用户名: 密码: 验证码:
加拿大格兰德河水体磷素形态转化及水生生物对磷素吸收释放研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷素是自然界重要的营养元素,在水生态系统中通常为首要的限制因子,其在水环境中的赋存、迁移和转化等过程对水生态系统的初级生产力具有重要意义,但过量的磷素进入水体后会严重影响水体质量,造成水体富营养化等一系列环境问题,因此充分了解水体磷素循环状况对于制定相关水体最佳养分管理措施具有十分重要的意义。目前对于水体磷素的研究逐渐从关注不同形态磷的浓度变化,转向定量描述磷素在不同形态间及在生物相-非生物相之间的转化过程,但对于某一具体河流在这方面的综合研究,例如水体可溶性有机磷(DOP)潜在生物可利用性及对水体活性磷库的贡献、精确定量正磷酸盐(P043-)被水生生物吸收和释放的过程,及占水体磷素绝大多数的悬浮颗粒态磷(PP)的潜在可利用活性的研究仍然较少,且还不完善,因此本研究从水体不同形态磷的生物可利用性角度,以汇入北美五大湖之一Eire湖的最大支流、位于加拿大安大略省的格兰德河流域为研究对象,采用同位素标记示踪技术和化学连续提取分级等方法,对不同磷形态季节性变化、相互转化关系、与水环境的关系及在被水生生物吸收释放等过程进行了研究,这将有助于加深对格兰德流域水体磷素循环过程的认识,加深了解磷素地球化学特性,为指导该流域生产的磷素养分管理,防止面源污染发生具有重要的理论意义和实践价值。主要结论如下:
     1.格兰德河水体中可溶性有机磷参与磷素循环的研究
     在格兰德中段、按水流方向设置三处采样点:布里奇波特(Bridgeport)、维多利亚(Victoria)和布莱尔(Blair)。主要探讨了水中可溶性有机磷(DOP)对水中可溶性生物活性磷(SRP)库的贡献、影响DOP浓度变化的特定酶种类及活性大小。这3个采样位点在本试验进行阶段水体DOP的平均浓度分别为11.24μg PL-1,16.73μgP L-1和40.19μg P L-1。在比较不同过滤压力条件(0mm Hg,100mm Hg,300mm Hg及500mm Hg)对水中DOP浓度影响时,发现水样的过滤压力对水体DOP浓度有显著影响(P<0.05),即过滤压力越大,滤液中的DOP浓度越高,这是由于在过滤过程中浮游动植物等水生生物部分断裂的肢体通过了滤膜进入滤液中成为DOP的一部分,或部分活性固体颗粒物的细胞膜在压力下破裂,使细胞液等含磷物质(主要为RNA等)渗入到滤液中从而影响了滤液中的DOP浓度;在探讨自然水体DOP对SRP库贡献的试验中,发现自然状态下水中DOP浓度随时间推移有逐渐减小的趋势,而水体SRP浓度有缓慢上升趋势,且不同采样季节格兰德河水体中的DOP的浓度下降速度与SRP浓度增加速率相似(都在小于2μg P L-1h-1范围变化);在随后的水体酶活测定试验中发现格兰德河水体中存在的碱性磷酸酶在降解DOP再生为生物可利用活性磷的过程中发挥了及其重要的作用,表明DOP不但可以参与水体磷素的循环过程,而且是水体生物可利用活性磷的来源之一;同时也发现格兰德河水体胞外自由态碱性磷酸酶活性较强,占水体总碱性磷酸酶活性的50%左右;在DOP参与下的格兰德河水体磷素周转时间为10-24h,对比之前学者们的研究结果可知格兰德河是水体营养循环速度很快,水体生物具有较强的光合作用和新陈代谢活动旺盛的一条富营养化河流。
     2.格兰德河水体中不同磷形态的季节变化及其与水环境的关系
     格兰德河干流与支流水体总磷(TP)在2012年的平均浓度分别为87.42和82.15μg P L-1,单从水体TP浓度来说这两条河流都属于富营养化河流。相关性显示康内斯托加河水体TP浓度变化对于格兰德水体TP变化间没有显著影响(P<0.05),表明支流水体虽然携带较高磷浓度汇入干流,并不对水体磷素营养浓度产生决定性的影响,表明格兰德河中段水体磷素除了来源于支流输入以外,还有其它含较高磷素浓度的输入源,可能与支流河口位置与格兰德河中段采样位点间存在直接向格兰德河排放含有大量营养元素污水的滑铁卢市污水处理厂有关;格兰德河中段水体与支流康内斯托加河口处SRP和DOP全年平均浓度分别为9.77和10.14μg PL-1,10.85μg P L-1和16.28μg P L-1,相关性分析显示支流水体SRP和DOP浓度对于流水体相应指标无显著影响(P>0.05),表明格兰德河中段水体的溶解态磷(SRP和DOP)除来源于支流输入以外,在支流河口与格兰德河中段采样位点之间的河段还存在大量外源性溶解态磷输入;格兰德河干流与支流水体悬浮颗粒态磷(PP)全年平均浓度分别为67.51和55.30μg P L-1,相关性分析显示格兰德河支流河口水体颗粒态磷浓度对干流水体颗粒态磷浓度存在显著影响(P<0.05),可推测占格兰德河支流水体总磷全年平均百分比69.09%的悬浮颗粒态磷在汇入干流后可以随水流向下游移动,对格兰德河中段干流水体悬浮颗粒态磷贡献明显,格兰德河中段区域水体颗粒态磷主要来源于支流的输入。
     相关性分析显示格兰德河水体PP与DOP浓度之间存在显著相关关系(P<0.05),表明藻类等水生有机体是兰德河水体PP重要组分,当藻类等浮游生物生长旺盛时,部分小型水生生物或其肢体在过滤水样时可以通过滤膜进入滤液成为DOP的一部分,而部分大型藻类等水生生物会被滤膜拦截成为悬浮颗粒态含磷物质的一部分;PP与SRP之间也存在极显著相关关系,表明PP可以作为潜在活性磷成为水中生物可利用磷库SRP的重要补充。格兰德河水温对TP、PP、SRP和DOP均有显著影响,其中水温与TP呈现极显著负相关关系,表明水生生物在水温较高的条件下活性较强,对水体磷素的吸收利用需求增加,因此水中TP浓度会随着水温的增加而呈现下降趋势;由于细菌、藻类等水生生物活性会随着水中溶解氧含量的增加而增加,而本研究显示溶解氧与水体TP间呈现极显著相关关系(P<0.01),表明细菌、藻类等浮游水生有机体对格兰德河水体TP组成贡献较大。
     3.格兰德河水体中悬浮颗粒态磷的潜在活性分析
     用化学连续分级提取方法获得格兰德河干流与支流水体悬浮颗粒态磷5种可潜在活性磷组分年度平均浓度变化趋势都呈现:BD-SRP>85℃NaOH-SRP> NH4C1-SRP> HC1-SRP> NaOH-SRP;其中BD-SRP组分平均浓度最高,甚至比NaOH-SRP浓度高出几倍,由于BD-SRP代表了与铁离子、铝离子、锰离子等金属离子结合对水中氧化还原状态很敏感的磷素组分,因此推测该区域格兰德河干流和支流水体从陆地生态系统受纳的含磷颗粒态物质的地球化学性质相似,它们流域的土壤可能都是由含铁、锰、镁和铝等金属离子相对丰富的基性岩母质发育而来;相关性分析显示,格兰德河水体悬浮颗粒态磷各可提取组分中,NH4CI-SRP浓度与水体总悬浮颗粒态磷浓度间存在良好的相关关系,表明代表不稳定结合态生物活性磷的NH4CI-SRP可以随着水体悬浮PP的增加,对水体生物可利用活性磷库产生一定影响;同时85℃NaOH-SRP与其它可提取组分相比浓度相对较高,且与水体DOP之间存在良好地相关关系,也说明格兰德河水体悬浮颗粒态磷大多以有机态形式存在,间接表明格兰德河水中细菌、藻类、原生动物等水生生物由于接受充足的光照和能量而生长旺盛、数量较多、活性较强、生物量丰富;格兰德河干流与支流水体悬浮颗粒态磷5种潜在活性组分中浓度最低的潜在活性磷组分都为NaOH-SRP,由于此种磷素组分代表了存在于腐殖质中或富集在微生物体内的含磷有机物,因此可以推断格兰德河干流与支流水体中与土壤、岩石结合的小型细菌藻类等有机颗粒物、水中腐殖质含量较少;格兰德河干流与支流水体悬浮颗粒态磷各潜在活性磷组分平均浓度高低值出现在不同季节,表明格兰德河干流域支流水环境条件存在一定差异,因为在不同水环境条件下水体腐殖质含量、细菌藻类等水生生物种群及数量会有所不同,水体悬浮颗粒态磷中有机组分含量随季节变化会存在差异,进而对水体悬浮颗粒态磷中潜在可利用磷素组分的释放过程和释放量产生影响。
     4.水生生物对格兰德河水体中磷素的吸收和释放过程研究
     采用同位素示踪技术(32P)探讨了河流生态系统中有关正磷酸盐循环的几个方面内容:格兰德河水体两种不同形态水生生物:河床石面水生生物(包括生长在河底卵石表面的表层藻类及微型底栖动物等)、悬浮颗粒态水生生物(细菌蓝藻等浮游生物)对水中被32P标记的正磷酸盐(32P-P043-)的吸收状态的研究结果显示在加入32P-PO43-后的前两个小时内河床石面生物和悬浮颗粒态水生生物体对32P的吸收速度很快,但随着时间推移河床石面生物逐渐占水中32P-PO43-吸收量的绝大多数,水中悬浮颗粒态水生生物体内所含32P的量由于被河床石面水生生物等其他水生生物吞食等原因呈下降趋势。水中河床石面生物和悬浮颗粒态水生生物在温度较高的夏季8月份对水中正磷酸盐(PO43-)的吸收速率最大,分比为0.33和0.24μg Pcm-2h-1;冬季12月份水中河床石面生物和悬浮颗粒态水生生物对水体正磷酸盐(PO43-)的吸收速率最小,分别为0.036和0.034μg P cm-2h-1。在对水体中存在的不同尺寸水生生物对PO43-的吸收贡献大小的研究发现无论季节如何变化,格兰德河水中尺寸在0.2~2μm的超微浮游生物(细菌)都是格兰德河水体吸收正磷酸盐(PO43-)的主要水生生物种类。水中正磷酸盐(PO43-)的周转时间呈现温度较高周转时间越短趋势,在夏季8月份最短,大概在0.75h左右,冬季相对较长大概在2.67h左右。用凝胶柱层析法对水体32P-PO43-被水生生物吸收利用后释放再生的形态的研究结果表明格兰德河水生生物释放32P磷的形态主要以小分子量(≥200MW)溶解态PO43-为主。
     综上所述,本文对格兰德河干流与支流水生态系统各种形态磷素在不同季节的变化及不同磷形态之间之间相互转化情况,对目前研究较少的水体可溶性活性磷和水中悬浮颗粒态磷的潜在生物可利用性进行了探讨,并定量描述了格兰德河水体正磷酸盐在生物相和非生物相之间的转化情况,为制定该流域磷素养分最佳管理措施提供了科学依据。
Compared with other nutrient elements which are essential for life, such as carbon, hydrogen and sulphur etc. under natural conditions, phosphorus is always the main limiting element for aquatic ecosystems. Such changes as its emission, migration and transformation are of great significance to the primary productivity of aquatic ecosystems. In this study, the Grand River, Ontario, Canada, the largest tributary of one of the Great Lakes, Eire, was chosen to evaluate the relationship between the seasonal variation of different forms of phosphorus and water physicochemical properties. Such methods as the isotope labeling and chemical sequential extraction and so on were applied to explore the activity of the three specific forms of phosphorus in water, that is, the dissolved organic phosphorus (DOP), orthophosphate (PO43-) and suspended particulate phosphorus (PP), and their involvement in water phosphorus cycling for better understanding of the three major processes of the water phosphorus cycling in watershed of the Grand River:the absorption and release of PO43-from of the plankton and the benthos, the acquisition of the conceptual model based on the involvement of the phosphorus in such aquatic organisms as the phytoplankton and bacteria by being prey to the zooplankton and the protozoa, as well as the contribution of the potentially biological available phosphorus released from the DOP and suspended PP due to changes in environmental conditions to the total phosphorus in water.
