用户名: 密码: 验证码:
O_2/CO_2气氛下木醋调质石灰石脱硫脱硝特性及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
O2/CO2燃烧技术在控制C02、SO2、NOx等污染物排放方面都表现出较强的技术优势,被认为是一项具有应用前景的燃煤污染物控制技术。有机钙可用于O2/CO2燃煤气氛下SO2和NO的同时脱除,但高昂的造价限制了其工业化应用。本文采用木醋废液调质处理石灰石,并从实验研究、动力学分析及机理分析等角度,对木醋调质石灰石(Limestone Modified by Wood Vinegar, LM-WV)在O2/CO2气氛下的热解、直接硫化、再燃脱硝以及同时脱硫脱硝反应特性和反应机理进行了研究,探索了一条采用工业废液调质处理石灰石制备廉价高效有机钙的新途径。
     采用热分析方法对O2/CO2气氛下LM-WV的热解特性进行了实验研究,结果表明,未调质石灰石(Original Limestone, OL)的热解过程仅表现出一个CO2析出失重阶段,而LM-WV则表现出水分析出及焦油成分热解、丙酮析出和CO2析出三个失重阶段,较多的气体析出量导致LM-WV热解固体产物比表面积和孔容积远大于OL,固体产物孔隙发达且以中孔为主,有利于脱硫,热解气体产物在低温时以CO、CH4和C2H6为主,高温时以CO、CH4、H2和C2H2为主,可用于再燃脱硝。采用FWO法和Starink法两种无模式函数法分析O2/CO2气氛下LM-WV热解反应活化能,两种方法计算结果相近且规律相同,OL在整个热解过程中,活化能表现为单一的下降趋势,活化能值为547.80~5389.29kJ·mol-1, LM-WV热解反应活化能随着反应的进行表现出先增大后降低,再增大又降低的趋势,活化能值为102.33~1504.23kJ·mol-1。O2/CO2气氛下LM-WV热解反应机理可用分段描述的方法进行分析,OL热解反应机理可以用F1模型进行揭示,LM-WV热解第一、第二阶段反应机理可以用D3模型进行揭示,第三阶段可以用D2模型进行揭示。采用热分析方法对O2/CO2气氛下LM-WV的硫化反应特性进行了实验研究,发现LM-WV表现出比OL和分析纯醋酸钙(Calcium Acetate, CA)更好的直接硫化反应性能。温度、粒径、SO2和O2浓度对LM-WV直接硫化反应都有影响,温度越高、颗粒粒径越小、反应气氛中SO2和O2浓度越高,LM-WV直接硫化钙转化率越高,浓度超过6%以后,O2浓度变化对硫化反应影响不大。钙转化率较低时,间接硫化反应速率高于直接硫化,1173K时反应约400s时直接硫化速率超过间接硫化速率,获得的间接硫化和直接硫化钙转化率分别为60.51%和81.11%。LM-WV中源自石灰石的Na、K、Fe、Ti类杂质成分对直接硫化反应有促进作用。采用缩核模型对反应过程进行了表征,得到LM-WV和OL直接硫化反应速率常数κs和扩散系数Deff的Arrhenius表达式。动力学计算结果表明,扩散对LM-WV直接硫化反应过程的影响相比石灰石要小,石灰石经木醋调质后其直接硫化反应性能得以显著提升的原因是扩散阻力的减小
     在O2/CO2气氛下利用沉降炉脱硝实验台对LM-WV再燃脱硝特性进行了研究,实验结果表明,相同实验工况条件下,LM-WV的脱硝性能优于CA。LM-WV再燃脱硝合适的再燃比为14%-17%,氧浓度为3%、停留时间为0.8s,脱硝效率随着温度的升高表现为先提高后降低的趋势,最佳反应温度为1323K,再燃比为14%时获得的脱硝效率为82.70%。先进再燃可以获得较高的脱硝效率,反应适宜的温度区间也得到显著拓宽。先进再燃脱硝氧浓度不宜过高,合适的停留时间为0.6-0.8s,氨氮比为0.75,再燃比、氨氮比分别为14%和0.75条件下,1323K时获得的最高脱硝效率为93.49%。1123-1223K时LM-WV在02/N2气氛下脱硝获得的脱硝效率略高于O2/CO2气氛,超过此温度时,LM-WV在O2/CO2气氛下获得的脱硝效率高于O2/N2气氛。O2/CO2气氛下LM-WV脱硝效率随CO2浓度的增大不断提高,高浓度的CO2对脱硝反应有促进作用。
     管式炉实验系统上进行的O2/CO2气氛下煤粉预混LM-WV同时脱硫脱硝实验结果表明,LM-WV脱硫脱硝性能优于OL和CA,其脱硫脱硝效率受添加量、煤的含硫量、温度等因素影响。相同实验条件下,LM-WV在O2/CO2气氛下的脱硫脱硝性能均优于O2/N2气氛。1023-1473K实验温度范围内,LM-WV表现出良好的脱硫效果,Ca/S为2时,LM-WV能够保持80.06%以上的脱硫效率。脱硝效率随LM-WV添加量的增大和温度的升高而不断提高,Ca/S为3、温度为1373K时获得的脱硝效率为53.08%。沉降炉实验系统上进行的烟气喷入LM-WV同时脱硫脱硝实验表明,钙硫摩尔比约为2、停留时间为0.8s、无NH3和有NH3条件下,在1223K时获得最大脱硫效率为75.83%和73.16%,在1323K时获得最大脱硝效率为86.61%和94.78%。煤中添加LM-WV后,着火温度、失重峰温度以及燃尽温度均向低温方向迁移,燃烧反应活化能显著降低,说明LM-WV具备一定的助燃性能。
     提出了由112种物质、677步基元反应组成的丙酮脱硝反应机理模型,用以揭示O2/CO2气氛下LM-WV脱硝反应机理。模拟计算与实验结果呈现出的规律完全一致,能够较好的预测实验结果和分析反应机理。OH与C2H6、C2H4、CH4和C2H2等反应生成碳氢离子团和HCCO,进而与NO反应将其转变为HCN。HCN能够与O反应生成NCO和NH,并通过反应NCO+NO(?)N2+CO2和NH+NO(?)N2+OH将NO还原为N2。活性基团OH、O、H是保证脱硝反应顺利进行的重要物质,但过高的活性基团浓度会加剧HCN的氧化反应。低温时O2/N2和O2/CO2气氛下LM-WV脱硝性能的差异可以归结于O2/CO2气氛下较低的OH、O、H浓度,高温时两种气氛下的差异则可归结于O2/CO2气氛下较高的碳氢气体浓度。在适于脱硝的温度条件下,通过CH4(+M)(?)CH3+H(+M)、C2H4+H(+M)(?)C2H5(+M)、 C2H6(+M)(?)CH3+CH3(+M)和C2H2+H(+M)(?)C2H3(+M)等反应,CO2可促进CH4、C2H4、C2H6和C2H2转化为CH3、C2H3和C2H5等自由基,有利于脱硝。
     SO2对LM、WV脱硝反应有促进作用,SO2可以通过SO2+H(+M)(?)HOSO(+M)、HOSO+H(?)SO2+H2、SO2+O(+M)(?)SO3(+M)和HOSO+OH(?)SO2H2O等反应,消耗气氛中的活性基团H、O、OH,进而抑制脱硝反应中间产物HCN的氧化,此外,SO2还能够通过一系列反应转化为SH和SN,并通过反应SH+NO(?)SN+OH和SN+NO(?)N2+SO将NO直接还原为N2。
