用户名: 密码: 验证码:
沼液营养物的沸石吸附回收与利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大中型沼气工程在处理畜禽废弃物、生产沼气的同时,也会大量的产生集中型沼液。沼液是有机物经过厌氧发酵后的残留液体,其氮、磷、有机物等营养物含量较高,若直接排放则会造成环境严重污染,若环保达标处理则会费用高昂,若直接利用则需大量消纳面积。尽管目前沼液的处置方式有低成本的还田利用、自然生态净化、高成本的工厂化处理、高附加值的开发性处理等,但理想方式是将低耗处理与附加利用相结合,寻求低成本回收有用成分的同时,减轻沼液的后续处理工艺压力。
     选用天然多孔介质吸附污染物是废水低成本处理常用的方法之一。沸石具有强大的离子交换性、吸附性、扩散性和催化性等特点,且取材广泛、价格低廉,常被用作废水吸附处理剂。为了提高天然沸石的吸附效率,人们常采用物理方法(如增加沸石比表面积)和化学方法(如改变阳离子交换容量)对天然沸石进行改性。鉴于目前国内外尚未见沸石吸附回收沼液中氮、磷、有机物等营养物的研究报道,本文选用天然沸石(TRF)、微波氯化钠联合改性沸石(WLF)、十六烷基溴化吡啶改性沸石(CPBF)、粉煤灰合成微米级沸石(WF)及亚微米级沸石(YWF),通过吸附-解吸试验和吸附柱试验,研究不同沸石对沼液中氮、磷、COD的吸附-解吸特征,优化吸附工作参数;然后采用沸石强化SBR系统处理沼液经吸附柱吸附后的残液;最后通过盆栽试验研究沼液饱和吸附沸石的农业肥效,达到低成本回收氮、磷、COD,实现沼液后续处理达标排放的目的。研究结果表明:
     1、相比Freundlich方程,Langmuir方程对TRF、WLF、CPBF、WF、YWF等5种沸石材料的氨氮、磷、COD的等温吸附特征拟合性更好。由此计算出氨氮的吸附容量大小顺序是YWF (29.155mg/g)>WF (17.637mg/g)>WLF (10.020mg/g)>TRF (8.326mg/g)>CPBF (7.599mg/g);磷为YWF(3.169mg/g)>WF(2.653mg/g)>CPBF (1.138mg/g)>WLF (0.693mg/g)>TRF (0.611mg/g); COD为CPBF(37.736mg/g)>YWF (23.256mg/g)>WF (20.121mg/g)>WLF (13.423mg/g)>TRF (12.987mg/g).解吸试验表明,YWF、WF的氨氮和磷解吸率要显著小于其它3种材料;而对于COD,5种沸石解吸率大小顺序则是TRF>WLF> WF>YWF> CPBF。
     通过吸附动力学研究可知,5种沸石对沼液氨氮、磷和COD的吸附匀呈现出“快速吸附,缓慢平衡”的特点,其中,YWF吸附速率明显高于其他4种沸石。动力学模型拟合表明,对于氨氮的吸附,5种沸石的吸附过程皆以准二级动力学方程的拟合效果为最优;对于磷的吸附,WLF、 TRF以及WF的吸附过程以一级动力学模型拟合效果为最优,而CPBF和YWF的吸附过程则以Elovich模型拟合效果最优;对于COD的吸附,TRF、 WLF、 WF和YWF的咐附过程以一级动力学方程模型拟合效果为最优,从动力学曲线和一级动力学方程表观速率常数B值的变化来看,可以认为这4种沸石材料对沼液COD的吸附反应主要由快反应膜扩散所控制。由于CPBF对沼液COD的吸附同时存在原矿区表面吸附和有机相分配作用,因而也同时存在快、慢速两种吸附反应,所以更适用于双室一级动力学模型。
     结合等温吸附-解吸试验和动力学吸附试验,发现在5种沸石中,YWF具有较好的沼液氨氮、磷、COD综合吸附性能,是较理想的沼液吸附剂。
     对沼液吸附影响因素进行研究发现,随着初始pH值增加,YWF和WF对氨氮的吸附量先升高后下降,而CPBF、 TRF和WLF对氨氮的吸附量则随初始pH值的增加缓慢减少。5种吸附材料中,YWF、 WF对磷的吸附量受沼液初始pH值影响较大,而CPBF、 TRF和WLF对磷的吸附量受沼液初始pH值影响较小。COD吸附研究表明,YWF、 WF对COD的吸附量随pH值的增加而逐步减小,而CPBF、 TRF和WLF则随pH值的增加出现“两低一高”趋势。沼液离子强度对吸附的影响研究表明,5种沸石对沼液氨氮的吸附量随着离子强度的增加迅速降低,其中以WLF的下降幅度最大;离子强度对沸石吸附磷和COD的影响要显著小于对氨氮吸附的影响。
     2、利用CPBF与WLF作为吸附剂按体积比1:1构建改性沸石滤柱,吸附柱试验表明,在合适范围内,改性沸石填料对NH4+、TP、COD的单位吸附量与沼液进水流速成负相关,与沼液进水初始浓度成正相关;进水流速和进水初始浓度的增加,都会使目标物在改性沸石滤柱中的穿透时间减少;而随着沸石柱层高度的增加,目标物的穿透时间以及改性沸石填料对NH4+、TP、COD的单位吸附量也随之增加。因此,适当的增加柱层高度和沼液浓度、适量的减小进水流量都可有效的提高吸附柱中改性沸石填料的吸附容量和利用率,提高处理工艺的效率和经济性。
     在饱和吸附柱的再生试验中,饱和吸附改性沸石填料在45℃热水中进行物理振荡后,以NaCl+Na2SO4(摩尔比为5:1,质量浓度6g/L溶液)混合液和NaCl+NaOH(摩尔比为7:13,质量浓度6g/L溶液)混合液作为再生液进行连续化学洗脱,再生后沸石对NH4+、TP、COD吸附容量恢复到新鲜改性沸石的88.15%、93.30%、84.57%。表明混合沸石具有较好的再生性,且再生成本可接受,具有一定的推广应用价值。但出于经济性考虑,再生次数应控制在3次以内。
     沸石对COD的吸附效果和沼液的接触时间密切相关,对沼液中极性小、分子量大、溶解度小的有机物吸附效果较差。因此,利用改性沸石滤柱进行沼液COD吸附去除很难达到理想效果,有必要在吸附柱处理后辅以生化处理工艺,以去除沼液中难吸附有机类物质。
     3、将粒径范围在40-60μm之间的粉煤灰合成沸石投入SBR系统组成ZFA-SBR系统(粉煤灰合成沸石投加型SBR),随着驯化时间的延长,生物膜逐渐在粉煤灰合成沸石上形成,为SND(同步硝化反硝化作用)创造了物质条件。ZFA-SBR和SBR相比,系统内活性污泥性能得到改善,稳定运行期SVI、 MLSS指标优于SBR。在运行周期内,ZFA-SBR与SBR的pH值变化趋势相似,但整体要比SBR高0.5-0.7个单位。ZFA-SBR反应器中的脱氮和反硝化效率较高,曝气期COD降解速率也更高。
     沼液经改性沸石滤柱过滤后,按照调整沼液滤液BOD5/TN值到4左右的目的,与养殖场原水按配比进行混合,所得的混合液的可生化性相比沼液有较大改善,将其投入ZFA-SBR系统,构建“改性沸石滤柱过滤→BOD5/TN调整→ZFA-SBR"沼液处理强化工艺流程。在强化工艺稳定运行的30d内,ZFA-SBR的NH3-N、COD.TP出水达到《畜禽养殖行业污染物排放标准》规定要求,实现沼液的低耗达标处理,与SBR相比,表现出更高的去除率和抗水质负荷冲击能力。
     4、通过盆栽试验,考察5种沸石吸附沼液后的产物对土壤-冬小麦系统的影响,发现A处理组(5种沸石材料+化肥)和B处理组(5种沼液饱和吸附沸石材料+部分化肥)对土壤-植物系统产生了较明显的良性影响。
     在土壤方面,A处理组中的AYWF (YWF+化肥)、AWF (WF+化肥)与B处理组中的BYWF(沼液饱和吸附YWF+部分化肥)、BWF(沼液饱和吸附WF+部分化肥),均能显著提高土壤pH值,其中又以AYWF效果最为明显。土壤总氮、有机质和碱解氮含量均在BCPBF(沼液饱和吸附CPBF+部分化肥)为最高,分别为1.09、13.97mg/g和97.18mg/kg;而土壤总磷最高值由BYWF处理获得,为0.43mg/g; AYWF (YWF+化肥)处理增加土壤速效磷效果最明显,达到5.82mg/kg,可能是由于AYWF提高土壤pH值效果最明显,从而减少了土壤中磷的固定性,也促进闭蓄态磷酸盐转为非闭蓄态磷酸盐,增加了土壤磷的有效性。土壤总磷和速效磷最低值则均出现在CYWF(仅施YWF),为0.33mg/g和3.92mg/kg。
     在冬小麦方面,最高生物量出现在AYWF处理,达到33.48g/pot;最高产量和千粒重分别由BYWF处理与BCPBF处理取得,相比CKl(仅施化肥)分别提高了15.29%和10.29%。
     冬小麦吸氮量、吸磷量及相应的氮磷养分利用率在BywF处理中均为最高值,分别达到668.28、122.3lmg/pot和34.06%、12.93%。在A、B两个处理组内,AyWF处理和AWF处理之间以及ByWF与BWF之间吸氮量、吸磷量差异不显著(p<0.05)。
     利用吸附沼液营养物至饱和的沸石(B处理组)替代部分氮磷肥,既可减少化肥成本投入,又可在一定程度上改善冬小麦生物学指标和酸性紫色土理化性质。
     最后指出,虽然本文系统研究了不同沸石对沼液NH3-N、TP、COD吸附-解吸特征及其影响因素,但后续研究中应改进方法,研究吸附后的原位表征技术,以期观察到吸附前后变化情况。
In the process of treating the wastes of livestock and poultry and producing biogas, large and medium sized biogas project produces large quantity of byproduct-centralized biogas slurry. Biogas slurry is the residual liquid of organic compound by anaerobic fermentation and has high concentration of nutrients, like nitrogen, phosphorus and organic compound. If the biogas slurry is directly discharged, there will be serious environmental pollution; if the treatment of biogas slurry reach the required standards of environmental protection, the cost will be high; if the biogas slurry is directly utilized, there needs to be large area of land for digestion and accommodation。 At present, the biogas slurry disposal methods mostly consists of low-cost cropland application, natural ecological purification, high-cost factory treatment, high additional value oriented treatment and so on. The ideal treatment of biogas slurry is to couple low-consumption disposal with value added utilization, so that the valuable components of biogas slurry could be recycled at a low cost and the pressure of the subsequent treatment process could be relieved.