     The study is mainly composed of four parts.
     The first part is about the activity of the DOP in rivers and its involvement in water phosphorus cycling. Three sampling points were chosen in the midsection of the Grand (?) from the upstream to the downstream:Bridgeport, Victoria and Blair, to investigate the contribution of the DOP in water to the soluable reactive phosphorus (SRP), and the specific species of enzyme influencing the DOP concentration in water and their activities. The average DOP concentration in the three sampling points was11.24μg P L-1,16.73μg P L-1and40.19μg P L-1respectively. Due to the different exogenous input such as the sewage discharge and disposal from the sewage treatment plants etc., these three sampling points represent the natural water environment under different nutrition conditions. Comparing the influence of different filtration pressures (0mm Hg,100mm Hg,300mm Hg and500mm Hg) on the DOP concentration in water, it was found that there was a positive correlation between the filtration pressures of water samples and the DOP concentration of the filtrates (P<0.05), that is, the larger the filtration pressure, the higher the concentration of the DOP in the filtrates, which may due to the fact that some of the limbs of the zooplankton and phytoplankton, immersed into the filtrates through the filter membrance and became part of the DOP and also the cell membrance of part of active solid particles bursted under pressure, resulting in the penetration of such phosphorus substances as cell sap (mainly for RNA etc.) into the filtrates and influencing the DOP concentration in the filtrates. Exlporing the contribution of the DOP in natural water to the SRP, it was shown that the DOP concentration in natural water decreased gradually over time,and besides the decline of the DOP concentration in water of the Grand River in different sampling seasons was similar with the increase of the SRP (They changed similarly at the range less thatn2ug PL-1h-1). It was also shown through the following water enzyme assay that the alkaline phosphatase (AP) in water of the Grand River played an important part in the DOP degradation into the PO43-which indicates that the DOP can participate in the water phosphorus cycling and futhermore it is one source of the water SRP. Besides, the AP existed not only in bodies of the plankton in water but also in the extracellular free forms with strong activity in water, acconting for about50%of the total AP activity of the water body. With the involvement of the DOP, the turnaround time of water phosphorus in water of the Grand River was10to24hours. Thus it could be got through the comparison of the experimental results from former studies that the Grand River is one river of eutrophication, with fast water nutrient cycling, strong photosynthesis and active metabolism for the aquatic life.
     The second part discusses the relationship between the seasonal variation of different forms of phosphorus in water and water physicochemical properties. The watershed in the midsection of the Grand River and the Conestogo River, one important tributary of the Grand River, was studied. Results indicated that the average concentration of the total phosphorus (TP) in water of the Grand River and the Conestogo River in2012was individually87.42μg P L-1and82.15μg PL-1, which indicates clearly that these two rivers are of eutrophication. The correlation analysis indicated that the TP concentration variation in water of the Conestogo River had no impact on the TP in the Grand River (p=0.061), which implies that although the phosphorus in the water of the Conestogo River flowed into the main stream in the midsection it did not bring great impact on the nutrient concentration of water phosphorus. Thus it can be inferred that besides the input from the tributaries, for the water phosphorus in the midsection of the Grand River there are other input sources with high phosphours concentration, which may be due to the fact that there are sewage treatment plants of Waterloo which discharge waste water with abuandant nutrients directly into the Grand River at about15km along the river between the river mouth of the Conestogo River and the Bridgeport, the midsection of the Grand River. The annual average concentration of the SRP and the DOP in water of the midsection of the Grand River was9.77μg P L-1and10.85μg P L-1. That in the river mouth of the Conestogo River was10.14μg P L-1and16.28μg P L-1respectively. The correlation analysis showed that there was no good correlation between the SRP concentration and the DOP concentration at these two sampling points (P>0.05), which infers that besides the input from the Conestogo River, for the soluable phosphorus (SRP and DOP) there are input of the exogenous soluable phosphorus into water of the Grand River. The annual average concentration of the PP in water of the Grand River and the Conestogo River was67.51μg P L-1and55.30μg P L-1. It can be found through the correlation analysis that there was good correlation between the concentration of the suspended PP in midsection of the Grand River and the suspended PP concentration in the river mouth of the Conestogo River (P<0.05), thus it can be inferred that the suspended PP, accounting for67.09%of the TP in water of the Conestogo River, entered into the water body of the Grand River, flowed into the downstream and did great contribution to the suspended PP in the Grand River. The suspended PP in watershed of the midsection of the Grand River mainly came from the input from the tributaries.