O2/CO2combustion is recognized as a potential technology for mitigation of CO2, SO2and NOx emissions. High concentration of SO2in the furnace under O2/CO2combustion atmosphere is beneficial to desulfurization by in-furnace desulfurization technology. Low NOx emission characteristic of O2/CO2combustion is also suitable for using economical reburning denitrification technology to remove NOx. Solid and gas products produced in the thermal decomposition of organic calcium can be used for sulfur capture and reburning denitrification, which can simultaneously control of SO2and NO emissions under O2/CO2combustion atmosphere. However, high cost of organic calcium limits its industrial application.
     Wood vinegar, an organic acid waste, is used to modify natural limestone to produce organic calcium absorbent with low cost and good performance in this paper, which solves the high economic cost problem of organic calcium in practical application. Charcteristics and mechanism of thermal decomposition, direct sulfation, reburning denitrification, simultaneous desulfurization and denitrification of limestone modified by wood vinegar (LM-WV) under O2/CO2atmosphere are studied from the view of experiment, kinetic analysis and mechanism analysis.
     The thermal decomposition characteristics of LM-WV under O2/CO2atmosphere are measured by thermogravimetric analysis (TGA). TGA result shows that the thermal decomposition process of limestone only shows one weight loss stage, but three for LM-WV. The major composition in the product of LM-WV is hydration calcium acetate. Initial temperature of three weight loss stages is463K,673K and1179K, which corresponds to release of water and pyrolysis of tar, release of acetone, and release of CO2, respectively. The structure of thermal decomposition product of LM-WV, measured by scanning electron microscope and nitrogen adsorption method, is much looser than that of original limestone, and the main pore is in the medium size, which shows that wood vinegar improves the pore structure of thermal decomposition product of limestone. Gas products composition analysis results show that the main gas products are CO, CH4and C2H6under low temperature conditions, and CO, CH4, H2and C2H2under high temperature conditions. These gas products provide the material basis for the denitrification reaction. FWO method and Starink method, which are two typical model-free methods, are used to calculate the activation energy during the thermal decomposition process of LM-WV under O2/CO2atmosphere. Values of activation energy calculated by FWO method and Starink method are very close, and regularities of these two methods are very consistent. Activation energy of original limestone shows a single downward trend, which indicates the monotonicity of the reaction process. In contrast, activation energy of LM-WV increases firstly then decreases, increases again and decreases finally, which indicates the characteristics of multistage of the reaction process. The most probable mechanism function inference method is used to analyze reaction mechanism of thermal decomposition. F1model can be used to describe the thermal decomposition process of limestone. The first two stages of the thermal decomposition process of LM-WV can be described by D3model, and the third stage can be described by D2model. Mechanism analysis results confirm complexity of the thermal decomposition process.
