颖颖.辽河水中PAHs的污染水平及源解析[J].2009,(25)6:68-72.
    [155]Li G C, Xia X H, Yang Z F, et al. Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River,China [J]. Environment Pollution,2006,144(3):985-993.
    [156]武江越,刘征涛,冯流等.太湖表层沉积物中PAHs的空间分布及风险评价[J].环境科学研究,2012,25(4):391-396.
    [157]宁怡,柯用春,邓建才.巢湖表层沉积物中多环芳烃分布特征及来源[J].湖泊科学,2012,24(6):891-898.
    [158]周婕成.城市降雨径流中多环芳烃的污染特征、源解析及生态风险评价[D].华东师范大学,2011.
    [159]吕金刚.上海市降水降尘中PAHs和PCBs的时空分布特征与源解析[D].华东师范大学,2012.
    [160]张祖麟,洪华生,陈伟琪,等.闽江口水、间隙水和沉积物中有机氯农药的含量[J].环境科学,2003,24(1):117-120.
    [161]Horii Y, Ohura T, YamashitaN, et al. Chlorinated polycyclic aromatic hydrocarbons in sediments from industrial areas in Japan and the United States [J]. Archives of environmental contamination and toxicology.2009,57,651-660.
    [162]Malik A,Verma P,Singh A K,ea tl. Distribution of polycyclic aromatic hydrocarbons in water and bed sediments of the Gomti River, India [J]. Environment Monit Assess,2011,172,529-545.
    [163]Li W H, Tian Y Z, Shi G L,et al. Concentrations and sources of PAHs in surface sediments of the Fenhe reservoir and watershed, China [J]. Ecotoxicology and Environmental Safety,2012, 75,198-206.
    [164]Sun J H,Wang G L,Chai Y,ea tl. Distribution of polycyclic aromatic hydrocarbons (PAHs) in Henan Reach of the Yellow River, Middle China [J]. Ecotoxicology and Environmental Safety, 2009,72,1614-1624.
    [165]Shen Q,Wang E K Y, Zhang E W,ea tl. Characterization and sources of PAHs in an urban river system in Beijing, China [J]. Environment Geochemistry Health,2009,31,453-462.
    [166]Feng C L, Xia X H, Shen Z Y,ea tl. Distribution and sources of polycyclic aromatic hydrocarbons in Wuhan section of the Yangtze River, China [J]. Environment Monitor Assessment,2007,133,447-458.
    [167]Xu J,Yu Y,Wang P, Guo W F,ea tl. Polycyclic aromatic hydrocarbons in the surface sediments from Yellow River, China [J]. Chemosphere,2007,67,1408-1414.
    [168]Jiang B, Zheng H L, Huang G Q ea tl. Characterization and distribution of polycyclic aromatic hydrocarbon in sediments of Haihe River,Tianjin,China [J]. Journal Environment Science,2007,19,306-311.
    [169]Shi G L,Feng Y C,Wu J H,ea tl. Source identification of Polycyclic Aromatic Hydrocarb Ons in urban pariculate matter of Tanshan, China [J]. Aerosol and Air Quality Research,2009, 9,309-315.
    [170]Mai B X, Qi S H, Zeng E Y,ea tl. Distribution of polycyclic aromatic hydrocarbons in the coastal region off Macao,China:assessment of input sources and transport pathways using compositional analysis [J]. Environment Science & Technology,2003,37,4855-4863.
    [171]Countway R E, Dickhut R M, Canuel E A. Polycyclic aromatic hydrocarbon (PAHs) distributions and associations with organic matter in surface waters of the York River, VA Estuary [J]. Organic Geochemistry,2003,34:209-224.
    [172]Stout S A, Uhler A D, Emsbo-Mattingly S D. Comparative Evaluation of background anthropogenic hydrocarbons in surficial sediments from Nine urban waterways [J]. Environmental Science & Technology,2004,38:2987-2994.
    [173]Mastral A M,Callen M S. A review on polycyclic aromatic hydrocarbon (PAHs) emission from energy generation [J]. Environmental Science & Technology,2000,34,3051-3057.