     The third part is the geochemical properties analysis of suspended particulate phosphorus in water.Chemical approaches could be used to extract5kinds of potentially mobile phosphorus in the water particulate phosphorus in the Grand River and its tributary, Conestogo River. The variation trend of these five kinds was BD-SRP>85℃NaOH-SRP> NH4C1-SRP> HC1-SRP> NaOH-SRP,which indicates that the average concentration of BD-SRP in suspended particulate phosphorus was the highest, and it was even several times higher than that of NaOH-SRP. As the BD-SRP was the phosphorus fragment which combined with such metal ions as the iron ion, the aluminum ion and the manganese ion etc., and was quite sensitive to the redox state in water, it could be speculated that in this area in water of the main stream of the Grand River as well as its tributaries, the geochemical properties of the substances with phosphorus particles received from the terrestrial ecosystems were similar. It was possible that the soil in the watershed developed from the basic rock parent material abudant in such metal ions as iron, magnesium manganese and aluminum and so on. The correlation analysis showed that in each extraction fragment from the suspended particulate phosphorus in water of the Grand River, there was a good correlation between the NH4C1-SRP and the total water suspended PP, implying that with the increase of the water suspended PP, the NH4C1-SRP, representing bioactive phosphorus in instable combination, could make the potentially mobile phosphorus in water increase accordingly. Simultaneously, compared with the concentration of other extraction fragments, that of the85℃NaO-SRP was relatively high and it was in good correlation with the DOP in water, which stated that the water suspended PP in the Grand River mostly existed in organic forms and indicated that in Grand River the biomass was abundantly available and the activity of the aquatic life was strong. In the five potentially active fragments the concentration of the NaOH-SRP was the lowest. As it represented phosphorus organisms existing in humus or gathering in microorganisms, it could be concluded that water of the Grand River and the Conestogo River, was poor in such organic particulate matters as small bacteria and algae combined with soil and rock,humus and small bacteria and algae absorbed by the humus. The activity of the aquatic life in particles such as the algae etc. in water of the Grand River and the Conestogo River was strong. Such aquatic life as the bacteria, the alge and the protozoa were abundant and grew vigorously. As in different water bodies, the water environment such as the population quantity of the aquatic life (for example, the conten of the humus, the bacteria and the algae etc.) may have impact on the release and the absorption of the potentially available phosphorus fragments in water suspended PP with the seasonal variation, the high and low value of the average concentration of each potentially active phosphorus fragment in the water suspended PP in Grand River and the Conestogo River were various in different seasons. Thus it could be conculded that for the Grand River there was difference in the water environment between the main stream watershed and the watershed of its tributaries
     The fourth part concerns the absorption and release of orthophosphate by the aquatic life. The isotope labeling (32P) was used to discuss several aspects of the orthophosphate cycling in river ecosystem. In water of the Grand River, there are two different kinds of aquatic lives:the aquatic organisms at the surface of pebbles in the riverbed (including the suface algae living at the surface of pebbles at the bottom of rivers as well as the microbenthons), and the aquatic lives in suspended particles (such plankton as the blue algae). It was showed through the experiment about the absorption of the orthophosphate labelled by the32P,(namely32P-PO43-) in water that the amount of the32P in these two kinds of aquatic lives increased sharply the first two hours after adding32P-PO43-.However, as time went on, the aquatic organisms at the surface of pebbles in the riverbed gradually accounted for the vast majority of the absorption of32P-PO43-in water and the amount of32P in the acquatic organisms in suspended particles in water decreased due to such factors as its absorption by the aquatic lives at the surface of pebbles in the riverbed and other aquatic organisms. The absorption rate of orthophosphate (PO43-) for the epilithion of the riverbed and acquatic organisms in suspended paritcles in water was the maximum in such season as summer with high to(?)perature,especially in August, namely0.33and0.24μg P cm-2h-1and in December it was quite the opposite with the absorption rate as0.036and0.034μg P cm-2h-1During the study of the contribution of aquatic lives with different sizes in water to the absorption of PO43-it could be found that despite the seasonal changes, the ultraplankton with the size from0.2to2μm in water of the Grand River was the main acquatic species absorbing the PO43-. Furthermore, the trunaround time of PO43-in water decreased with the increase of temperature. In August, it was the shortest as0.75h and in winter it was relatively longer as2.67h. Gel chromatography was used to explore the release and regeneration form of the32P-PO43-in water abosrbed and utilized by the aquatic lives. It could be found that the release of32P by the acquatic lives in the Grand River was mainly in the form of the dissolved PO43-with small molecular weight (≥200MW).
     To sum up, the study concerns the seasonal variation of different forms of phsophorus in the water ecosystem, their transformation organisms, the potential bioavailability of the suspended PP in water and the transformation between biofacies and non-biofacies of the orthophosphate and so on. The conceptual model of water phosphorus cycling was put forward to better understand the water phosphorus cycling in the Grand River, help with the ecological environment protection in the watershed of the Grand River and provide reference for similar studies about water phosphorus cycling in rivers. However, it must be mentioned that water in rivers is in a constant state of motion and variation. Thus there are massive changes for the water ecology. Different conclusions can be drawn at different time, so only by continuous and long-term monitoring and study in the river ecosystem can rules and conclusions be drawn.
引文
1.董浩平,姚琪.水体沉积物磷释放及控制[J].水资源保护.2004.20(6):20-23.
    2.黄昌勇.土壤学[M].中国农业出版社.2000.
    3.高超,朱继业,朱建国.不同土地利用方式下的地表径流磷输出及其季节性分布特征[J].环境科学学报.2005.25(11):1543-1549
    4.高光,朱广伟,秦伯强,陈銞,王珂.太湖水体中碱性磷酸酶的活性及磷的矿化速率[J].中国科学(D辑):地球科学.2005.35(增刊Ⅱ):157-165.
    5.高丽,周健民.磷在富营养化湖泊沉积物-水界面的循环[J].土壤通报.2004.35(4):512-515.
    6.胡正峰.三峡库区蓬溪河回水区营养盐分布变化及富营养化成因初探[D].重庆:西南大学.2010.
    7.韩沙沙,温琰茂.富营养化水体沉积物中磷的释放及其影响因素[J].生态学杂志,2004.23(2):98-101.
    8.李敏,韦鹤平,王光谦.长江口、杭州湾水域沉积物对磷吸附行为的研究[J].海洋学报.2004.26(1):132-136.
    9.刘敏,侯立军,徐世远,张斌亮,欧冬妮.河口滨岸潮滩沉积物-水界面N、P的扩散通量[J].海洋环境科学.2001.20(3):19-24.
    10.刘敏,侯立军,徐世远,张斌亮,欧冬妮.长江口潮滩有机质来源的C、N稳定同位素示踪[J].地理学报.2004.59(4):918-926.
    11.刘越,胡恭任,袁栋林,谷唯实.晋江感潮河段表层沉积物中磷的分部、赋存形态及环境意义[J].环境化学.2011.30(7):1361-1367.
    12.秦伯强,范成新.大型浅水湖泊内源性营养盐释放的概念性模式探讨[J].中国环境科学.2002.22(2):150-153.
    13.隋欣,杨志峰.龙羊峡水库蓄水对水温的净影响[J].水土保持学报.2004.18(4):153-157.
    14.田建茹,周培疆,付云.蛋白核小球藻生长于汉江水体磷形态相关性的研究[J].水生生物学报.2008.32(2):276-280.
    15.王芳,晏维金.长江输送颗粒态磷的生物可利用性及其环境地球化学意义.环境科学学报.2004.24(3):418-422.
    16.王芳,朱广伟,贺冉冉,等.五中天然水体胶体相可酶解的含量及分布特征[J].湖泊科学.2009.21(4):483-489.
    17.吴春燕,庄舜尧.土壤磷在农业生态系统中的迁移[J].东北农业大学学报.2003.34(2):210-218.
    18.吴莹,张经,张再峰,任景玲,曹建平.长江悬浮颗粒物中稳定碳、氮同位素的季节分布[J].海洋湖沼.2002.33(5):546-552.