     Using the natural porous media to absorb the pollutants is one of the most common methods of low-costly treating wastewater. In view of the powerful ion-exchange adsorbability, adsorbability, diffusivity, and catalytic property of zeolite, with extensive material and in low cost, it is commonly be used as adsorption medium in wastewater treatment. In order to raise the adsorption efficiency of natural zeolite, the physical method(for example, increasing specific surface area) and chemical method (for example, improving cation exchange capacity) are often utilized to modify the natural zeolites. In view of the fact that the adsorption of the nutrients like nitrogen, phosphorus and organic compound in biogas slurry by zeolite has not been reported at home and abroad, the thesis took TRF(Natural zeolite), WLF(Microwave-sodium chloride modified zeolite), CPBF (Cetylpyridinium Bromize modified zeolite), WF(Micro-sized zeolite synthesized from coal fly ash) and YWF(Submicro-sized zeolite synthesized from coal fly ash) as the research objects, studied the isothermal adsorption-desorption characteristics of nitrogen, phosphorus, COD in biogas slurry by five zeolite substrates through isothermal adsorption-desorption experiment and optimized working parameters through filter column experiment; treated the effluent of filter column by Zeolite-strengthened SBR; studied on the agricultural fertilizer efficiency of biogas slurry saturated adsorption zeolite through pot experiment. And then achieve the goal of low-cost recovering nutrients, like nitrogen, phosphorus and COD and promoting the subsequent treatment process of biogas slurry, reaching the required standards of environmental protection, the results showed that:
     1. The isothermal adsorption characteristics of nitrogen, phc=sphorus and COD by five zeolite substrates were more suitable for Langmuir equation than Freundlich equation. According to Langmuir equation, the order of absorption capacity of anmmonium was YWF (29.155mg/g)>WF (17.637mg/g)>WLF (10.020mg/g)>TRF (8.326mg/g)>CPBF(7.599mg/g); the order of absorption capacity of phosphorus was YWF (3.169mg/g)>WF (2.653mg/g)>CPBF (1.138mg/g)>WLF (0.693mg/g)>TRF (0.611mg/g); the order of absorption capacity of COD was CPBF (37.736mg/g)>YWF (23.256mg/g)>WF (20.121mg/g)> WLF (13.423mg/g)>TRF (12.987mg/g); on the desorption rate of anmmonium and phosphorus, YWF and WF were much smaller than that of the other three materials. The order of desorption rate of COD was TRF>WLF> WF>YWF> CPBF.
     On the research of absorption kinetics, the absorption of anmmonium, phosphorus and COD by the five zeolites enjoyed the characteristic of "fast absorption, slow balance ". The absorption rate of YWF was obviously higher than that of the other four zeolites.
     The kinetic model fitting showed that the fitting effect of second-order kinetic model was the best for all the5zeolite materials of the ammonium absorption; the fitting effect of first-order kinetic model was the best for WLF、TRF and WF of phosphorus absorption; the fitting effect of Elovich equation was best for CPBF and YWF. In the COD absorption dynamics model, the fitting effect of first-order kinetic model was the best for TRF, WLF, WF, YWF. From the change of kinetic curve and the apparent rate constant B of first-order kinetic model, it could be concluded that the absorption of COD of biogas slurry was mainly controlled by membrane diffusion which was fast reaction.Both the effect of surface adsorption in original mining area and effect of organic distribu-tion existed in the adsorption of COD of biogas slurry by CPBF, and rapid ad-sorption and slow adsorption also existed at the same time, so CPBF was more suitable for the two-compartment first-order dynamic model.
     Combined with the results of isothermal adsorption-desorption and adsorption kinetics experiments, it was found out that of the five different zeolites, YWF had better comprehensive adsorption capability of anmmonium, phosphorus and COD in biogas slurry, and was ideal adsorption medium for biogas slurry.
     (?) of the influential factors on the adsorption capacity, it was found out that of the five zeolite materials, the ammonium absorption quantity of YWF and WF slowly rose along with pH value increased and then it slowly decreased with the further increase of pH value, while the ammonium absorption' quantity of CPBF、TRF and WLF slowly decreased with the increase of pH value. The phosphorus absorption quantity of YWF and WF was mostly influenced by the change of pH value, while the change of pH value had little effect on the phosphorus absorption quantity of CPBF, TRF and WLF. The COD absorption quantity of YWF and WF decreased with the increased of pH value, that of CPBF, TRF, WLF appeared the tendency of "two low and one high" with the increased of pH value. The ammonium absorption quantity of the five different zeolite materials decreased with the rose of ionic strength, of which the decrease range of the ammonium absorption quantity of WLF was the highest of the five zeolite materials. The influence exerted by ionic strength on the absorption capacity of anmmonium in biogas slurry exceeded that on phosphorus and COD.
     2. WLF and CPBF were used as adsorption medium to construct mixed modified-zeolite filter column in volume ratio1:1, the research found out that in proper range, there was a negative correlation between the adsorption capacity of NH4+, TP, COD by the modified zeolites filler and inlet velocity of biogas slurry, positive correlation between that and initial concentration of biogas slurry, the strengthening of the biogas slurry influent velocity and influent initial concentration would make the penetrating time of target object decrease. With the increase of the height of filter column, the penetrating time also increase, the unit absorption of NH4+, TP, COD by modified-zeolite would increase too. Therefore, properly increasing the height of filter column and concentration of biogas slurry and reducing the biogas slurry influent velocity could effectively improve the absorption capacity and utilization ratio of the modified-zeolite contents in the filter column, and would make the process more efficiency and economic.
     In the experiment of the regeneration of saturated filter column, after oscillated in hot water at45°C, then using the mixture of NaCl+Na2SO4(the molar ratio of the solution was5:1, the mass concentration was6g/L) and the mixture NaCl+NaOH(the molar ratio of the solution was7:13, the mass concentration was6g/L) as the regeneration fluid to make continuous chemical removal of the modified-zeolite saturated adsorption of biogas slurry, the absorption capacity of NH4+, TP, COD by the regenerated modified-zeolite reached88.15%,93.30%,84.57%of that of the fresh modified-zeolite. It indicated that modified-zeolite had better reproducibility and the cost of reproducing was acceptable, therefore, the mixed modified-zeolite had great value of application.But for the sake of economic consideration, the regeneration times should be controlled within3.