     The direct sulfation reaction of LM-WV is investigated by thermogravimetic analysis method under O2/CO2atmosphere. The results show that the direct sulfation performance of LM-WV is better than both original limestone and analytical grade calcium acetate. Temperature, particle size, SO2and O2concentrations can affect the direct sulfation reaction of LM-WV. Higher temperature, SO2concentration and smaller particle size are beneficial for the direct sulfation reaction. Above6%, O2concentration has little effect on the direct sulfation reaction. Reaction rate of indirect sulfation is higher than that of direct sulfation when calcium conversion fraction is relatively low. Direct sulfation rate exceeds indirect sulfation rate after400s at1173K, and the final calcium conversion fraction of indirect sulfation and direct sulfation is60.51%and81.11%, respectively. Impurity components, including Na, K, Fe, Ti, have a promoting effect on the direct sulfation reaction. Arrhenius expressions of direct sulfation rate constant and product-layer diffusivity are calculated according to the shrinking unreacted core model. The kinetic calculation result shows that the diffusion impact of LM-WV on the direct sulfation process is less than that of original limestone, which means that the LM-WV has a lower diffusion resistance.
     NO reduction characteristic of reburning using LM-WV is investigated in a drop-tube experiment system under O2/CO2atmosphere. Experimental result shows that the NO reduction performance of LM-WV is better than that of analytical grade calcium acetate under the same experimental conditions. The optimum reburning fuel fraction, O2concentration and residence time for basic reburning is14%-17%,3%and0.8s. As temperature increasing, NO reduction efficiency increases first and then decreases. The maximum NO reduction efficiency of82.70%can be obtained at1323K. NO reduction efficiency can be significantly raised, while the reaction temperature window can be obviously broaden, when ammonia is injected into reburning zone. High O2concentration is not conducive to NO reduction by advanced reburning. The optimum residence time and [NH3]/[NO] molar ratio is0.6-0.8s and0.75. The maximum NO reduction efficiency of93.49%can be obtained at1323K when the reburning fuel fraction and [NHx]/[NO] molar ratio is14%and0.75. NO reduction efficiency of LM-WV under O2/N2atmosphere is higher than that under O2/CO2atmosphere at1123-1223K. This situation will change at higher temperature. NO reduction efficiency increases with CO2concentration increasing, and high concentration of CO2can promote the denitrification reaction.
     The desulfurization and denitrification characteristics of LM-WV by pre-mixed with coal under O2/CO2atmosphere are investigated on the tube furnace reactor. Experimental result shows that the desulfurization and denitrification performance of LM-WV are much better than that of both original limestone and analytical grade calcium acetate. SO2and NO reduction efficiency may be affected by addition amount, sulfur content in coal and temperature. SO2and NO reduction efficiency of LM-WV under O2/CO2atmosphere are higher than that under O2/N2atmosphere under the same experimental conditions. LM-WV shows good desulfurization performance in the experimental temperature range1023-1473K, and it can maintain SO2reduction efficiency of more than80.06%at calcium/sulfur ratio being2. NO reduction efficiency increases with addition amount increasing. NO reduction efficiency of53.08%can be obtained at1373K when calcium/sulfur ratio is3. The performance of simultaneous desulfurization and denitrification of LM-WV by injected into flue gas under O2/CO2atmosphere are investigated in the drop-tube experiment system. The maximum SO2and NO reduction efficiency of75.83%and86.61%can be obtained respectively at1223K and1323K, when the calcium/sulfur ratio and residence time is about2and0.8s. In the above conditions, when ammonia is injected into reactive zone at [NH3]/[NO] molar ratio of0.75, the maximum SO2and NO reduction efficiency of73.16%and94.78%can be obtained respectively at1223K and1323K. Ignition temperature, weight loss peak temperature and burnout temperature of coal all migrate towards the direction of low temperature after LM-WV is added into coal. At the same time, activation energy of combustion reaction significantly decreases. The above phenomenon indicates that LM-WV can improve the combustion performance of pulverized coal under O2/CO2atmosphere.