    19.吴峰炜,汪福顺,吴明红.滇池、红枫湖沉积物中总磷、分态磷及生物硅形态与分布特征[J].生态学杂志.2009.28(1):88-94.
    20.杨宏伟,高光.太湖流域不同类型区河流水体磷形态分布及矿化速率[J].土壤学报.2012.49(4):758-763.
    21.谢平.浅水湖泊内源磷负荷季节变化的生物驱动机制.中国科学(D辑):地球科学.2005.35(增刊Ⅱ):11-23.
    22.张敏,谢平,徐军.大型浅水湖泊---巢湖内源磷负荷的时空变化特征及形成机制[J].中国科学(D辑):地球科学,2005.35(增刊Ⅱ):63-72.
    23.张斌亮,张昱,杨敏.长江中下游平原三个湖泊表层沉积物对磷的吸附特征[J].环境科学学报.2004.24(4):595-600.
    24.张路,范成新,王建军.太湖草藻型湖区间隙水理化特性比较[J].中国环境科学.2004.24(5):556-560.
    25.张学杨,张志斌,李梅.影响湖泊内源磷释放及转化的主要因子[J].山东建筑大学学报.2008.23(5):456-459.
    26.甄兰,廖文华,刘建玲.磷在土壤环境中的迁移及其在水环境中的农业非点源污染研究[J].河北农业大学学报,2002(5).25:55-59
    27.周爱民,王东升,汤鸿霄.临在天然沉积物-水界面上的吸附[J].环境科学学报.2005.25(1):64-69.
    28.周培疆,郑振华,余振坤.普通小球藻生长于武汉东湖磷形态的相关研究[J].水生生物学报.2001.25(6):571-577.
    29.朱广伟,秦伯强,高光.长江中下游浅水湖泊沉积物种磷的形态及其与水相磷的关系[J].环境科学学报.2004.24(3):381-388.
    30.朱广伟,秦伯强,张路.长江中下游湖泊沉积物中磷的形态及藻类可利用量[J].中国科学D辑,地球科学,2005.35:24-32,
    31. Ammerman, J. W. Role of ecto-phosphohydrolases in phosphorus regeneration in esturine and coastal ecosystems. In:Chrost, R. J. ed. Microbial enzymes in aquatic environments. New York:Springer-Verlag,1991.165-186.
    32. Ammerman, J. W. Microbial cycling of inorganic and organic phosphorus in the water column. In:Kemp, P. F., Sherr, B. F., Cole, J. J. (eds). Handbook of methods in aquatic microbial ecology. Lewis. Boca Raton, p 649-660.
    33. Ashley, K., Cordell, D., Mavinic, D. A brief history of phosphorus:From the philosopher's stone to nutrient recovery and reuse. Chemosphere.2011.84(6): 737-746.
    34. Asimov, I.1974. Asimov on Chemistry. Doubleday.
    35. Baldwin, D. S. Reactive "organic" phosphorus revisited. Water Research.1998.32: 2265-2270.
    36. Banaszuk, P., Wysocka-Czubaszek. Phosphorus dynamics and fluxes in lowland river:the Navew Anastomosoing river system, NE Poland. Ecological Engineering. 2005.25:429-441.
    37. Barbanti, A., Bergamini, C., Frascari, F., Miserocchi, S., Rosso, G. Critical aspect of sedimentary phosphorus chemical fractionation. Journal of Environmental Quality. 1994.23:1093-1102.
    38. Benitez-Nelson CR, Buessler KO. Variability of inorganic and organic phosphorus turnover rates in the coastal ocean. Nature.1999.398:502-5
    39. Bentzen, E., Taylor, W. D. The importance of dissolved organic phosphorus to-phosphorus uptake by limnetic plankton. The American Society of Limnology and Oceanography.1992.32(2):217-231.
    40. Bentzen E., Talyor, W. D. Estimating organic P utilization by freshwater plankton using [32P] ATP. Journal of Plankton Research.1991 a.13:1223-1238.
    41. Bentzen, E., Taylor, W. D. Estimating Michaelis-Menton parameters and lake water phosphate by the Rigler bioassay:importance of fitting technique, plankton size and substrate range. Canadian Journal of Fisheries and Aquatic Sciences.1991 b.48: 73-83.
    42. Benitez-Nelson, C. R. The biogeochemical cycling of phosphorus in marine systems. Earth-Science Review.2000:109-135.
    43. Berman, T. Alkaline phosphatases and phosphorus availability in Lake Kinneret. Limnology and Oceanography,1970,15:663-674.
    44. Blachford, D. P., Ongley, E. D. Biogeochemical pathways of phosphorus, heavy metals and organochlorine residues in the Bow and Oldman rivers, Alberta. Inland Waters Directorate, Environment Canada, Scientific Series,138.
    45. Boers, P. C. M., Hese, O. V. Phosphorus release from the peaty sediments of the Loosdrecht Lake (Netherlands). Water Research.1988.22:355-363.
    46. Bostrom, B., Persson, G., Bromberg, B. Bioavailability of different phosphorus forms in freshwater systems. Hydrobiologia.1988.170:133-135.
    47. Bostrom, B., Jansson, M., Forsberg, C. Phosphorus release from lake sediments. Arch. Hydrobiol. Beith. Ergbn. Limnol.1982.18:5-59.
    48. Boulion, V. V. Assimilation and turnover time of phosphorus by size fractions of microplankton in lakes of different types. Inland Water Biology.2012.5(4): 304-309.
    49. Boyer, J. M., Dailey, S. K., Gibson, P. J., Rogers, M. T., MirGonzalez, D. The role of dissolved organic matter bioavailability in promoting phytoplankton blooms in Florida Bay. Hydrobiologia.2006.569:71-85.
    50. Bostrom, B., M. Jansson., Forsberg, C. Phosphorus release from lake sediments. Arch Hydrobiol. Beih. Ergebn. Limnol.1982.18:5-59
    51. Broberg, O., Persson, G Particulate and dissolved phosphorus forms in freshwater: composition and analysis. Hydrobiologia.1988,170:61-90.
    52. Brownlee, B. G, Bird, G. A. Phosphorus dynamics in the Canagagigue Cree below the Elmira Water Pollution Control Plant. Beak Consulting Report Ref.2397.1. Water Planning Management, Environment Canada, Burlington, Ontario.1988.
    53.Bruland, K. W., Donat, J. R., Hutchins, D. A. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnology and Oceanography.1991.36:1555-1577.
    54. Carman, R., Edlund, G, Damberg, C. Distribution of organic and inorganic phosphorus compounds in marine and lacustrine sediments:a 31P-NMR study. Chemical Geolgy.2000.163(1-4):101-104.
    55. Cavender-Bares, K. K., Karl, D. M., Chisholm, S. W. Nutrient gradient in the western North Atlantic Ocean:Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep SeaResearch, Oceanographic Research.2001.48:2373-2395.
    56. Chamberlain, W. M. A preliminary investigation of the nature and importance of soluble organic phosphates in the phosphorus cycle of lakes. Ph.D. thesis. University of Toronto. Toronto, Ontario.1968.232p.
    57. Chrost, R. J. Environments control of the synthesis and activity of aquatic microbial ectoenzymes. In:Chrost R. J. ed. Microbial enzymes in aquatic environemts. New York:Springer-Verlag.1991.29-59.
    58. Chao, A. C., Chang, D. S., Smallwood, W. C. Influence of temperature on Oxygen Transfer. Journal of Environmental Engineering.1987.113(4):722-735.
    59. Cembella A. D., Antia N. J., Harrison P. J. The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae:a multidisciplinary perspective:part 2. Critical Reviews in Microbiology.1982.10:317-391.
    60. Chamberlain, W. M. A preliminary investigation of the nature and importance of soluble organic phosphates in the phosphorus cycle of lakes. Ph.D. thesis. University of Toronto. Toronto, Ontario.1968.232p.
    61.Cooke, S. Water quality in the Grand River:a summary of current conditions (2000-2004) and long-term trends. Grand River Conservation Authority.2006.
    62. Cotner, J. B., Wetzel, R. G Uptake of dissolved inorganic and organic phosphorus-compounds by phytoplankton and bacterioplankton. Limnology and Oceanography.1992.37:232-243.