     The absorption of COD by zeolite was closely related to the contact time with biogas slurry, and organic matters which were low polarity,small molecular weight and low solubility were difficult to be adsorbed. Therefore, the using of modified-zeolite column to absorb COD biogas slurry was not easy to reach desirable effects. In order to get the desirable effects, it was necessary to supplement the biochemical treatment after the filter column treatment, so that the organic compounds which was difficult to be absorbed in the biogas slurry could be removed.
     3. Put the zeolite synthesized from coal fly ash whose range of particle size between40μm and60μm into SBR system to form ZFA-SBR system. With the prolongation of acclimation time, the biofilm was formed around the zeolite synthesized from coal fly ash, which created material prerequisite for simultaneous nitrification and denirifica-tion(SND). Compared with SBR, the properties of the activated sludge in ZFA-SBR(SBR added zeolite synthesized from coal fly ash)was improved. During the stable stage, the index of SVI, MLSS in ZFA-SBR was better than that of SBR. During the operation period, compared ZFA-SBR with SBR, the change of pH value was similar while the total value of the former was higher than SBR for0.5to0.7. The nitrogen removal and denitrification efficiency in the ZFA-SBR reactor was relatively high; the degradation rate of COD in the aeration period was also faster.
     After filtrating by modified-zeolite filter column, the biogas slurry mixed with raw livestock wastewater in order to adjust the BOD5/TN value of filtrate to4, the biodegradability of mixture was improved obviously compared with biogas slurry. Put the mixture into ZFA-SBR system, and then constructed strengthening process of biogas slurry which named "filtration by modified-zeolite filter column-adjusting BOD5/TN value-ZFA-SBR".
     During the30days period of stable operation of Zeolite-strengthened SBR, the effluent concentration of NH3-N, COD, TP of ZFA-SBR reached at discharge standard of pollatants (?) Lvestook and poultry breeding and realized low consumption standard treatment of biogas slurry. Compared with SBR, it showed better removal rate and resistance to impact load.
     4. Through pot experiment, the influence on soil-plant system by5kinds of zeolite (?) of biogas slurry nutrients were investigated. It was found out that both A treatment group(5kinds of zeolite materials+chemical fertilizers) and B treatment group(5kinds of zeolites which saturated adsorption of biogas slurry+part of chemical fertilizers) exerted benign effect on soil-plant system.
     Both AYWF treatment(YWF+chemical fertilizers), AWF treatment(WF+chemical fertilizers) of A treatment group and BYWF treatment(YWF which saturated adsorption of biogas slurry+part of chemical fertilizers), BWF treatment (WF which saturated adsorption of biogas slurry+part of chemical fertilizers) of B treatment group could dramatically raise the pH value of soil. The effect of AYWF in raising pH was the most obvious.
     Of the influence on Total nitrogen, organic matter and available nitrogen, the maximum were reached by BCPBF treatment (CPBF which saturated adsorption of biogas slurry+part of chemical fertilizers), that were1.09mg/g,13.97mg/g and121.18mg/kg respectively. The maximum total phosphate and available phosphorus of soil were reached by BYWF treatment and AYWF treatment at0.43mg/g and8.02mg/kg respectively. While the minimum were reached by CYWF treatment(only YWF), that were0.33mg/g and4.12mg/kg. Probably because AWF treatment could most effectively improve soil pH value, in turn reduced the fixation of phosphorus in soil and promote occluded phosphate to convert into non occluded phosphate.
     Of the various processing of the influence on winter wheat, the highest biomass of winter wheat was in AYWF treatment, that was33.48g/pot. The highest yield and1000-grain weight were reached by BYWF treatment and BCPBF treatment, compared with CK1(only using NPK), increased for15.29%and10.29%respectively.
     The nitrogen, phosphorus uptake and utilization ratios of winter wheat, all reached the highest value in BYWF treatment at668.28,122.31mg/pot and34.06%,12.93% respectively.
     Within the range of A treatment group, the difference of nitrogen uptake and phosphorous uptake between AYWF treatment and AWF treatment was not obvious(p<0.05), and the difference between BYWF treatment and BWF treatment in B treatment group was also not obvious(p<0.05).
     The zeolite saturated adsorption of biogas slurry nutrients could partially substitute nitrogen and phosphorus fertilizers, and this would reduce the cost of fertilizers, improve the physicochemical properties of acid purple soil and the biological indexes and nutrient utilization of winter wheat to some extents, and mitigate water environment and atmospheric environment damage caused by the low utilization ratio of fertilizer.
     In the end, the thesis pointed out that the test systematically studied the adsorption-desorption characteristics and the influential factors of NH3-N, TP, COD in biogas slurry by different zeolites, but in the subsequent research the in situ characterization techniques should be used in order to observe the changes before and after adsorption factually.
引文
1. Ahmet Uygur, Fikret Karg. Biological nutrient removal from pre-treated landfill leachate in a sequencing batch reactor [J]. Journal of Environmental Management,2004,71:9-14.
    2. Ahmaruzzaman M. A review on the utilization of fly ash[J]. Prog Energy Combust Sci,2010,36: 327-363.
    3. A K Dahiya, P Vasudevan. Biogas plant slurry as an alternative to chemical fertilizers [J]. Biomass,1986,9:67-74.
    4. Alelishvili M, Andronikashvili TA, Tsitsishvili V,et al. On the possibility of growing cucumber and scallop without application of traditional fertilizers [J]. Chem Environ Res, 2003,12(1-2):121-134.
    5. Al-Qodah, Z. Adsorption of dyes using shale oil ash[J].Water Research,2000,34 (17): 4295-4303.
    6. Allen E, Hossner L, Ming D,et al. Solubility and cation exchange in phosphate rock and saturated clinoptilolite mixtures [J]. Soil Sci. Soc. Am. J.1993,57,1368-1374.
    7. Ando H, Mihara C H, Kakuda K,et al.The fate of ammonium nitrogen applied to flooded rice as affected by zeolite addition[J]. Soil Sci Plant Nutr,1996,42(3):531-538.
    8. Andreottola G, Bortone G, Tilche A. Experimental validation of a simulation and design model for nitrogen removal in sequencing batch reactors[J]. Water Science Technology,1997,35 (1), 113-120.
    9. Antelo J, Avena M, Fiol S, et al. Effect of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface[J]. Journal of Colloid and Interface Science,2005, 285:476-486.
    10. Ayse Gu la, Deniz Erog ula, Ali Riza Ongun, Comparison of the use of zeolite and perlite as substrate for crisp-head lettuce [J]. Scientia Horticulturae,2005,106:464-471.
    11. Asai H, Samson B K, Stephan H M, et al. Biochar amendment techniques for upland rice production in Northern Laos 1.Soil physical properties,leaf SPAD and grain yield[J]. Field Crops Research,2009,111:81-84.
    12. Azhar A Halima, Hamidi A Azizb, Megat Azmi Megat Joharib, et al.Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment[J]. Desalination,2010:31-35.
    13. Barbarick K A, Lai T M, Eberl D D. Exchange fertilizer (phosphate rock plus ammonium-zeolite) effects on sorghumsudan grass[J]. Soil Sci Soc Am J,1990,54:911-916.
    14. Barnard J. Biological nutrient removal without the addition of chemicals [J]. Water Research,1975,9 (5-6):485-493.
    15. Barrow N J, Shaw T C. The slow reactions between soil and anions:2. Effect of time and temperature on the decrease in phosphate concentration in the soil solution[J]. Soil Science, 1975,119(2):167-177.
    16. Berkgaut V, Singer A. High capacity cation exchanger by hydrothermal zeolitization of coal fly ash [J]. Applied Clay Science.1996,10(5):369-378.
    17. Bernetn, Akunnaj C, Deigenesj Petal. Combined anaerobic-aerobic SBR for the treatment of Piggery wastewater [J]. Water Research,1999,34 (2):611-619.
    18. Bortone G, Gemelli S, Rambaldi A. Nitrification, denitrification and biological phosphate removal in sequencing batch reactors treating piggery wastewater[J]. Water Science and Technology,1992,26 (5-6),977-985.
    19. Booker N A., Cooney E L., Priestley A J. Ammonia removal from sewage using natural Australian zeclite[J].Water Science and Technology,1996,34:17-24.
    20. Bouffard S C, Duff S J B. Update of dehydroabietic acid using oranically-tailored zeolites[J].Water Research,2000,34 (9):2469-2476
    21. Chien S H, Clayton W R. Application of Elovich equation to the kinetics of phosphate release and sorption in soils [J]. Soil Science Society of America Journal,1980,44(2):265-268.
    22. Chen J G, Kong H N, Wu D Y, et al. Removal of phosphatefrom aqueous solution by zeolite synthesized from fly ash[J]. Journal of Colloid and Interface Science,2006,300:491-497.