     Combine oxidative decomposition model of acetone with denitrification reaction model of AA, then refer to the related experimental results, and finally get acetone denitrification reaction model including112species and677elementary reactions. Mechanism analysis shows that OH can react with C2H6, C2H4, CH4and C2H2, then generate hydrocarbon ion groups and HCCO. Hydrocarbon ion groups and HCCO can react with NO and generate HCN. HCN can be converted into NCO and NH by reacting with O. NCO and NH can reduce NO to N2through NCO+NO(?)N2+CO2and NH+NO(?)N2+OH. Reactive groups of OH, O and H are important materials which can ensure the denitrification reaction to carry out smoothly. However, excessive reactive groups may exacerbate the oxidation reaction of HCN. The difference of NO reduction efficiency of LM-WV under O2/N2atmosphere and O2/CO2atmosphere at low temperature may be caused by lower concentration of reactive groups under O2/CO2atmosphere. The difference under these two atmospheres may be caused by higher concentration of hydrocarbon gases under O2/CO2atmosphere. High concentration of CO2can promote the generation of CH4, C2H4, C2H6and C2H2. In addition, CO2can also promote the conversion of CH4, C2H4, C2H6and C2H2to free radicals, such as CH3, C2H3and C2H5, through CH4(+M)<=>CH3+H(+M), C2H4+H(+M)(?) C2H5(+M),C2H6(+M)<=> CH3+CH3(+M),C2H2+H(+M)(?) C2H3(+M). These reactions are all conducive to the denitrification reaction.
     SO2can promote the denitrification reaction of LM-WV. SO2can consume reactive groups of H, O, OH through SO2+H(+M)(?)HOSO(+M),HOSO+H(?)SO2+H2SO2+O(+M)(?)SO3(+M) and HOSO+OH<=> SO2+H2O, which can inhibit the oxidation of HCN. In addition, SO2can also transform into SH and SN. Through SH+NO(?) SN+OH and SN+NO(?) N2+SO, NO can be directly reduced to N2by SH and SN.
引文
[1]国际能源署.燃料燃烧CO2排放.2010.
    [2]中国国家统计局能源统计司.中国能源统计年鉴.2011.
    [3]Xiong J, Zhao H, Zheng C, Liu Z, Zeng L, Liu H, Qiu J. An economic feasibility study of O2/CO2 recycle combustion technology based on existing coal-fired power plants in China[J]. Fuel, 2009,88(6):1135-1142.
    [4]Herzog H J, Drake E M. Carbon dioxide recovery and disposal from large energy system[J]. Annual Review of Energy and the Environment,1996,21(1):145-166.
    [5]Okazaki K, Ando T. NOx reduction mechanism in coal combustion with recycled CO2[J]. Energy, 1997,22(2-3):207-215.
    [6]Croiset E, Thambimuthu K, Palmer A. Coal combustion in O2/CO2 mixture compared with air[J]. Canadian Journal of Chemical Engineering,2000,78(2):402-407.
    [7]Croiset E, Thambimuthu K V. NOx and SO2 emissions from O2/CO2 recycle coal combustion[J]. Fuel,2001,80(14):2117-2121.
    [8]Chui E H, Douglas M A, Yan Y. Modeling of oxy-fuel combustion for a western Canadian sub-bituminous coal[J]. Fuel,2003,82(10):1201-1210.
    [9]Chui E H, Majeski A J, Douglas M A, Tan Y, Thambimuthu K V. Numerical investigation of oxy-coal combustion to evaluate burner and combustor design concepts[J]. Energy,2004,29(9-10): 1285-1296.
    [10]Tan Y, Croiset E, Douglas M A, Thambimuthu K V. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas[J]. Fuel,2006,85(4):507-512.
    [11]Kimura N, Omata K, Kiga T, Takano S, Shikisima S. Characteristics of pulverized coal combustion in O2/CO2 mixture for CO2 recovery[J]. Energy Conversion and Management,1995, 36(6-9):805-808.
    [12]Nozaki T, Takano S, Kiga T, Omata K, Kimura N. Analysis of the flame formed during oxidation of pulverized coal by an O2-CO2 mixtures[J]. Energy Conversion and Management,1997, 22(2-3):199-205.
    [13]Kiga T, Takano S, Kimura N, Omata K, Okawa M, Mori T, Kato M. Characteristics of pulverized-coal combustion in the system of oxygen/recycled flue gas combustion[J]. Energy Conversion and Management,1997,38(S):S129-S134.
    [14]Liu H, Zailani R, Gibbs B M. Comparisions of pulverized coal combustion in air and in mixtures of O2/CO2[J]. Fuel,2005,84(7-8):833-840.
    [15]Liu H, Zailani R, Gibbs B M. Pulverized coal combustion in air and in O2/CO2 mixture with NOx recycle[J]. Fuel,2005,84(16):2109-2115.