    63. Cotner, J. B., Wetzel, R. G. Uptake of dissolved inorganic and organic phosphorus by phytoplankton and bacterioplankton. Limnology and Oceanography.1999.37(2): 232-243.
    64. Cordell, D., Drangert, J.-O., White, S. The story of Phosphorus:global food security and food for thought. Global Environmental Change.2009.19:292-305.
    65. Cordell, D. The story of phosphorus:Sustainability implications of global phosphorus scarcity for food security. Doctoral thesis. Collaborative Ph.D between the Institute for Sustainable Futures, University of Technology, Sydney (UTS)& Department of Thematic Studies-Water and Environment, Linkoping University, Sweden. No.509. Linkoping University Press, Linkoping.2010. ISBN: 9788173934404.
    66. Correll, D. L., Jordan, T. E., Weller, D. E. Effects of precipitation and air temperature on phosphorus fluxes from Rhode river watersheds. Journal of Environmental Quality.1999.28:144-154.
    67. Currie D. F., Kalff J. The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater. Limnology and Oceanography.1984.29: 311-321
    68. Cuker, B. E., Gama, P. T., Burkholder, J. M. Type of suspended clay influences lake productivity and phytoplankton community response to phosphorus loading. Limnology and Oceanography.1990.35:830-839.
    69. Daniel, T. C., Sharpley, A. N., Lemunyon, J. L. Agricultural phosphorus and eutrophication:A symposium overview. Journal of Environmental Quality.1998.27: 251-257.
    70. Danen-Louwerse, H., Lijklema, L., Coenraats, M. Iron content of sediment and phosphate adsorption properties. Hydrobiologia.1993.253:311-317.
    71. Davis, L. R., Zhang, H., Schroder, J. L., Wang, J. J., Payton, M. E., Zazulak, A. Soil characteristics and phosphorus level effect on phosphorus loss in runoff. Journal of Environmental Quality.2005.34:1640-1651.
    72. Deffeyes, K. S. Hubbert's Peak. The impending world oil shortage. Princeton University Press, New Jersey.2003. ISBN:0-691-11625-3.
    73. Depinto, J. V., Young, T. C., Martin, S. C.1981. Algal-available phosphorus in suspended sediments from lower Great Lakes tributaries. Journal of Great Lakes Research.7:311-325.
    74. Dery, P., Anderson, B. Peak phosphorus. Energy Bulletin. Retrieved from http:// www.energybulletin.net/node/33164.2007. August 13th.
    75. Dorner, S. N., Huck, P. M., Slawson, R. M.2004. Estimating potential environmental loading of Cryptosporidium spp. and Campylobacter spp. from Livestock in the Grand River Watershed, Ontario, Canada. Envrionmental Science and Technology.2004.38:3370-3380.
    76. Downes M. T. and Paerl H. W.1978. Separation of two dissolved reactive phosphorus fractions in lakewaters. Journal of the Fisheries Research Board of Canada.35,1636-1639
    77. Draper, D. W., Associates Ltd., Donald, G.1995. Review of surface water quality protection measures. The Regional Municipality of Waterloo.
    78. Draper, D. W. & Associates Ltd. Bay of Quinte RAP phosphorus trading program evaluation and design. Etobicoke, Ontario.1997. Pages.115.
    79. Dyhrman, S. T., Chappell, P. D., Haley, S. T., Moffett, J. W., Orchard, E. D., Waterbury, J. B., Webb, E. A. Phosphate utilization by the globally important marine diazotroph Triscodesmium. Nature.2006.439:68-71.
    80. Edwards, A. C., Withers, P. J. A. Soil phosphorus management and water quality:A UK perspective. Soil Use and Management.1998.14:124-130.
    81. Emsley, J. The 13th element:The sordid tale of murder, fire, and phosphorus. John Wiley & Sons, New York. P.327, ISBN:0-471-39455-6.
    82. Ekholm, P., Malve, O., Kirkkala, T. Internal and external loading as regulators of nutrient concentrations in the agriculturally loaded Lake Pyhajarvi, southwest Finland. Hydrobiologia.1997.345:3-14.
    83. FAO. More people than ever are victims of hunger. Food and Agriculture Organization of the United Nations, Press Release, June.2009.
    84. Fertilizer Week. Industry ponders the impact of China's trade policy. In:Thursday Markets Report,24th April 2008. British Sulphur Consultants, CRU.
    85. Fisher, T. R., Lean, D. R. S. Interpretation of radiophosphate dynamics in lake waters. Canadian Journal of Fisheries and Aquatic Sciences.1992.49:252-258.
    86. Fox, L. The chemistry of aquatic phosphate:Inorganic process in rivers. Hydrobiologia.1993.253:1-16.
    87. Franko, D. A., Heath, R. T. Functionally distinct classes of complex phosphorus compounds in lake water. Limnology and Oceanography.1979.24:463-473.
    88. Gage, M. A., Gorham, E. Alkaline phosphatase activity and cellular phosphorus as an index of the phosphorus status of hytoplankton in Minnesota lakes. Freshwater Biology.1985,15:227-233.
    89. Geohring, L. D., McHugh, O. V., Walter, M. T., Steenhuis, T. S., Akhtar, M. S., Walter, M. F. Phosphorus transport into subsurface drains by macropores after manure applications:Implications for best manure management practices. Soil Science.2001.166:896-909.
    90. Gentry, L. E., David, M. B., Royer, T. V., Mitchell, C. A., Starks, K. M. Phosphorus transport pathways in streams in tile-drained agricultural watershed. Journal of Environmental Quality.2007.36:408-415.
    91. Grim, R. E. Clay mineralogy (2nd ed.):New York, McGraw-Hill Book Co.,1968. p 596
    92. Golterman, H. L., Paing, J., Serrano, L., Gomez, E. Pressence of and phosphate release from polyphosphates or phytate phosphate in lake sediments. Hydrobiologia. 1998.364:99-104.
    93. Golterman, H. L. The role of the ironhydroxide-phosphate-sulphide system in the phosphate exchange between sediments and overlying water. Hydrobiologia.1995. 297:43-54.
    94. Gonsiorczyk, T., Casper, P., Koschel, R. Mechanisms of phosphorus release from the bottom sediment of the oligotrophic Lake Stechlin:importance of the permanently oxic sediment surface. Arch. Hydrobiol.151:203-219.
    95. Hadas, O., Pinkas, R. Arylsulfatase and alkaline phosphatase activity in sediments of Lake Kinneret, Israel. Water, Air, and Soil Pollution.1997,99:671-679.
    96. Hale, G Z., Chr, R. J. The role of phosphatases in phosphorus mineralization during decomposition of lake phytoplankton blooms. Arch Hydrobiol.1984.1984: 489-502.
    97. Halemejko, G Z., Chrost, R. J.1984. Role of phosphatases in phosphorus mineralization during decomposition of lake phytoplankton blooms. Archiv Fur Hydrobiologie.101(4):489-502.
    98. Heath, R. T. Francko, D. A.1988. Comparison of phosphorus dynamics in two Oklahoma reservoirs and a natural lake varying in abiogenic turbidity. Canadian Journal of Fisheries and Aquatic Sciences.45:1480-1486.
    99. Herbes, S.E., Allen, H.E., Mancy, K.H. Enzymatic characterization of soluble organic phosphorus in lake water. Science.1975.187,432-434.
    100. Hino, S. Characterization of orthophosphate release from dissolved organic phosphorus by gel filtration and several hydrolytic enzymes. Hydrobiologia.1989. 174:40-55.
    101. House, W. A., Denison, F. H., Armitage, P. D. Comparison of the uptake of inorganic phosphorus to a suspended and stream bed-sediment. Water Research. 1995.29 (3):767-779.
    102. House, W. A., Denison, F. H. Phosphorus dynamics in a lowland river. Water Research.1998.32(6):1819-1830.
    103. Hu, Z. F., Gao, M., Xie, D. T., Wang, Z. F. Phosphorus loss from dry sloping lands of Three Gorges Reservoir Area, China. Pedosphere.2013.23(3):385-394.
    104. Hudson, J. J., Taylor, W. D. Rapid estimation of phosphate at picomolar concentrations in freshwater lakes with potential application to P-limited marine systems. Aquatic Sciences.2005.67:316-325.