    23. Chen XiaoYan, Khunjar Wendell, Jun Zhu, et al. Synthesis of nano-zeolite from coal fly ash and its potential for nutrient sequestration from anaerobically digested swine wastewater [J]. Bioresource Technology,2012,110:79-85.
    24. Chunjie Li, Yang Dong, Deyi Wu. Surfactant modified zeolite as adsorbent for removal of humic acid from water[J]. Applied Clay Science,2011,52:353-357.
    25. C. L. Carlson, D.C. Adriano, Environmental impacts of coal combustion residues [J]. Journal of Environmental Quality,22 (1993) 227-247.
    26. Diamond S. On the glass present in low calcium and in high calcium fly ashes [J]. Cement. Concrete. Res,1984,14(1):459-464.
    27. Deng LW, Zheng P, Chen Z A. Anaerobic digestion and post-treatment of swine wastewater using IC-SBR process with bypass of raw waste- water [J]. Process Biochemistry,2006,41(4): 965-969.
    28. Deyi Wu, Baohua Zhang, Chunjie Li, et al.Simultaneous removal of ammonium and phosphate by zeolite synthesized from fly ash as influenced by salt treatment [J]. Journal of Colloid and Interface Science,2006,304:300-306.
    29. Edgerton. Strategies for dealing with piggery effluent in Australia:the sequencing batch reactor as solution [J].Water Science Technology,2000,41(1):123-126.
    30. Fox R D. Fighting Malnutrition with Spirulina Appropriate Technology for the Third World. World- view [G]//Washington DC,1984.
    31. Gworek B. Inactivation of cadmium in contaminated soils using synthetic zeolites [J].Environmental Pollution,1992,75(3):269-271.
    32. Gworek B. Use of synthetic zeolites of 3A and 5A type for lead immobilization in anthropogenic soils [J].Polish Journal of Soil Science,1992,25(1):35-39.
    33. Gworek B. Lead inactivation in soils by zeolites [J].Plant and Soil,1992,143(1):71-74.
    34. Garcia-Sanchez A, Alastuey A, Querol X. Heavy metal adsorption by different mineralsrapplication to the remediation of polluted soils [J].The Science of the Total Environment.1999,24(2):179-188.
    35. Han S, Kim S, Lim H. New nanoporous carbon materials with high adsorption capLcity and rapid adsorption kinetics for removing humic acids[J].Micropor MesoporMat,2003,58(2):131-135.
    36. Haidouti C. Inactivation of mercury in contaminated soils using natural zeolires[J]. The Science of the Total Environment.1997,208:105-109.
    37. Harrington C, Scholz M. Assessment of pre-digested piggery wastewater treatment operations with surface flow integrated constructed wetland systems[J]. Bioresource Technology,2010, 101(20):7713-7723.
    38. Harry W Pickering, Neal W Menzies, Malcolm N Hunter. Zeolite/rock phosphate-a novel slow release phosphorus fertiliser for potted plant production[J]. Scientia Horticulturae, 2002,94:333-343.
    39. He S B, Xue G, Kong H N, et al.Improving the performance of sequencing batch reactor(SBR)by the addition of zeolite powder [J] Journal of Hazardous Materials,2007,142 (1-2):493-499.
    40. Hea R C.Intensive livestock farming:global trends, increased environmental concerns,and ethical solutions [J] Journal of Agriculture Environmental Ethics.2009,22(2):153-167.
    41. Hiemstra T, Van Riemsdijk W H. Surface Structural Ion Adsorption Modeling of Competitive Binding of Oxyanions by Metal (Hydr)oxides[J]. Journal of Colloid and Interface Science, 1999,210:182-193.
    42. Hollman G G, Steenbruggen G, Janssen-Jukovicova M A two-step process for the synthesis of zeolites from coal fly ash[J].Fuel,1999,78(10):1225-1230.
    43. Honda A, Ito H.and Kawakita T. Treatment of the wastewater from animal housing by oxidation ditch system. Technical Report No.3(Research Council Secretariat)[R],Ministry of Agriculture, Forestry and Fisheries,1974.(in Japanese)
    44. Howarth, R.W., Swaney, D.P., Butler, T.J., and Marino, R Climatic control on eutrophication of the Hudson River Esturay [J].Eeosystems 2000.3,:210-215..
    45. Huang, H.M., Xiao, X.M., Yan, B., Yang, L.P.,2010. Ammonium removal from aqueous solutions by using natural Chinese(Chende) zeolite as adsorbent [J] Journal of Hazardous Material,2010.175(1-3):247-252.
    46. Janjgava N, Kardava M, Khazaradze N. Efficiency of natural zeolites and organic zeolite fertilizers in garlic growing [J].Bull Georgian Acad Sci,2003,168(2):305-308.
    47. Johnson M D, Michaelkeinath T, Weber W J A. Distributed reactivity model for sorption by soils and sediments.14. Characterization and modeling of phenanthrene desorption rates [J]. Environmental Science and Technology,2001,35(8):1688-1695.
    48. Jiang X, Sommer S G, Christensen K V. A review of the biogas industry in China [J]. Energy Policy,2011,39(10):6073-6081.
    49. Jie Xie, Chunjie Li, Lina Chi, et al. Chitosan modified zeolite as a versatile adsorbent for the removal of different pollutants from water [J].Fuel,2013,103:480-485.
    50. Jin-Young Jung, Yun-Chul Chunga, Hang-Sik Shinb, et al. Enhanced ammonia nitrogen removal using consistent biological regeneration and ammonium exchange of zeolite inmodified SBR process [J]. Water Research,2004,38:347-354.
    51. Jones D L, Edwards-Jones G, Murphy D V. Biochar mediated alterations in herbicide breakdown and leaching in soil [J].Soil Biology and Biochemistry,2011,43(4):804-813.
    52. J A Davis, D B Kent. Surface complexation modeling in aqueous geochemistry[J]. Reviews in Mineralogy,1990,23:177-260.
    53. J S Notario del Pino I J, Arteaga Padron M M, Gonzalez Martin J E, et al. Phosphorus and potassium release from phillipsite-based slow-release fertilizers[J]. Journal of Controlled Release,1995,34:25-29.
    54. Jung M W, Ahn K H, Lee Y H, et al. Valuation on the adsorption capabilities of new chemically modified Polymeric adsorbents with protoporphyrin [J]. Journal of Chromatography A,2001,917:87-93.
    55. Kameoka T; Kagi T, Sakirnoto M and inno Y. Characteristics of concentrated wastewater treatment of swine by the rotating disc system [J]. Jpn J Zootechnol Sci,1986,:57:209-215.(in Japanese).
    56. Kaparaju P, Rintala J. Mitigation of greenhouse gas emissions by adopting anaerobic digestion technology on dairy, sow and pig farms in Finland [J]. Renewable Energy,2011,36(1):31-41.
    57. Kimetu J M, Lehmann J, Ngoze S O, et al. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient [J].Ecosystems, 2008,11:726-739.
    58. Knowles O A, Robinson B H, Contangelo A, et al. Biochar for the mitigation of nitrate leaching from soil amended with biosolids [J]. Science of the Total Environment,2011,409 (17):3206-3210.
    59. Koon J H, Kaufmann W J. Ammonia removal from municipal wastewater by ion exchange [J] Journal of Water Pollution Control Fed,1975,47(3):448-464.
    60. Lahav O, Green M. Ammonium removal from primary and secondary effluents using a bio-regenerated Ion-exchange process [J]. Water Science and Technology,2000,42(1):179-185.
    61. Lahav O, Green M. Bioregenerated ion-exchange process:the effect of the biofilm on ion-exchange capacity and kinetics [J]. Water S A,2000,26(1):51-57.
    62. Lahav O, Green M. Ammonium removal using ion exchange and biological regeneration [J]. Water Research,1998,32(7):2019-2028.
    63. Li Z, Roy S, Zou Y, et al. Long-term chemical and biological stability of surfactant-modified zeolite [J]. Environmental Science & Technology,1998,32(17):2628-2632.
    64. Li Z H, Bonman R S. Regeneration of surfacant-modified zeolite after saturation with chromate and perchloroethylene[J]. Water Research,2001,35(1):2469-2476.
    65. Lu Jianbo, Zhu Lei, Hu Guoliang, et al. Integrating animal manure-based bioenergy production with invasive species control:A case study at Tongren Pig Farm in China [J]. Biomass and Bioenergy,2010,34(6):821-827.
    66. Masuda S, Watanable Y. Biofilm properties and simultaneous nitrification and denitrification in aerobic rotating biological contactors [J]. Water Science and Technology,1991, 23(9):1355-1363.