    [174]Xu S, Liu W, Tao S. Emission of polycyclic aromatic hydrocarbons in China [J]. Environmental Science & Technology,2006,40(3):702-708.
    [175]Oanh N T K, Nghiem L, Phyu Y L. Emission of polycyclic aromatic hydrocarbons toxicity and mutagenicity from domestic cooking using sawdust briquettes, wood, and kerosene [J]. Environmental Science & Technology,2002,36,833-839.
    [176]Nisbet I C T, Lagoy P K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons [J]. Regulatory Toxicology and Pharmacology,1992,16:290-300.
    [177]Kalf D F, Crommentuijn T, Vandeplassche E J. Environment quality objectives for 10 Polycyclic aromatic hydrocarbons (PAHs) [J]. Ecotoxicology and Environmental Safety,1997,36: 89-97.
    [178]曹治国,刘静玲,王雪梅,等.漳卫南运河地表水中溶解态多环芳烃的污染特征、风险评价与来源辨析[J].环境科学学报,2010,30(2):254-260.
    [179]Dennis F Kalf,Trudie Crommentuijn, Erik J. ea tl. Environmental quality objectives for 10 polycyclic aromatic hydrocarbons(PAHs) [J]. Ecotoxicology and Environmental Safety,1997, 36:89-97.
    [180]Long E R, Macdonald D D, Smith SL, et al. Incidence of adverse biological effects with range of chemical concentrations in marine and estuarine sediments [J]. Environmental Manage, 1995,19(1):81-97.
    [181]王学彤,贾英,孙阳昭,等.典型污染区河流表层沉积物中PAHs的分布、来源及生态风险[J].环境科学,2010,31(1):153-158.
    [182]Chen Y J, Sheng G Y, Bi X H, et al. Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China [J], Environment Science & Technology,2005,39,1861-1867.
    [183]Ying L, Ling C, Zhao J F. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of rivers and an estuary in Shanghai, China [J]. Environmental Pollution,2008, 154,298-305.
    [184]Puglisi E, Cappa F, Fragoulis G, ea tl. Bioavailability and degradation of phenanthrene in compostamended soil[J]. Chemosphere,2007,67:548-556.
    [185]Wang Z D,Fingas M, ShuY Y, ea tl. Quantitative characterization of PAHs in burn residue and soot samples and differentiation of pyrogenic PAHs from petrogenic PAHs the 1994 mobile burn study[J].Environmental Science & Technology,1999,33,3100-3109.
    [186]Katsoyiannis A, Terzi E, Cai QY ea tl. On the use of PAHs molecular diagnostic ratios in sewage sludge for the understanding of the PAHs sources. Is this use appropriate? [J]. Chemosphe re,2007,69(8):1337-1339.
    [187]Yunker M B, Macdonald R W, Vingarzan R, ea tl. PAHs in the Fraser River basin:a critical appraisal of PAHs ratios as indicators of PAHs source and composition [J]. Orgion Geology chemimstry,2002,33:489-515.
    [188]Christensen E R, Arora S. Source apportionment of PAHs in sediments using factor analysis by time records:Application to LakeMichigan, USA [J]. Water Research,2007,41(1):168-176.
    [189]Zhang Z, Huang J, Yu G ea tl. Occurrence of PAHs, PCBs and organo chlorine pesticides in the Tonghui River of Beijing, China [J]. Environment Pollution,2004,130:249-61.
    [190]Guo Z, Lin T, Zhang G,et al. High-resolution depositional records of polycyclic aromatic hydrocarbons in the central continental shelfmud of the East China Sea [J]. Environmental Science & Technology,2006,40(17):5304-5311.
    [191]Zakaria M P, Takada H, Tsutsumi S, et al. Distribution of polycyclic aromatic hydrocarb ons(PAHs) in rivers and estuaries in Malaysia:a widespread input of petrogenic PAHs [J]. Environ mental Science & Technology,2002,36:1907-1918.