    105. Hudson, J. J., Taylor, W. D., Schindler, D. W. Phosphate concentrations in lakes. Nature.2000.406:54-56.
    106. Huxley, A.1928. Point counter point.
    107. Hudson, J. J., Taylor, W. D.1996. Measuring regeneration of dissolved phosphorus in planktonic communities. Limnology and Oceanography.1996.41:1560-1565.
    108. Hudson, J. J., Taylor, W. D., Schindler, D. W.2000. Phosphate concentrations in lakes. Nature.406:54-56.
    109. Hupfer, M., Gachter, R., Meyer, J. S. Poly-P in lake sediments,31P NMR spectrometry as a tool for its identification. Limnology and Oceanography.1995. 40:610-617.
    110. Hupfer, M., Gachter, R., Giovanoli, R. Transformation of phosphorus species in settling seston and during early sediment diagenesis. Aquatic Science.1995.57(4): 305-324.
    111. IAASTD. International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD). Agreed to at an Intergovernmental Plenary Session in Johannesburg, South Africa in April,
    112. Istvanovics, V., Pettersson, K. Phosphorus release in relation to composition and isotopic exchangeability of sediment phosphorus. Arch. Hydrobiol. Special Issues of Advances Limnology.1998.51:91-104.
    113. Jamieson, T. S. Quantificaiton of oxygen dynamics in the Grand River using a stable isotope approach.2010. Thesis for degree of Doctor of Philosophy. University of Waterloo.
    114. James, B., Cotner, J., Wetzel, R. G 5'-Nucleotidase activity in a eutrophic lake and oligotrophic lake. Hydrobiologia.1991.57:1306-1312.
    115. Jansson, M., Olsson, H., Pettersson, K. Phosphatases:origin, characteristics and function in lakes. Hydrobiologia.1988,170:157-175.
    116. Jarvie, H. P., Withers, J. A., and Neal, C.,2002:Review of robust measurement of phosphorus in river water:sampling, storage, fractionation and sensitivity, Hydrol. Eearth Science systems,6,113-131
    117. Jasinski, S. M. Phosphate Rock, Mineral Commodity Summaries. US Geological Survey.2010. January.
    118. Jensen, H. S., Andersen, F. Q. Importance of tempterature, nitrate, and pH for phosphate release from sediments of four shallow, eutrophic lakes. Limnology & Oceanography.1992.37:577-589.
    119. Jin, X. C., Wang, S. R., Pang, Y. The asorption of phosphate on different trophic lake sediments. Collides and Surfaces.2005.254:241-248.
    120. Jin, X., Wang, S., Pang, Y., Chang W. F.2006. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake. China Environtal Pollution.139(2):288-295.
    121. Jones, C. A., Welch, E. B. Internal phosphorus loading related to mixing and dilution in a dendritic, shallow prairie lake. Research Journal of the water pollution control federation.1990.62:847-852.
    122. Johnston, A. E.2000. Soil and plant phosphate. International Fertilizer Industry Association (IFA), Pairs.
    123. Jyrkama, M. I., Sykes, J. F. The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). Journal of Hydrology. 2007.338:237-250.
    124. Karner, M., Rassoulzadegan, F. Extracellular enzyme activity:indications for high short-term variability in a coastal marine ecosystem. Microbial Ecology.1995.30: 143-156.
    125. Khoshmanesh, A., Hart, B. T., Duncan, A. Luxury uptake of phosphorus by sediment bacteria. Water Research.2002,36(7):774-778.
    126. Kim, L. H., Choi, E., Stenstrom, M. K.2003. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere. 50(1):53-61.
    127. Kim, L. H., Choi, E., Gil, K. I. Phosphorus release rates from sediment and pollutant characteristics in Han Rvier, Seoul, Korea. Science of the Total Environment.2004.321:115-125.
    128. Kim, L. H., Choi, E., Stenstrom, M. K.2003. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere. 50(1):53-61.
    129. King, P. H.1970. A test of the hypothesis that vacuum pressure filtration of lake water releases orthophosphate. M. Sc. Thesis. Filtration of lake water releases orthophosphate. M. Sc. Thesis, University of Toronto. Toronto, Ontario.87p.
    130. Kinley, R. D., Gordon, R. J., Stratton, G W., Patterson, G. T., Hoyle, J.2007. Phosphorus losses through agricultural tile deainage in Nova Scotia, Canada. Journal of Environmental Quality.36:469-477.
    131. Kleeberg, A. Interactions between benthic phosphorus release and sulfur cycling in lake Scharmutzelsee (Germany). Water Air & Soil Pollution.1997.99:391-399.
    132. Klotz, R. L. Cycling of phosphatase hydrolysable phosphorus in streams. Canadian Journal of Fisheries and Aquatic Science.1991.48:1460-1467.
    133.Kulaev, I. S., Vagabov, V. M. Polyphosphate metabolism in microorganisms. Advances in Microbial Physiology.1983.24:83-171.
    134. Kuntz, T. System and plankton metabolism in the lower Grand River, Ontario. Biology Department. Waterloo, University of Waterloo. Master of Science.2008.
    135. Labry, C., Herbland, A., Delmas, D. The role of phosphorus on planktonic production of the Gironde plume waters in the Bay of Biscay. Journal of Plankton Research.2002.24(2):97-117.
    136. Lake Eire Source Protection Region Technical team. Grand River watershed characterization report. Cambridge, Grand River Conservation Authority.2008.
    137. Lean, D. R. S., Pick, F. R. Photosynthetic response of lake plankton to nutrient enrichment:a test for nutrient limitation. Limnology and Oceanography.1981.26: 1001-1019.
    138. Lean, D. R. S., Abbot, A. P., Charlton, M. N., Rao, S. S. Seasonal phosphate demand for Lake Erie plankton. Journal of Great Lakes Research.1983.9:83-91.
    139. Lean, D. R. S. Phosphorus kinetics in lake water:influence of membrane filter pore size and low-pressure filtration. J. Fish. Res. Board Can.1976.33:2800-2804.
    140. Lean, D. R. S., Nalewajko, C. Phosphorus turnover time and phosphorus demand in large and small lakes. Arch. Hydrobiol. Beih. Ergeb. Limnol.1919.13:120-132.
    141. Lean, D. R. S., White, E. Chemical and radiotracer measurements of phosphorus uptake by lake plankton. Canadian Journal of Fisheries and Aquatic Sciences. 1983.40:147-155.
    142. Lean, D. R. S. Metabolic indicators of phosphorus limitation. Verhandlungen der Internationale Vereinigung fur Theoretische und Angewandte Limnologie.1984.22: 211-218.
    143. Lean, D. R. S., Nalewajko, C. Phosphorus turnover time and phosphorus demand in large and small lakes. Archiv fur Hydrobiologie-Beiheft Ergebneisse der Limnologie.1979.13:120-132.
    144. Lehninger, A. L. Short course in biochemistry. Worth Publishers Inc, New Yrok. ISBN:0-87901-024-X.1973.
    145. Lee, G. F., Jones, R. A., Rast, W. Availability of phosphorus to phytoplankton and its implications for phosphorus management strategies. In R. G. Loehr, C. S. Martin and Rast, W.1980.
    146. Lieltjes, A. H. M., Lijklema, L. Fractionation of inorganic phosphorus in calcareous Sediments. Journal of Environmental Quality.8:130-132.
    147. Lijkema, L., Koelmans, A., Portielje, R.1993. Water quality impacts of sediment pollution and the role of early diagenesis. Water Science and Technology.28 (8,9): 1-12.
    148. Lijkema, L., Koelmans, A., Portielje, R. Water quality impacts of sediment pollution and the role of early diagenesis. Water Sci. Technol.1993.28(8-9):1-12.
    149. Linner, B. O. The return of Malthus:Environmentalism and postwar population-resource crises. White Horse Press. Cambridge, UK. Foreword by Donald Worster,2003. P:303.
    150. Lisa, C. W., Sebastien, P. C. P. R., Alastair, H. F., Ottoline, L. H. M. Phosphate availability regulates root systems architecture in Arabidopsis. Plant Physiology, 2001.126:875-882.
    151. Logan, T. J., Oloya, T. O., Yaksich, S. M. Phosphate characteristics and bioavailability of suspended sediments from streams draining into Lake Erie. Journal of Great Lake Research.1979,5:112-123.
    152. Loomer, H. A., Cooke, S. E. Water quality in the Grand River watershed:Current condition & trends (2003-2008). Grand River Conservation Authority.2011.