    67. Mcgilloway R L, Weaver R W, Ming D W, et al. Nitrification in a zeoponic substrate [J]. Plant Soil 2003,256:371-378.
    68. M L Nguyen, C C Tanner. Ammonium removal from wastewaters using natural New Zealand zeolites[J]. New Zealand Journal of Agricultural Research,1998,41(3):427-446
    69. M M Higarashi, R M Mattei. Application of natural adsorbents to remove nutrients from swine facility effluent [J]. Livestock Research for Rural Development,2009,21 (10):177
    70. Moller K, Stinner W, Deuker A, et al. Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems [J]. Nutrient Cycling in Agroecosystems,2008,82(3):209-232.
    71. Mondragon R F. New perspectives for eoal ash utilization:synthesis of zeolite materials [J].Fuel,1990,69:263-266.
    72. M Rehakova, S Cuvanova, M. Dzivak. Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type [J]. Current Opinion in Solid State and Materials Science, 2004,8:397-404.
    73. Murayama N, Yoshida S, Takami Y, et al. Simultaneous removal of NH4+ and PO43- in aqueous solution and its mechanism by using zeolite synthesized from coal fly ash [J].Sep. Sci. Technol,2003,38(1):113-129.
    74. Nissen L R, Lepp N W, Edwards R. Synthetic zeolites as amendments for sewage sludge-based compost [J]. Chemosphere,2000,41:263-269.
    75. N Fernandez, S Montalvo, F Fernandez-Polanco. Real evidence about zeolite as microorganisms im- mobilizer in anaerobic fluidized bed reactors [J]. Process Biochemistry,2007,42:721-728.
    76. Obaja D, Mace S, Costa J,etal.2003. Nitrification, denitrification and biological phosphorus removal in piggery wastewater using sequencing batch reactor [J]. Bioresource Technology, 2003,87:103-111.
    77. Oliver J G J, Bouwman A F, Hock K W V, etal Global air emission inventories for anthropo genie sources of NOx,NH3,andN2O in 1990 [J].Environmental Pollution.1998,102(l):135-148.
    78. Peter J, Jespersen K, Henze M. Biological phosphorus uptake under anoxic and aerobic coditions [J].Water Research,1994,28(5):1253-1255.
    79. Pan B, Xing B S, Liu W X, et al. Two-compartment sorption of phenanthrene on eight soils with various organic carbon contents[J]. Journal of Environmental Science and Health, Part B, 2006,41:1333-1347.
    80. Qin W, Egolfopoulos F N, Tsotsis T T. Fundamental and environmental aspects of land fill gas utilization power generation [J].Chemical Engineering Journal,2001,82:157-172.
    81. Qingyu Guan, Xiaozhen Hu, Deyi Wu,et al. Phosphate removal in marine electrolytes by zeolite synthesized from coal fly ash[J].Fuel,2009,88:1643-1649.
    82. Ratanatamskul C, Chiemchaisri C, Yamamoto K. The use of a zeolite-iron column for residual ammonia and phosphorus removal in the effluent from a membrane process as an on-site all-scale domestic wastewater treatment[J]. Water Science and Technology,1995,31(9):145-152.
    83. Rios A C, Williams C D, Fullen M A. Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods [J].Applied Science,2009,42(3-4):446-454.
    84. Robertson L A, Cornelisse R, Devos P,et al. Aerobic denitrification in various heterotrophic nitrifiers [J]. Antonie Van Leeuwenhoek journal of Microbiology,1989,56(4):289-299.
    85. Robertson L A, Vanniel E W J, Torremans R A M, et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of thiosphaera-pantotropha [J]. Applied and Environmental Microbio- logy,1988,54(11):2812-2818.
    86. Ryunosuke Kikuchi. Application of coal ash to environmental improvement:transformation into zeolite, potassiumfertilizer, and FGD absorbent [J]. Resources, Conservation and Recycling, 1999,27:333-346
    87. S Montalvo, L Guerrero b, R Borja. Use of natural zeolite at different doses and dosage procedures in batch and continuous anaerobic digestion of synthetic and swine wastes [J].Resources, Conservation and Recycling,2006,47:26-41
    88. Saeid R,Tsutomu M,Uptake monitoring of anilines and phenols using modified zeolites[J].Analytica Chimica Acta,2002,464:15
    S9. Soiaiman Z M, Murphy D V, Abbott L K. Biochars influences seed germination and early growth of seedlings [J]. Plant and Soil,2012,353(1/2):273-287
    90. Song YH, Hahn HH, Hoffmann E. Effects of solution conditions on the precipitation of phosphate for recovery a thermodynamic evaluation [J]. Chemosphere,2002,48:1029-1034
    91. Sooknah R D, Wilkie A C. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater [J]. Ecol. Eng.,2004,22:27-42.
    92. Su J J,Liu Y L,Shu F J,et al. Treatment of piggery wastewater by contact aerobic treatment (TPWT) process [J]. Journal of Environmental Science Health,1997,32A (1):55-73.
    93. S Wei B, M Tauber, W Somitsch et al. Enhancement of biogas production by addition of hemicellu- lolytic bacteria immobilised on activated zeolite [J]. Water Research,2010, 44:1970-1980.
    94. Tanaka H, Yamasaki N and Muratani M, Strueture and formation Process of (K, Na) clinoptilolite [J].Materials Research Bulletin,2003,38(4):713-722
    95. Thien Thu C T, Cuong P H, Hang L T, et al. Manure management practices on biogas and non-biogas pigfarms in developing countries-using livestock farms in Vietnam as an example[J]. Journal of Cleaner Production,2012,27:64-71.
    96. Tsitsishvili G V, Andronikash Dimova G. Natural zeolites[M].Chichester, England:Ellis Horwood Limited,1992:86-91.
    97. Tsadilas C D. Dimoyiannis D. Samaras V. Effect of zeolite application and soil pH on cadmium sorp-tion in soils[J].Commun. Soil. Sci. Plant Anal.1997.28:1591-1602.
    98. Uzoma K C, Inoue M, Andry H, et al. Effect of cow manure biochar on maize productivity under sandy soil condition [J].Soil Use and Management,2011,27(2):205-212.
    99. Vander Houwen J A M, Valsami Jones E. The application of calcium phosphate precipitation chemis- try to phosphorus recovery:the influence of organic ligands [J].Environment Technology,2001,22:1325-1335.
    100. Wu DY, Sui YM, Chen XC, et al. Changes of mineralogical-chemical composition, cation exchange capacity, and phosphate immobilization capacity during the hydrothermal conversion process of coal fly ash into zeolite[J]. Fuel,2008;87:2194-2200.
    101. Westerman P W, Bicudo J R., Management considerations for organic wasteuse in agriculture[J]. Bio- resource Technology.2005.96,215-221.
    102. Xing Guangxi, Cao Yacheng, Shi Shulian. N Pollution sources and denitrification in water bodies in Taihu lake region [J].Science in China(series B).2001,44(3):304-314.
    103. Yan G Z, Kazuto S, Satoshi F, et al. The effects of bamboo charcoal and phosphorusfertilization on mixed planting with grasses and soil improving species under the nutrients poorcondition[J]. Journal of the Japanese Society of Revegetation Technology.2004.30(1):33-38
    104. Yetilmezsoy K, Sapci-Zengin Z. Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer [J]. Journal of Hazardous Materials.2009,166(1):260-269.
    105. Yuan J H, Xu R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol [J]. Soil Use and Management,2011,27(1):110-115.
    106. Yun-Xia Wei,Yan-Feng Li,Zheng-Fang Ye. Enhancement of removal efficiency of ammonia nitrogen in sequencing batch reactor using natural zeolite [J]. Environ Earth Sci,2010, 60:1407-1413.
    107. Z. Li, Use of surfactant-modified zeolite as fertilizer carriers to control nitrate release [J]. Microporous and Mesoporous Materials,2003,61:181-188.
    108. ZHANG Bao-hua, WU De-yi, WANG Chong, Simultaneous removal of ammonium and phosphate by zeolite synthesized from coal fly ash as influenced by acid treatment [J]. Journal of Environmental Sciences,2007,19:540-545.
    109. Zhang Zhaoji, Li Yuanyuan, Chen Shaohua, et al. Simultaneous nitrogen and carbon removal from swine digester liquor by the Canon process and denitrification [J]. Bioresource Technology,2012,114:84-89.
    110. Z Milan, E Sanchez, P Weiland. Ammonia removal from anaerobically treated piggery manure by ionexchange in columns packed with homoionic zeolite [J]. Chemical Engineering Journal, 1997,66:65-71.
    111. Zorpas A A, Constantinides T, Vlyssides A G. Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost [J]. Bioresource Technology,2000,72:113-119.