    [192]Wang Z, Li K, Lambert P, Yang C. Identification, characterization and quantitation of pyrogenic polycylic aromatic hydrocarbons and other organic compounds in tire fire products [J]. journal of chromatography a,2007,1139:14-26.
    [193]Dobbins R A, Fletcher R A, Benner J ea tl. Polycyclic aromatic hydrocarbons in flames, in diesel fuels, and in diesel emissions [J]. Combust Flame,2006,144:773-781.
    [194]Ye B, Zhang Z, Mao T. Pollution sources identification of polycyclic aromatic hydrocar bons of soils in Tianjin area, China [J]. Chemosphere,2006,64,525-534.
    [195]Gschwend P M, Hites RA. Fluxes of Polycyclic Aromatic Hydrocarbons to Marine and Lacustrine Sediments in the Northeastern United States [J]. Geochim Cosmochim Acta,1981,45, 2359-2367.
    [196]Budzinski H, Jones I, Bellocq J,et al. Evaluation of sediment contamination bypolycyclic aromatic hydrocarbons in the Gironde estuary [J]. Marine Chemistry,1997,58,85-97.
    [197]Gonzalez J J,Vinas L, FrancoMA, et al. Spatial and temporal distribution of dissolved/ dispersed aromatic hydrocarbons in seawater in the area affected by the Prestige oil spill [J]. Mar Pollut Bull,2006,53,250-259.
    [198]Zuo Q, Duan Y H, Yang Y. Source apportionment of polycyclic aromatic hydrocarbons in surface soil in Tianjin[J], China. Environment Pollution,2007,147:303-310.
    [199]刘伟成,单乐州,谢起浪,等.生物监测在水环境污染监测中的作用[J].环境与健康杂志,2008,259(50):456-459.
    [200]Fort D J, Rogers R L, Paul R R, et al. Effects of pond water, sediment and sediment extract samples from New Hampshire, USA on early Xenopus development and metamorphosis: Comparison to native species [J]. Journal of Applied Toxicology,2001,21 (3):199-209.
    [201]朱文杰,郑天凌,李伟民.发光细菌与环境毒性检测[M].中国轻工也出版社,2009.
    [202]陈瑞瑞.典型城市黑臭河道水体生物毒性研究[D].华东师范大学,2012.
    [203]刘赞,洪蓉,朱文杰,等.苏州河底泥及河水生物毒性的研究[J].华东师范大学学报(自然科学版),2004,1,93-98
    [204]雷炳莉.大沽排污河和永定新河水样的生物毒性[J].上海大学学报(自然科学版)2010,12(6):567-571.
    [205]Carignan R, Rapin F, Tessier A. Sediment porewater sampling for metal analysis:a comparison of techniques [J]. Geochem Cosmochim Acta,1985,49:2493-2497
    [206]Schults D W, Ferraro S P, SmithLM, et al. A comparison of methods for collecting interstitial water for trace organic compounds and metal analysis [J]. Water Research,1992,26: 989-995.
    [207]Ankley G T, Schubauer-Berigan M K. Comparison of techniques for the isolation of sediment pore water for toxicity testing [J]. Arch Environ Contam Toxicol,1994,27,507-519.
    [208]HoK,Burgess R,Pelletier M,et al. An overview of toxicant identification in sediments and dredged materials [J]. Marine Pollution Bulletin,2002,44(4):381-389.
    [209]王子健,骆坚平,查金苗.水体沉积物毒性鉴别与评价研究进展[J].环境污染与防治2009,31(12):35-41.
    [210]杨波.运用热带爪蟾(Xenopus tropicalis)胚胎检测环境样品的生态毒性[D].华东师范大学,2012.
    [211]Shi H H,Yuan J, Dai Z J ea tl. The teratogenic effects of sediments from the Yangtze Estuary and adjacent bay, China, on frog embryos [J]. Environmental Earth Science,(上网,未刊出)
    [212]陈瑞瑞,蔡晓妍,杨波,等.典型城市黑臭河道水体生物毒性研究[J].生态毒理学报,2012,7(2),201-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700