    153. Mahan, B. H. University Chemistry, second ed. Addison-Wesley Publishing Co., Don Mills, Ontario. Library of Congress Catalogue Card No.69-15373.
    154. Mainstone, C. P., Parr, W.2002. Phosphorus in rivers---ecology and management. Science of the Total Environment.282-283:25-47.
    155. Margaret, E. A. S. Grand River watershed analysis of nitrate transport as a result of agricultural inputs using a Geographic information system.2006. Master thesis of applied science. University of Waterloo.
    156. Maranger, R., Brid, D. F. Viral abundance in aquatic systems:a comparison between marine and freshwaters. Marine Ecology Progress Series.1995.121: 217-226.
    157. Marxsen, J., Schmidt, H. Extracellular phosphatase activity in sediments of the Breitenbach, a Central European mountain stream. Hydrobiology.1993.253: 207-216.
    158. Margaret, E. A. S. Grand River watershed analysis of nitrate transport as a result of agricultural inputs using a Geographic information system.2006. Master thesis of applied science. University of Waterloo.
    159. Mather RL, Reynolds SE, Wolff GA, Williams RG, Torres-Valdes S, Woodward EMS et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci.2008.1:439-443.
    160. Mizuta, H., Ogawa, S., Yasui, H. Phosphorus requirement of the sporophyte of Laminaria japonica(Phaeophyceae). Aquatic Botany.2003.76:117-126.
    161. Ministry of Natural Resources. Conservation Areas Guide. On:Queen's Printer for Ontario.1986.1-41.
    162. Murphy, J., Riley, J. P.1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta.1962.27: 31-36.
    163. Nakata A, Amemura M, Shinagawa H. Regulation of the phosphate regulon in Escherichia coli K-12:Regulation of the negative regulatory gene phoU and identification of the gene product. JBacteriol.1984;159(3):979-985
    164. Nanny, M. K., Kim, S., Minear, R. A. Aquatic soluble unreactive phosphorus: HPLC studies on concentrated water samples. Water Research.1995.29: 2138-2148.
    165. Nausch, M., Nausch, G, Wasmund, N. Phosphorus dynamics during the transition from nitrogen to phosphate limitation in the central Baltic Sea. Marine Ecology Progress Series.2004.266:15-25.
    166. Neal, C., Jarvie, H. P., Whitton, B. A., Gemmel, J. The water quality of the river wear, north east England. Science of the Toal Environment.2000a.251/253, 153-172.
    167. Neal, C., Neal, M., Wickham, H.2000b. Phosphate measurement in natural waters: two examples of analytical problems associated with silica interference using phosphomolybdic acid methodologies. Science of the Toal Environment.2000b. 251/252,511-522.
    168. Neset, T. S. S., Bader, H. P., Scheidegger, R., Lohm, U. The flow of phosphorus in food production and consumption-Linkoping, Sweden,1870-2000. Science of the Total Environment.2008,396:111-120.
    169. Newman, S., Redy, K. R. Sediment resuspension effects on alkaline phosphatase activity. Hydrobiologia.1992,245:75-86.
    170. Niu, X. J., Geng, J. J. Wang, X. R. Temporal and spatial distributions of phosphine in Taihu Lake, China. Science of the Total Environment.2004.323:159-178.
    171. Oogathoo, S. L. Runoff simulation in the Canagagigue Creek watershed using the mike he model.2006. McGill University. Master of Science.
    172. Ogilvy, G The alchemist's kitchen:extraordinary potions and curious notions wooden books, UK P.58. ISBN:1904263526 US 0802715400.
    173. Olsen, S. Recent trends in the determination of orthophosphate in water,1967. p. 63-105. In H. L. Golterman and R. S. Clymo [ed.] Chemical environment in the aquatic habitat. Proceedings of an I.B.P. symposium held in Amsterdam and Nieuwersluis, October 10-16,1967.
    174. Pacini, N., R. Gachter. Speciation of riverine particulate phosphorus during rain events. Biogeochemistry.1999.47:87-109.
    175. Pant, H. K., Reddy, K. P. Phosphorus sorption characteristics of estuarine sediments under different redox conditions. Environmental Quality.2001.30(4): 1474-1480.
    176. Pant, H. K., Reddy, K. R.2003. Potential internal loading of phosphorus in a wetland constructed in agricultural land. Water research.37:965-972.
    177. Paul, B. J., Corning, K. E., Duthie, H. C. An evaluation of the metabolism of sestonic and epilithic communities in running waters using an improved chamber technique. Freshwater Biology.1989.21(2):207-215.
    178. Peters, R. H. Concentrations and kinetics of phosphorus fractions along the trophic gradient of Lake Memphremagog. Journal of the Fisheries Research Board of Canada.1979.36:970-979.
    179. Pettersson, K. Phosphorus characteristics of settling and suspended particles in Lake Erken. Science of Total Environment.2001.266 (1-3):79-86.
    180. Pettersson, K., Bostrom, B., Jacobsen, O. Phosphorus in sediment speciation and analysis. Hydrobiologia.1988.170:91-101.
    181. Phil, M., Ian, D. M., Paul, J. W. Dissolved organic phosphorus speciation in the waters of the Tamer estuary (SW England). Geochimica et Cosochimica Acta. 2009.73:1027-1038
    182. Philip, N. F.1988. Kinetic control of dissolved phosphate in natural rivers and estuaries:A primer on the phosphate buffer mechanism. Limnology and Oceanography.33(4):649-668.
    183.Prepas, E. E., Rigler, F. H.1982. Improvements in quantifying the phosphorus concentration in lake water. Canadian Journal of Fisheries and Aquatic Science. 39:822-829.
    184. Psenner, R., Bostrom, B., Dinka, M., Petterson, K., Pucsko, R., Sager, M. Fractionation of phosphorus in suspend matter and sediment. Archiv fur Hydrobiologie-Beiheft Ergebnisse der Limnologie.1988.30:98-112.
    185. Ramm, K., Scheps, V. Phosphorus balance of a polytrophic shallow lake with the consideration of phosphorus release. Hydrobiologia.1997.342-243:43-53.
    186. Raven, P. J., Holems, N. T. H., Dawson, F. H., Everard, M. Quality assessment using River Habitat Survey data. Aquatic conservation:Marine and freshwater ecosystems.1998,8:477-499
    187. Reddy, K. R., Connor, G. A. O., Gale, P. M. Phosphorus sorption capacities of wetland soils and stream sediments impacted by dairy effluent. Journal of Environmental Quality.1996.27(2):438-447.
    188. Reynolds, C. S., Davies, P. S. Sources and bioavailability of phosphorus fractions in freshwaters:a British perspective. Biology Review.2001.76:27-64.
    189. Pierzynski, G M., Sims, J. T., Vance, G F. Soils and environmental quality. Second edition. CRC Press, Boca Raton, FL.2000.
    190. Rigler, F. H. A dynamic view of the phosphorus cycle in lakes,1973. p.539-572. In E. J. Griffith, A. Beeton, J. M. Spencer, and D. T. Mitchell [ed.] Environmental phosphorus handbook. John Wiley and Sons, Inc., New York, NY.
    191. Rigler, F. H. A dynamic view of the phosphorus cycle in lakes, p.539-572. In E. J. Griffith, A. Beeton, J. M. Spencer, and D. T. Mitchell [ed.] Environmental phosphorus handbook. John Wiley and Sons, Inc., New York, NY.1973.
    192. Rigler, F. H. The phosphorus fractions and turnover time of inorganic phosphorus in different types of lakes. Limnology and Oceanography.1964.9:511-518.
    193. Robinson, J. S., Johnston, C. T., Reddy, K. R. Combined chemical and 31P-NMR spectroscopic analysis of phosphorus in wetland organic soils. Soil Science.1998. 163(9):705-713.
    194. Ruban, V., Brigault, S., Demare, D. An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-Les-Orgues Reservoir, France. Environmental Monitoring.1999,1(4):403-407.
    195. Ruttenberg, K. C., Sulak, D. J. Sorption and desorption of dissolved organic phosphorus onto iron (oxyhydr) oxides in seawater. Geochimica et Cosmochimica Acta.2011.75:4095-4112.