    112.白峰,马鸿文.13X沸石分子筛对饮用水中NH4+-N吸附性能的实验研究[J].现代地质,2003,17(2):163-170
    113.鲍士旦.土壤农化分析(第三版)[M].北京:中国建筑工业出版社,2000:56-109,263-271
    114.曹玉成,张妙仙,单胜道,等.畜禽养殖污物沼液生态处理装置和方法[p].中国专利:20081012-0398,2009
    115.曹玉成,张妙仙,单胜道.MBBR处理猪场废水厌氧消化液的研究[J].环境工程学报,2008,2(2):591-593.
    116.操卫平.猪场废水厌氧消化液后处理生物脱氮新技术研究[D].成都:四川大学硕士学位论文,2004.
    117.陈建刚.粉煤灰合成沸石固磷机制及固磷能力强化技术研究[D].上海:上海交通大学博士学位论文,2007,33-37.
    118.陈楠,高同国,姜峰,等.高效稳定沼液营养液对冬小麦产量及土壤养分的影响[J].中国气2011,29(4):47-50
    119.陈晓燕.粉煤灰纳米沸石复合颗粒功能化设计及其污水氮磷去除初步研究[D].杭州:浙江大学硕士学位论文,2011,8
    120.陈燕霞,唐晓东,游媛,等.石灰和沸石对酸化菜园土壤改良效应研究[J].广西农业科学2009,40(6):700-704
    121.陈玉成,杨志敏,陈庆华,等.大中型沼气工程厌氧发酵液的后处置技术[J].中国沼气,2009,28(1):14-20
    122.陈景振.沼肥改土增产效果试验[J].农村能源,2004(6):28-30
    123.程明.表面活性剂改性沸石处理废水技术研究[D].太原:中北大学硕士学位论文,2005
    124.成若林.利用沸石载体减少氮肥在土壤中损耗的研究[J].草业科学,1998,15(10):70-73
    125.邓良伟.猪场废水处理新工艺研究[D].杭州:浙江大学博士论文.2007,42-45
    126.邓良伟,陈铬铭.IC工艺处理猪场废水试验研究[J].中国沼气,2001,19(2):12-15
    127.邓良伟,陈子爱,袁心飞,等.规模化猪场粪污处理工程模式与技术定位[J].养猪,2008,6:21-24
    128.邓良伟,蔡昌达,陈铬铭,等.猪场废水厌氧消化液后处理技术研究及工程应用[J].农业工程学报,2002,18(3):92-94
    129.邓良伟,郑平,李淑兰,等.添加原水改善SBR工艺处理猪场废水厌氧消化液性能[J].环境科学,2005,26(6):105-109
    130.戴荣玲,章钢娅,宗良纲,等.有机粘土和粘土对p,p-DDE的吸附/解吸研究[J]..环境污染与防治,2007,29(2):85-89
    131.董秉直,夏丽华,高乃云.有机物对沸石去除氨氮的影响[J].水处理技术,2005,31(8):12
    132.丁磊.生物沸石反应器处理焦化废水研究[J].煤炭科学技术,2007,35(3),83-89
    133.丁文明,黄霞.废水吸附法除磷的研究进展[J].环境污染治理技术与设备2002,3(10):23-27
    134.冬梅.沼肥在蔬菜上的应用[J].现代农业.2008(5):18-19.
    135.杜金.混凝法预处理大中型猪场废水厌氧发酵液的研究[D].武汉:华中农业大学硕士学位论文,2006.
    136.杜蓉.有机改性沸石的制备及其对PAEs吸附行为与机理的研究[D].重庆:重庆大学硕士学位论文,2010,28-29.
    137.范建伟,张杰.活性污泥膜分离技术在畜禽废水处理中的应用[J].工业用水与废水,2002,33(3):39-40.
    138.方炳南,顾欣欣,朱亮.常规SBR工艺对猪场沼液的处理性能研究[J].中国沼气,2012,30(1):27-30
    139.方仁声.大型猪场废水处理技术的研究与应用[J].中国沼气,1998,16(4):39-41.
    140.傅敏.活性炭纤维改性及对焦化废水中有机物吸附作用的研究[D].重庆:重庆大学博士学位论文,2004,65-67.
    141.冯灵芝.斜发沸石去除水中氨氮的试验研究[D].郑州:郑州大学硕士学位论文,2006,38-45.
    142.丰慧敏.中孔活性炭纤维及其复合材料以及聚苯乙烯的降解[D].合肥:中国科学技术大学博士学位论文,2010,31-36.
    143.高春娣,王淑莹,彭永臻,等.DO对有机物降解速率及污泥沉降性能的影响[J].中国给水排水,2001,17(5):12-15
    144.高红梅.沼山沸石去除水中氨氮的研究[D].武汉:华中农业大学硕士学位论文,2005,5、6
    145.高红梅,王明学,张国辉.沸石在水产养殖中的应用研究进展[J].水利渔业,2005,25(I):1-3
    146.高红杰,彭剑峰,宋永会.铵饱和天然钙型沸石基质人工湿地对模拟养猪废水的处理效能[J].环境保护科学,2010,36(6):14-16、34
    147.高镜清,王志斌,周俊,等.5种改性硅酸盐吸附剂对腐殖酸的吸附性比较[J].郑州大学学报(工学版),2011,32(4),90-93
    148.高廷耀,周增炎,朱晓君.生物脱氮工艺中的同步硝化反硝化现象[J].给水排水,1998,24(12):6-9
    149.高锋.厌氧消化-SBR工艺处理养猪场废水及工艺最优化的研究[D].长沙:湖南大学硕士学位论文,2005.
    150.郭俊温.粉煤灰合成沸石及氨氮吸附性能的研究[D].包头:内蒙古科技大学硕士学位论文,2011,13、55
    151.关文玲,王旭东,胡田田.不同复合材料对化学肥料养分供应及玉米生长的影响[J].化肥工业,2003,30(5):11-13
    152.光焕竹,冯树文,杨培霞,等.纳米材料在环境保护和环境治理方面的应用[J].化学工程师,2002,89(2):56-57.
    153.郝鲜俊.洪坚平.高文俊.沼液沼渣对温室迷你黄瓜品质的影响[J].中国土壤与肥料.2007(5):40-43.
    154.郝元元,刘荣厚.大中型沼气工程工艺流程—发酵原料及其产物测试分析[J].安徽农业科学,2006,34(14):3429-4431.
    155.户朝帅.粉煤灰沸石的合成及处理焦化废水的研究[D].昆明:昆明理工大学硕士学位论文,2008,39
    156.何毓蓉等.中国紫色土下篇[M].北京:科学出版社,2003:216-219
    157.何萍等.集约化农田节肥增效理论与实践[M].北京:科学出版社,2012:149
    158.侯红勋,彭永臻,殷芳芳,等.NO2作为电子受体对反硝化吸磷影响动力学研究[J].环境科学,2008,29(7):1874-1879.
    159.黄健盛,谷晋川,杨平.天然沸石对直接耐晒黑G废水处理效果研究[J].非金属矿,2008,31(6):64-66.
    160.蒋京东,徐远,马三剑,等.粪石结晶沉淀法处理氨氮废水[J].水处理技术,2008,34(2):45-49.
    161.姜勇,李国芝,汤红妍,等.两种沸石吸附废水中磷污染物的研究[J].河南科技大学学报(自然科学版),2008,29(5):94-97
    162.姜文腾,林聪.大中型沼气工程厌氧残留物综合利用探究[J].猪业科学,2008,(4):84-87
    163.蒋山泉,翟俊,肖海文,等.序批式生物膜(SBBR)工艺同步脱氮除磷研究[J].四川大学学报(工程科学版),2008,40(1):64-68
    164.近藤精一,石川达熊,安部郁夫.吸附科学[M].北京:化学工业出版社,2006,118-127
    165.贾小宁,王耀龙,周林成,等.改性沸石对低浓度氨氮废水的动态吸附[J].环境工程学报,2013,7(2):557-562
    166.孔宪清,苑静.天然沸石在温室土壤改良中的作用研究[J].中国非金属矿工业导刊。2005。2:31-33.
    167.李彬,宁平,陈玉保,等.氧化镧改性沸石除磷脱氮研究[J].武汉理工大学学报,2005,27(9):56-59
    168.李华兴,李长洪,张新明,等.沸石对土壤养分生物有效性和土壤化学性质的影响研究[J].应用生态学报,2001,12(5):743-745
    169.李华兴,李长洪,张新明,等.天然沸石对土壤保肥性能的影响研究[J].应用生态学报,2001,12(3):237-240
    170.李瑾丽,冯启明.膨润土等几种多孔矿物/尿素缓释肥缓释效果比较研究[J].非金属矿,2008,31(3):40-41,50
    171.李吉进,邹国元.膨润土对土壤肥力的影响[J].华北农学报。2004,19(2):76-80.