    [16]邹春,黄志军,初琨,桂许龙,丘纪华,张立麒,郑楚光.燃煤O2/CO2循环燃烧过程中SO2与NOx协同脱除的中试研究[J].中国电机工程学报,2009,29(2):20-24.
    [17]孔红兵,柳朝晖,陈胜,张倩,郑楚光.600MW富氧燃烧系统过程建模及优化[J].中国电机工程学报,2012,32(2):53-60.
    [18]段伦博,周骛,屈成锐,陈晓平,赵长遂.02/CO2气氛下循环流化床煤燃烧SO2排放[J].工程热物理学报,2012,33(1):151-154.
    [19]段伦博,周鹜,屈成锐,陈晓平,赵长遂.50kW循环流化床O2/CO2气氛下煤燃烧及污染物排放特性[J].中国电机工程学报,2011,31(5):7-12.
    [20]阎维平,米翠丽,李皓宇.初始氧浓度对锅炉富氧燃烧和NOx排放的影响[J].热能动力工程,2010,25(2):216-220.
    [21]黄志军,邹春,初琨,丘纪华,郑楚光.O2/CO2循环燃烧中NOx的中试实验研究[J].工程热物理学报,2009,30(12):2141-2144.
    [22]刘彦丰,王建强,梁秀俊,高正阳.300MW燃煤锅炉O2/CO2、烟气再循环燃烧的数值模拟[J].热能动力工程,2009,24(2):177-181.
    [23]Duan L B, Zhao C S, Zhou W, Qu C R, Chen X P. O2/CO2 coal combustion characteristics in a 50 kWth circulating fluidized bed[J]. International Journal of Greenhouse Gas Control,2011,5(4): 770-776.
    [24]Pak P S, Lee Y D, Ahn K Y. Characteristics and economic evaluation of a power plant applying oxy-fuel combustion to increase power output and decrease CO2 emission[J]. Energy,2010,35(8): 3230-3238.
    [25]Stanger R, Wall T. Sulphur impacts during pulverized coal combustion in oxy-fuel technology for carbon capture and storage[J]. Progress in Energy and Combustion Science,2011,37(1):69-88.
    [26]毛健雄,毛健全,赵树民.煤的清洁燃烧[M].北京:科学出版社,1998:132-296.
    [27]王宏,邱建荣,郑楚光.燃煤在O28CO2方式下SO2生成特性的研究[J].华中科技大学学报(自然科学版),2002,30(1):100-102.
    [28]董学文,王宏,刘豪,邱建荣.不同气氛下燃煤SO2的排放规律研究[J].环境科学学报,2003,23(3):322-326.
    [29]韩奎华,路春美,侯庆伟,刘志超,马传利,高山.煤在不同02/C02气氛下燃烧硫析出特性研究[J].燃料化学学报,2004,32(5):517-521.
    [30]Czakiert T, Bis Z, Muskala W, Nowak W. Fuel conversion from oxy-fuel combustion in a circulating fluidized bed[J]. Fuel Processing Technology,2006,87(6):531-538.
    [31]段伦博,赵长遂,卢骏营,周鹜,李英杰,陈晓平.02/C02气氛下煤燃烧SO2/NO析出特性[J].化工学报,2009,60(5):1268-1274.
    [32]李庆钊,赵长遂,武卫芳,陈晓平,董伟.O2/CO2气氛下燃煤SO2排放特性的实验研究[J].中国电机工程学报,2009,29(20):41-46.
    [33]韩奎华,刘洪涛,刘梦琪,李辉,路春美.O2/CO2燃煤气氛下铁基添加剂对脱硫及燃烧特性影响的实验研究[C].中国工程热物理学会热机气动燃烧学学术会议,2011,杭州,中国.
    [34]李宇,范卫东.神华煤粉在CO2和N2高温气氛下SOx生成释放规律的研究[J].锅炉技术,2012,43(4):75-80.
    [35]吕当振,徐明厚,姚洪,刘小伟,顾颖,江维.02/C02燃烧方式下煤中有机/无机硫的释放特性[J].工程热物理学报,2009,30(8):1427-1430.
    [36]Duan L B, Zhao C S, Zhou W, Liang C, Chen X P. Sulfur evolution from coal combustion in O2/CO2 mixture[J]. Journal of Analytical and Applied Pyrolysis,2009,86(11):269-273.
    [37]石斌.高硫煤燃前脱硫及强化脱硫方法[J].选煤技术,2011,2:68-71.
    [38]秦丙克,张月,籍永化,李琳.煤炭燃前脱硫研究现状及进展[J].云南化工,2012,39(3):25-28.
    [39]曹新鑫,高艳芳,柳菲,齐雯妍,黄定国.煤炭燃前脱硫工艺及其进展[J]。煤炭技术,2008,27(4):115-117.