    196. Rydin, E., Brunberg, A. Seasonal dynamics of phosphorus in Lake Erken surface sediments. Arch Hydrobiol spec. Issues Advanc. Limnol.1998.51:157-167.
    197. Sanudo-Wilhelmy S. A., Kustka A. B., Gobler C. J., Hutchins D. A., Yang M., LwizaK., Burns J., Capone D. G., Raven J. A., Carpenter E. J. Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Nature.2001.411,66-69.
    198. Schelde, K., De Jong, L. W., Kjaergaard, C., Laegdmand, M., Rubaek, G. H. Effect of manure application and plowing on transport of colloids and phosphorus to tile drains. Vadose Zone J.2006.5:445-458.
    199. Schindler, D. W. Natural mechanisms compensate for deficiency of nitrogen and carbon in eutrophied lakes. Science.1977.195:260-262.
    200. Shan, Y, Mckelvie, I. D., Hart, B. T. Determination of alkaline phosphatase-hydrolyzable phosphorus in natural water systems by enzymatic flow injection. Limnology and Oceanography.1994.39:1993-2000.
    201. Sharpley, A. N., McDowell, R. W., Kleinman, P. J. A. Phosphorus loss from land to water:Integrating agricultural and environmental management. Plant and Soil. 2001.237:287-307.
    202. Sharpley, A. N., Rekolainen, S. Phosphorus in agriculture and it's environmental implications. In phosphorus loss from soil to water. Cab international NY, USA. 1997. pp,1-54.
    203. Simon, M., Grossart, H. P., Schweitzer, B. Microbial ecology of organic aggregates in aquatic ecosystems. Aquatic Microbial Ecology.2002,28:175-211.
    204. Smith, D. C., Simon, M., Alldredge, A. L. Intense hydrolytic enzyme activity on marine aggregates and implication for rapid particle dissolution. Nature.1992.359: 139-141.
    205. S(?)ndergaard, M. Jensen, J. P., Jeppesen, E. Retention and internal loading of phosphorus in shallow, eutrophic lakes. The Scientific Word Journal.2001.1: 427-442.
    206. S(?)ndergaard, M., Jensen, J. P., Jeppesen, E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia.2003.506-509:135-145.
    207. Sondergaard, M. Jensen, J. P., Jeppesen, E. Retention and internal loading of phosphorus in shallow, eutrophic lakes. The Scientific Word.1:427-442.
    208. Sparks, D. Environmental Soil Chemistry. Academic Press. San Diego:USA.2003.. 352 pp.
    209. Spitzer, E.2006. Reducing harmful phosphorus pllution in the New York City reservoirs through the clean water act□s "Total maximum daily load" requirements: A case study of the New Croton Reservoir and recommendation to EPA. Phosphorus loads in the NYC Watershed Reservoirs. Office of New York State Attorney General Eliot Spitzer. Retrieved February 6,2006, from http://www.oag.state.ny.us/press/reports/phosphorus/phosphorus_report.html
    210. Stone, M., English, M. C.1993. Geochemical composition, phosphorus speciation and mass transport of fine-grained sediment in two Lake Erie tributaries. Hydrobiologia.253:17-29.
    211. Stockner, J. G, Northcote, T. G 1974. Recent limnological studies of Okanagan Basin lakes and their contribution to comprehensive water resource Bioavailability of different phosphorus forms in freshwater systems. Phosphorus in Freshwater Ecosystems planning. Journal of the Fisheries Research Board of Canada.31: 995-976.
    212. Stone, M., Haight, M. Distribution of dioxins and furans in size-fractionated suspended solids in Canagagigue Creek, Elmira, Ontario. In:The role of erosion and sediment transport in Nutrient and Contaminant Transfer, Ed. M. Stone, IAHS Pub.2000. No,262.
    213. Straskraba, M., Tundisi, J.G. Guidelines of Lake Management:Reservoir Water Quality Management. International Lake Environment Committee Foundation 9. 1999.
    214. Strickland and Parsons, A manual of seawater analysis:With special reference to the more common micronutrients and to particulate organic material. Fisheries Research Board of Canada.1965. No.125
    215. Stone, M., Droppo, I. G Distribution of lead, copper and zinc in size-fractionated river bed sediment in two agricultural catchments of southern Ontario, Canada. Envrionment Pollution.1995.93,3:353-362.
    216. Sylvan, J. B., Dortch, Q., Nelson, D. M., Maier-Brown, A. F., Morrison, W., Ammerman, J. W. Phosphorus limits phytoplankton growth on the Louisiana shelf during the period of hypoxia formation. Environmental Science & Technology. 2006.40:7548-7553.
    217. Taylor, W. D. Nature of dissolved P regenerated by plankton:implications for the ssPO4 radiobioassay and for the nature of dissolved P. Aquatic Science.2010,72: 13-20.
    218. Taylor, W. D., Lean, D. R. S. Phosphorus pool sizes and fluxes in the epilimnion of a mesotrophic lake. Canadian Journal of Fisheries and Aquatic Sciences.1991.48: 1293-1301.
    219. Troeh, F. R., Thompson, L. M.1993. Soils and soil fertility. Fifth edition. Oxford University Press Inc. New York, NY.
    220. The Grand River Conservation Authority. Background report on the health of the Grand River watershed 1996-1997. Prepared for The Grand Strategy Co-ordinating Committee.1998.
    221.Uhlmann, D., Roske, L., Hupfer, M., Ohms, G A simple method to distinguish between polyphosphate and other fractions of activated sludge. Water Research. 1990.24:1355-1360.
    222. Vallentyne, J. R. The Algal Bowl:Environment Canada, vol.22. Miscellaneous Special Publication, Ottawa, Ontario.
    223. Van Kauwenbergh, S. World phosphate rock reserves and resources. International Fertilizer Development Center, Muscle Shoals, Al. http://www.idfc/org.
    224. Waara, T., Jansson, M., Petterson, K. Phosphorus composition and release in sediment bacteria of the genus Pseudomonas during aerobic and anaerobic conditions. Hydrobiologia.1993.253:131-140.
    225. Wang, H., Appan, A., Gulliver, J. S. Modeling of phosphrous dynamics in aquatic sediments:I-model development. Water Research.2003.37:3928-3938.
    226. Wazer, V. Phosphorus and its compounds, vols.1 and 2. Interscience Publisher, Library of Congress. No.58-10100.1961.
    227. Wetzel, R. G Limnology:Lakes and river ecosystems. CA:Academic Press,2001: 207-210.
    228. Winter, M. Phosphorus Web Elements.2010. The University of Sheffield and Webelements Led, UK.
    229. Williams J. D. H., Shear H., Thomas R. L. Availability to Scenedesmus quadricauda of different forms of phosphorus in sedimentary materials from the Great Lakes. Limnology and Oceanography.1980.25.1-11
    230. World Resources Institute,2008. Agriculture and "Dead Zones".
    231. White, A., Stone, M. Spatial variation and distribution of phosphorus forms in surficial sediments of two Canadian Shield lakes. Canadian Geographic.1996.40 (3):258-265.
    232. Xia, H. P. Liu, S. Z., Ao, H. X. Study on purification and uptake of vetiver grass to garbage leachate. Proceedings of the Second International Conference on Vetiver. Office of the Royal Development Projects Board, Bangkok.2002.393-403.
    233. Zhang, T., Wang, X., Jin, X. Variations of alkaline phosphatase activity and P fractions in sediments of a shallow Chinese eutrophic lake (Lake Taihu). Environmental Pollution.2007.150:288-294
    234. Zhou, Y. Y., Li, J. Q., Song, C. L. Variations and possible source of potentially available phosphorus in a China Shallow eutrophic lake. Journal of Freshwater Ecology.2004.19(1):87-96.
    235. Zhou, Y., Cao, X., Song, C., Chen, G, Peng, L. Variation in kinetics of alkaline phosphatase in sediments of eutrophic, shallow, Chinese lakes. Hydrobiologia. 2007.581:109-116.
    236. Zhou, Q., Gibson, C. E., Zhu, Y. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere.2001.42 (2):221-225
    237. Zhu, Y. R., Zhang, R. Y, Wu, F. C., Qu, X. X., Xie, F. Z., Fu, Z. Y. Phosphorus fractions and bioavailability in relation to particle size characteristics in sediments from lake Hongfeng, Southwest China. Environmental Earth Sciences.2013.68: 1041-1052.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700