    172.李剑虹.粉煤灰在混凝土中的应用[J].煤矿安全.2005,36(7):32-34
    173.李剑波.强化垂直流-水平流组合人工湿地处理生活污水研究[D].上海:同济大学博士学位论文,2008
    174.李勃.粉煤灰合成A型沸石处理制革废水试验研究[D].兰州:兰州大学硕士学位论文,2009,45.
    175.李晶,杨海征,胡红青,等.生物灰渣对小白菜生长的影响及对酸性土壤的改良[J].湖北农业科学,2010,49(4):822-825
    176.李鹏.城市生活垃圾厌氧消化液制备液体肥料的研究[D].昆明:昆明理工大学硕士学位论文,2006
    177.李轶,吕绪凤,刘庆玉,等.沼肥对设施土壤性质的影响[J].农机化研究,2009(10):140-142
    178.李文朴,高富.纳米分子筛和硅藻土去除水中氨氮的比较研究[J].哈尔滨商业大学学报(自然科学版),2006,22(2):23-26
    179.李孝勇,武际,鲁伊宁,等.酸性红黄壤施用白云石对油菜生长及产量的影响[J].安徽农业科学,2000,28(6):782,784
    180.李亚新.活性污泥法理论与技术[M].北京:中国建筑工业出版社,2007
    181.李远.我国规模化畜禽养殖业存在的环境问题与防治对策[J]上海环境科学,2002,21(10):597-599
    182.李法虎.土壤物理化学[M].北京:化学工业出版社,2006:99-100.
    183.黎园,赵纯,邓慧萍,等.2种孔径沸石分子筛对水中土霉素的去除研究[J]环境科学,2010,31(4):990-995
    184.雷宏军,朱端卫,刘鑫.施用石灰对酸性土壤上蚕豆生长的影响[J]华中农业大学学报.2003,22(1):35-39
    185.林建伟,刘漪,詹艳慧.CPB改性沸石对磷酸盐的吸附-解吸性能研究[J]环境工程学报,2010,4(3):575-580
    186.林建伟.地表水体底泥氮磷污染原位控制技术及相关机理研究[D].上海:同济大学博士学位论文,2006
    187.林大仪.土壤学[M].北京:中国林业出版社,2002:91,184.
    188.刘波,陈玉成,王莉玮等.4种人工湿地填料对磷的吸附特性分析[J].环境工程学报,2010,4(1):44-48
    189.刘建国.猪场废水IC厌氧-三沟式氧化沟工艺技术研究[D].南京:东华大学硕士学位论文,2003.
    190.刘钦甫,李东勇,杜娟,等.改性沸石处理高岭土洗选废水的实验研究[J].非金属矿,2007,30(4):50-52
    191.刘书宇.景观水体富营养化模拟与生态修复技术研究.哈尔滨:哈尔滨工业大学[D].博士学位论文,2007
    192.刘秀梅.纳米-亚微米级复合材料性能及土壤植物营养效应[D].北京:中国农业科学院.博士学位论文,2005
    193.刘艳,李艳,张振宇,等.水热条件对粉煤灰沸石离子交换性能的影响[J].环境科学与技术,2009,32(10):35-37
    194.刘玉亮.斜发沸石对废水中铵离子交换特性的试验研究[D].重庆:重庆大学硕士学位论文,2004,40-44
    195.刘玉亮,罗固源,阙添进,等.斜发沸石对氨氮吸附性能的试验分析[J].重庆大学学报(自然科学版),2004,27(3):62-65
    196.刘克锋.土壤、植物营养与施肥[M].北京:气象出版社,2006:200,212.
    197.梁文婷.天然沸石负载氧化镁对养猪场废水净化效果的研究[D].沈阳:沈阳农业大学大学硕士学位论文,2009
    198.梁文婷,颜丽,郝长红,等.氧化镁改性沸石处理猪场废水的研究[J].中国给水排水,2009,25(11):73-75
    199.陆长梅,张超英,温俊强.纳米材料促进大豆萌芽、生长的影响及其机理研究[J].大豆科学,2002,21(3):168-172
    200.陆佳.纳米分子筛组装体吸附水体中痕量甲基叔丁基醚及其机理研究[D].上海:上海交通大学博士学位论文,2009
    201.龙桂林.改性沸石的制备及其在废水处理中的应用[D].南京:南京理工大学硕士学位论文,2007,3
    202.罗雪梅,刘昌明.离子强度对土壤与沉积物吸附多环芳烃的影响研究[J].生态环境,2006,15(5):983-987
    203.孟赐福,傅庆林.施用石灰石粉后红壤化学性质的变化[J].土壤学报,1995,32(3):300-307
    204.孟海玲,董红敏,黄宏坤.膜生物反应器用于猪场污水深度处理试验[J].农业环境科学学报,2007,26(4):1277-1281.
    205.孟海玲,董红敏,朱志平,等.运行条件对膜生物反应器处理猪场厌氧消化液效果的影响[J].农业工程学报,2008,24(9):179-183.
    206.马文元,郭卫兰.对沼气发酵残留物中生物活性物质的探讨[J].中国沼气,1993,11(2):50-51
    207.倪俊.城市生活有机垃圾厌氧发酵后的沼液处理[D].昆明:昆明理工大学硕士学位论文,2005.
    208.聂发辉,吴晓芙,胡日利.人工湿地中蛭石填料净化污水中氨氮能力[J].城市环境与城市生态,2003,16(6):280-282
    209.覃环,欧明.猪场粪水两相厌氧处理系统的设计及应用效果[J].家畜生态,2000,21(4)12-15
    210.彭永臻.SBR法污水生物脱氮除磷及过程控制[M].北京:科学出版社,2011
    211.彭剑凤,宋永会,袁鹏,等.SBBR工艺回收养猪废水营养元素研究[J].农业环境科学学报,2007,26(2):2173-2178
    212.彭里.重庆市畜禽粪便的土壤适宜负荷量及排放时空分布研究[D].重庆:西南大学博士学位论文,2009,2
    213.彭里程,吴德意,隋艳明,等.竞争性阳离子对粉煤灰合成沸石除氨氮的影响[J].环境科学与技术,2010,33(4):146-149
    214.青鹏,李清,祝其丽.畜禽养殖废水厌氧消化和沼液好氧后处理关联特性研究[J].中国沼气,2010,28(4):15-18
    215.钱锋,宋永会,孙杨,等.钙型天然斜发沸石同步脱氮除磷特性[J].环境科学研究,2009,22(9):1039-1043
    216.曲燕,张超杰,周琪.有机改性沸石去除有机物污染物的研究[J].工业水处理,2008,28(3):17-19.
    217.阮芳.氧化钛改性沸石处理有机废水的性能研究[D].北京:北京化工大学硕士学位论文,2012,43-54
    218.孙德智,黄新瑞,程翔,等.Zn-Al类水滑石吸附污泥脱水液中磷的研究[J].北京林业大学学报,2009,31(2):128-132
    219.孙家寿,冯晓丽.天然沸石FMA吸附剂对磷吸附能力的研究[J].化工矿山技术.1992,21(1):41-44
    220.孙家寿.吸附法处理模拟含磷废水[J]上海环境科学,1993,12(3):12-17
    221.宋秀华,王秀峰,魏珉,等.沸石添加对NaCI胁迫下黄瓜幼苗生长及离子含量的影响[J].植物营养与肥料学报。2005。11(2):259-263.
    222.宋国梁,邓良伟.高氨氮厌氧消化液后处理技术研究[J].中国沼气,2006,25(2):7-4
    223.宋灿辉.厌氧消化残余物处置研究[D].武汉:华中科技大学硕士学位论文,2007
    224.隋倩雯,董红敏,朱志平,等.沼液深度处理技术研究与应用现状[J].中国农业科技导报,2011,13(1):83-87
    225.商平,刘涛利,孔祥军.微波改性沸石后处理垃圾渗滤液中氨氮的实验研究[J].非金属矿,2010,33(2),63-69
    226.梁顺文,王伟,陈建湘,等.厌氧反应器-SBR工艺处理粪渣废水[J].中国给水排水,2003,19(5):16-19.