    [40]陈活虎,倪建东,黄中子.火电厂炉内喷钙法烟气脱硫改造实践[J].环境工程,2012,30(1):55-57.
    [41]张焕江,钟祚群,徐复成,郭洪涛.喷钙脱硫技术在中小型循环流化床锅炉上的应用[J].电站系统工程,2008,24(2):53-54.
    [42]杨吉青,周俊虎,程军,刘建忠,岑可法,王金铭.煤粉炉喷钙脱硫技术的研究进展[J].中国电力,2005,38(11):96-99.
    [43]吴新,赵长遂,吴树志,陈晓平.炉内喷钙脱硫技术的工业应用研究[J].热能动力工程,2001,16(6):609-611.
    [44]姜正雄,魏宇.燃煤电厂石灰石-石膏湿法烟气脱硫技术概述[J].装备机械,2012,2:60-65.
    [45]吴忠标,刘越,谭天恩.双碱法烟气脱硫工艺的研究[J].环境科学学报,2001,21(5):534-537.
    [46]何翼云.氨法烟气脱硫技术及其进展[J].化工环保,2012,32(2):141-144.
    [47]Liu H, Katagiri S, Kaneko U, Okazaki K. Sulfation behavior of limestone under high CO2 concentration in O2/CO2 coal combustion[J]. Fuel,2000,79(8):945-953.
    [48]Liu H, Katagiri S, Okazaki K. Drastic SOx removal and influences of various factors in O2/CO2 pulverized coal combustion system[J]. Energy and Fuels,2001,15(2):403-412.
    [49]Liu H, Okazaki K. Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx in O2/CO2 coal combustion with heat recirculation[J]. Fuel,2003,82(11):1427-1436.
    [50]Liu H, Katagiri S, Okazaki K. Decomposition behavior and mechanism of calcium sulfate under the condition of O2/CO2 pulverized coal combustion[J]. Chemical Engineering Communications, 2001,187:199-214.
    [51]王宏,张礼知,陆晓华,郑楚光.O2/CO2方式下钙基吸收剂在脱硫过程中微观结构变化的研究[J].工程热物理学报,2001,22(1):127-129.
    [52]王宏,张礼知,邱建荣,郑楚光.高CO2浓度下钙基吸收剂脱硫的实验研究[J].工程热物理学报,2001,22(3):374-377.
    [53]张礼知,王宏,张庆丰,邱建荣,郑楚光.O2/CO2气氛下燃煤的钙基脱硫规律的实验研究[J].燃料化学学报,2000,28(6):508-511.
    [54]Chen C M, Zhao C S, Liang C, Pang K L. Calcination and sintering characteristics of limestone under O2/CO2 combustion atmosphere[J]. Fuel Processing Technology,2007,88(2):171-178.
    [55]陈传敏.02/C02气氛下钙基脱硫剂脱硫机理研究[D].南京:东南大学,2005.
    [56]陈传敏,赵长遂,梁财,庞克亮.02/C02气氛下石灰石脱硫特性的研究[J].动力工程,2005,25(6):883-886.
    [57]陈传敏,赵长遂,赵毅.XRD研究02/CO2气氛下石灰石煅烧产物烧结特性[J].东南大学学报(自然科学版),2008,38(1):97-100.
    [58]陈传敏,赵长遂,梁财,庞克亮.高CO2浓度下石灰石硫化特性实验研究[J].燃烧科学与技术,2006,12(5):453-456.
    [59]陈传敏,赵长遂,赵毅,梁财,庞克亮.利用热重分析-x射线衍射分析法研究氧/二氧化碳气氛下石灰石硫化特性[J].中国电机工程学报,2006,26(13):108-112.
    [60]陈传敏,赵长遂,赵毅.石灰石直接硫化反应动力学研究[J].燃烧科学与技术,2009,15(5):388-392.
    [61]刘现卓,赵长遂,陈传敏,梁财,庞克亮.O2/CO2气氛下石灰石煅烧及烧结特性研究[J].工程热物理学报,2006,27(5):891-893.
    [62]Hu G, Dam-Johansen K, Wedel S, Hansen J P. Review of the direct sulfation reaction of limestone[J]. Progress in Energy and Combustion Science,2006,32(4):386-407.
    [63]Hu G, Dam-Johansen K, Wedel S. Direct sulfation of limestone[J]. AIChE Journal,2007,53(4): 948-960.
    [64]刘彦,韦宏敏,齐学义,徐江荣,李德忠,周俊虎,岑可法.在02/CO2-空气两种不同气氛下石灰石硫化特性的比较[J].动力工程,2006,26(2):267-272.
    [65]刘彦,周俊虎,方磊,李艳昌,曹欣玉,岑可法.O2/CO2-气氛煤粉燃烧及固硫特性研究[J].中国电机工程学报,2004,24(8):224-228.