    227.史一鸣.稻田生态系统消解沼液的潜力及风险评估[D].杭州:浙江大学博士学位论文,2010,8
    228.汤煊神.改性泥炭吸附水体中疏水性有机污染物及其机理研究[D].上海:华东理工大学博士学位论文,2010、92-93
    229.陶鲜,ZHANG Peng-fei,Robert Bowman S.表面活化沸石外比表面积的试验研究[J].材料开 发与应用,2004,19(3):1-3、11
    230.王本红.粉煤灰沸石处理造纸废水的研究[D].济南:山东轻工业学院硕士学位论文,2009,14-16
    231.王春峰.利用粉煤灰合成沸石技术与吸附性能研究[D].南京:南京理工大学博士学位论文,2009,6
    232.王翠霞,贾仁安.猪场废水厌氧消化液的污染治理工程研究[J].江西农业大学学报,2007,29(3):37-42
    233.王新,倪晋仁,翟风敏.猪场稳定塘废水的IBAF脱氮影响因素研究[J].应用基础与工程科学学报,2006,14(1):10-15
    234.王星东,王亚军,杨武利,等.纳米沸石胶体化学性质的研究[J].化学学报,2003,61(3):354-358
    235.王允青,郭熙盛,武际.非金属矿物改良皖南酸性红黄壤应用研究[J].土壤通报,2005,36(1):34-37
    236.王银叶,付春明,韩非.纳米复合吸附剂动态去除废水中的磷[J].工业水处理,2006,26(12):38-40
    237.王银叶,贾堤,施平平,等.X型纳米分子筛去除含油废水中COD和NH3-N的研究.工业水处理,2004,24(9):36-38
    238.王志勇,孙祥卿,朱雅平,等.沼液土层渗灌自然净化处理及施肥技术[J].上海环境科学,1991,10(3):39-42
    239.王文军,郭熙盛,武际,等.施用白云石对酸性黄红壤作物产量及化学性质的影响[J].土壤通报,2006,37(4):723-726
    240.汪金舫,朱其清,马义兵,等.锰饱和沸石肥料对石灰性土壤中锰的化学形态及燕麦生长的影响[J].土壤学报,2002,39(1):140-145
    241.汪昆平.GAC吸附及AOPs去除水中HAAs及其机理研究[D].重庆:重庆大学博士学位论文,2005,58-60
    242.魏静,周恩湘,姜淳,等.石灰性土壤上利用天然沸石活化磷矿粉的初步研究探讨[J].河北农业大学学报,1999,22(3):25-27
    243.魏云霞.基于沸石吸附-吲定化微生物SBR-SND脱氮研究[D].兰州:兰州大学,博士学位论文,2010
    244.吴大清,刁桂仪,彭金莲,等.矿物界面作用与环境工程材料[J].矿物岩石地球化学通报,1998,17(4):217-223
    245.吴志超,黄友谊,陈和谦,等.沸石颗粒在污泥絮体中的形态及其对污泥泥水分离的影响[J].环境污染与防治,2005,27(3):177-180
    246.邢赜,肖艳平,李苑,等.Cu2+对猪场废水SBR处理的影响[J].农机化研究, 2011,33(10):130-133
    247.徐其花,周琪.不同填料人工湿地处理系统的净化能力研究[J].上海环境科学,2002,21(10):603-605.
    248.徐洁泉,胡伟,汤玉珍,等.低温和近中温猪粪液厌氧处理的装置比较研究[J].中国沼气,1997,15(2):7-13
    249.徐洁泉.集约化猪场粪便污水沼气发酵综合处理系统的生产实验[J].中国沼气,1991(3):26-29.
    250.许式文,金良剑.沼气发酵残留物的肥料效果研究[J].土壤肥料,1998(1):17
    251.熊承永.我国沼气近期科研情况与发展趋势[J].中国沼气,1998,16(4):45-48.
    252.姚爱莉,顾蕴璇,方国渊,等.鸡粪厌氧消化废液的生物处理研究[J].中国沼气,1997,15(3):16-21
    253.姚晓芹,马文奇,楚建周.磷酸对石灰性土壤pH及微量元素有效性的影响[J].土壤肥料,2005(2):14-16,20
    254.叶小梅,常志洲,钱玉婷,等.江苏省大中型沼气工程调查及沼液生物学特性研究[J].农业工程学报,2012,28(6):222-227
    255.杨虹,李道棠,朱章玉,等.集约化养猪场冲栏水的达标处理[J].上海交通大学学报,2000,32(4):558-560
    256.杨剑,邓超冰,冼萍,等.SBR处理猪场废水厌氧消化液脱氮工艺的优化[J].环境科学与技术,2009,32(1):74-77.
    257.袁可能.植物营养元素的土壤化学[M].北京:科学出版社,1983,94-165
    258.于艳卿.高盐度海水合成粉煤灰沸石的表征及性能研究[D].青岛:中国科学院海洋研究所博士学位论文,2011:71-74、89
    259.易皓,许振成,金中,等.超细粉体凹凸棒石助凝处理污染河水的研究[J].中国给水排水,2009,25(15):49-54
    260.张冬娜,弓爱君,宋永会,等.沸石在多种环境介质中的应用研究进展[J].硅酸盐通报,2006,25(6):129-133
    261.张国治,吴少斌,王焕玲,等.大中型沼气工程沼渣沼液利用意愿现状调研及问题分析[J].中国沼气,2009,28(1):21-24
    262.张桂馥,邱德均,顾红娟.利用光合细菌(PSB)处理粪水沼液效果的初步研究[J].中国沼气,1994,12(3):16-19
    263.张杰,孙钦平,魏宗强,等.沼渣和沼液对油菜生长及氮素利用率的影响[J].北方园艺2009(11):26-29
    264.张金山,刘菊.粉煤灰加工处理及其在建材行业中的综合利用[J].矿产综合利用.2004,5:44-47
    265.张继宏,额丽,关连珠,等.沸石的增产效果及对土壤淋溶水离子的影响[J].土壤通报.1994,25(3):123-125.
    266.张立东,冯丽娟.同步硝化反硝化技术研究进展[J]工业安全与环保,2006,32(3):22-23
    267.张瑞红.基于物化-序批式生物膜工艺处理厨余垃圾厌氧消化液的研究[D].昆明:昆明理工大学硕士学位论文,2007.
    268.张晟.复合垂直流人工湿地系统除磷研究[D].武汉:中国科学院水生生物研究所博士学位论文,2007
    269.张无敌,尹芳,徐锐,等.沼液对土壤生物学性质的影响[J].湖北农业科学,2009 48(10):2403-2406
    270.张无敌,尹芳,李建昌,等.沼液对土壤有机质含量和肥效的影响[J].可再生能源,2008,26(6):45-47
    271.张行峰.实用农化分析[M].北京:化学工业出版社,2005:139-141,190-193
    272.张瑛洁,陈雷,马军,等.微波强化NaCl改性沸石的除氨氮效果研究[J].中国给水排水,2009,25(1):72-74
    273.赵桂瑜.人工湿地除磷基质筛选及其吸附机理研究[D].上海:同济大学博士学位论文,2007,64-76.
    274.赵发敏.人工湿地填料基质去除氨氮和磷的最优配比及影响因素研究[D].北京:北京化工大学硕士学位论文,2011,14-16
    275.赵瑞华,商平,季民.超声波改性沸石去除油田废水COD的实验研究[J].天津科技大学学报,2008,23(3),45-48
    276.赵统刚,吴德意,陈建刚.粉煤灰合成沸石同步脱氨除磷特性的研究[J].环境科学,2006,27(4):696-700.
    277.赵小齐,鲁如坤.施用石灰对土壤吸附磷的影响[J].土壤,1991(2):82-86
    278.赵振国.吸附作用应用原理.北京:化学工业出版社,2005
    279.朱保安,郭新峰,黎燕,等.超声波条件下膨润土合成4A沸石[J]..化工矿物与加工,2009,7:9-11
    280.朱燕.改性微孔沸石沐吸附柱去除水源电氮氮的动态法研究[D].武汉:武汉理工大学,硕士学位论文,2005,45
    281.朱宏斌,王允青,武际,等.酸性黄红壤上施用白云石的作物产量效应和经济效益评价[J].土壤肥料,2003(5):17-20
    282.周志红,李心清,邢英,等.生物炭对土壤氮素淋失的抑制作用[J].地球与环境,2011,39(2):278-284
    283.周文兵,朱端卫,耿明建,等.沸石载体复混肥对作物的增产效应及机制研究[J].华中农业大学学报2003,22(2):142-146
    284.周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备,2000,1(6):11-19
    285.周孝德,韩世平,陈惠君.环境因素对滇池底泥磷吸收的影响[J].水利学报,1998,(增):12-17
    286.郑武,谢小丽,陈仁忠,等.广州市畜牧业废水排放与治理现状分析[J].农业环境与发展,1998,2:17-20.
    287.詹慧龙,严昌宇,杨照.中国农业生物质能产业发展研究[J].中国农学通报,2010,26(23):397-402.
    288.卓成林,伍明华.纳米材料在环境保护方面的最新应用进展[J].化工时刊,2004,18(3):5-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700