    [66]毛玉如,方梦祥,骆仲泱,吴学成,岑可法.O2/CO2-气氛下石灰石煅烧与硫化反应研究[J].燃料化学学报,2004,32(3):323-328.
    [67]Hajaligol M R, Longwell J P, Sarofim A F. Analysis and modeling of the direct sulfation of CaCO3[J]. Industrial and Engineering Chemistry Research,1988,27(12):2203-2210.
    [68]Rahmani M, Sohrabi M. Direct sulfation of calcium carbonate using the variable diffusivity approach[J]. Chemical Engineering and Technology,2006,29(12):1496-1501.
    [69]王春波,陈传敏.碳酸钙直接硫化反应产物层固态离子扩散机理研究[J].中国电机工程 学报,2007,27(35):44-48.
    [70]Buhre B J P, Elliott L K, Sheng C D, Gupta R P, Wall T F. Oxy-fuel combustion technology for coal-fired power generation[J]. Progress in Energy and Combustion Science,2005,31(4):283-307.
    [71]王春波,沈湘林.钙基脱硫剂调质发展现状及展望[J].锅炉技术,2000,31(8):1-4.
    [72]Davini P, Demichele G, Ghetti P. An investigation of the influence of sodium chloride on the desulphurization properties of limestone[J]. Fuel,1992,71(7):831-834.
    [73]Stouffer M R, Yoon H. An investigation of CaO sulfation mechanisms in boiler sorbent injection[J]. AIChE Journal,1989,35(8):253-1262.
    [74]王春波,沈湘林Na2CO3调质钙基脱硫剂硫化机理实验研究[J].工程热物理学报,2002,23(5):641-644.
    [75]王春波,李永华,危日光,陈鸿伟.调质石灰石分解反应速率的研究[J].热能动力工程,2006,21(5):496-499.
    [76]王春波,李永华,陈鸿伟.调质脱硫剂硫化反应产物层固态离子扩散机理的研究[J].热能动力工程,2004,19(5):467-470.
    [77]王春波,沈湘林.调质碳酸钙硫化机理的实验研究[J].环境科学学报,2001,21(6):664-668.
    [78]Wang C B, Shen X L, Xu Y Q. Investigation on sulfation of modified Ca-based sorbent[J]. Fuel Processing Technology,2002,79(2):121-133.
    [79]傅勇,林国珍,庄亚辉.型煤燃烧固硫的钠离子效应[J].环境化学,1994,13(6):492-496.
    [80]贾瑜,张同翔,钱剑青,任有中.钙基固硫剂的制备及其固硫效果[J].燃料化学学报,2003,31(4):381-384.
    [81]周俊虎,范浩杰,姚强,曹欣玉,许小明,赵翔,吴晓蓉,余兆南,岑可法.氧化钙燃烧固硫添加剂的研究[J].环境科学学报,1997,17(3):284-288.
    [82]雷强,陈定盛,石林,耿曼Na2CO3调质后对石灰石热分解的影响研究[J].化工矿物与加工,2008,7:11-14.
    [83]武增华,寇鹏,邱新平,薛方渝,陈昌和.催化剂对CaO固硫反应动力学的影响[J].化学学报,2000,58(11):1316-1321.
    [84]张虎,佟会玲,董善宁,陈吕和.使用添加剂调质钙基脱硫剂[J].化工学报,2006,57 (2):387-389.
    [85]唐海香,张荣光,张荣曾,徐志强.添加剂对CaCO3固硫效果的影响[J].中国安全科学学报,2006,16(5):117-120.
    [86]Fuertes A B, Fernandez M J. The effect of metallic salt additives on direct sulfation of calcium carbonate and on decomposition of sulfated samples[J]. Thermochimica Acta,1996,276(25): 257-269.
    [87]Hu G, Dam-Johansen K, Wedel S. Enhancement of the direct sulfation of limestone by alkali metal salts, calcium chloride, and hydrogen chloride[J]. Industrial and Engineering Chemistry Research,2007,46(16):5295-5303.
    [88]Chen C, Zhuang Y, Wang C. Enhancement of direct sulfation of limestone by Na2CO3 addition[J]. Fuel Processing Technology,2009,90(7-8):889-894.
    [89]刘彦,周俊虎,赵晓辉,张永生,刘建忠,程军,曹欣玉,岑可法.Na2CO3对O2/CO2气氛下CaCO3固硫特性的影响研究[J].高校化学工程学报,2005,19(2):263-267.
    [90]王春波,陈传敏.碳酸钙直接硫化反应产物层固态离子扩散机理研究[J].中国电机工程学报,2007,27(35):44-48.
    [91]Yang R T, Shen M S, Steinberg M. Fluidized-bed combustion of coal with lime additives: catalytic sulfation of lime with iron compounds and coal ash[J]. Environmental Science and Technology,1978,12(8):915-918.
    [92]庞亚军,施学贵,徐旭常.掺加粉煤灰提高含钙脱硫剂的烟气脱硫率的实验研究[J].工程热物理学报,1992,13(4):443-447.
    [93]Desai N J, Yang R T. Catalytic fluidized-bed combustion. Enhancement of sulfation of calcium oxide by iron oxide[J]. Industrial and Engineering Chemistry Process Design and Development, 1983,22(1):119-123.
    [94]张良佺,成思危,严瑞瑄.Fe2O3对型煤固硫作用的机理探讨[J].环境科学,1997,18(1):65-67.
    [95]陈亚非,高翔.金属氧化物对Ca(OH)2脱硫影响的研究[J].工程热物理学报,1997,18(4):517-520.
    [96]韩奎华,赵建立,路春美,王永征,赵改菊,程世庆.添加剂影响CaO固硫反应活性的 动力学分析[J].环境科学,2006,27(2):219-223.
    [97]武增华,许玲,陈昌和.添加剂对氧化钙固硫促进作用的机理探讨[J].煤炭转化,2000,23(3):72-76.
    [98]Kocaefe D, Karman D, Steward F R. Interpretation of the sulfation rate of CaO, MgO, and ZnO with SO2 and SO3[J]. AIChE Journal,1987,33(11):1835-1843.
    [99]Sasaoka E, Sada N, Uddin M A. Preparation of macroporous lime from natural lime by swelling method with acetic acid for high-temperature desulfurization[J]. Industrial and Engineering Chemistry Research,1998,37(10):3943-3949.
    [100]陈鸿伟,王春波,周兰欣,王强,杜彦芬.复合调质提高CaO固硫率的试验研究[J].环境科学学报,1999,19(4):357-361.
    [101]王春波,沈湘林,陈鸿伟EtOH调质CaO粒径对其脱硫效果影响的实验研究[J].热能动力工程,2000,15(6):630-633.
    [102]Adanez J, Fierro V, Garcia-Labiano F, Palacios J. Study of modified calcium hydroxides for enhancing SO2 removal during sorbent injection in pulverized coal boilers[J]. Fuel,1997,76(3): 257-265.
    [103]韩奎华,赵建立,郑斌,路春美,赵改菊.碱性废渣用于煤燃烧固硫的性能与改性[J].煤炭学报,2009,34(12):1697-1702.
    [104]武卫芳,赵长遂,李英杰,段伦博,陈惠超.O2/CO2气氛下醋酸调质石灰石直接硫化实验研究[J].中国电机工程学报,2010,30(26):44-49.
    [105]Wu W F, Zhao C S, Li Q Z, Zhou W. Experimental investigation on calcinations/sulphation characteristics of limestone modified by acetic acid solution in O2/CO2 atmosphere[J]. Proceedings of the Combustion Institute,2011,33(2):3455-3462.
    [106]武卫芳,赵长遂,李庆钊.O2/CO2气氛下醋酸调质石灰石煅烧/硫化特性[J].化工学报,2010,61(5):1226-1232.
    [107]Han K H, Lu C M, Cheng S Q, Zhao G J, Wang Y Z, Zhao J L. Effect of characteristics of calcium-based sorbents on the sulfation kinetics[J]. Fuel,2005,84(14-15):1933-1939.
    [108]张雷,田园,程世庆,路春美.贝壳型脱硫剂内部气体扩散特性研究[J].中国电机工程学报,2008,28(11):54-59.
    [109]程世庆,冯玉滨,路春美.贝壳脱硫性能的动力学研究[J].中国电机工程学报,2005,25(19):80-85.
    [110]Nimmo W, Patsias A A, Hampartsoumian E, Gibbs B M, Williams P T. Simultaneous reduction of NO and SO2 emissions from coal combustion by calcium magnesium acetate[J]. Fuel,2004,83(2): 149-155.
    [111]Nimmo W, Patsias A A, Hall W J, Williams P T. Characterization of a process for the in-furnace of NOx, SO2 and HCl by carboxylic salts of calcium[J]. Industrial and Engineering Chemistry Research,2005,44(12):4484-4494.
    [112]Nimmo W, Patsias A A, Hampartsoumian E, Gibbs B M, Fairweather M, Williams P T. Calcium magnesium acetate and urea advanced reburning for NO control with simultaneous SO2 reduction[J]. Fuel,2004,83(9):1143-1150.
    [113]Patsias A A, Nimmo W, Gibbs B M, Williams P T. Calcium-based sorbents for simultaneous NOx/SOx reduction in a down-fired furnace[J]. Fuel,2005,84(14-15):1864-1873.
    [114]肖海平,周俊虎,刘建忠.醋酸钙镁高温脱硫脱硝实验研究[J].中国电机工程学报,2007,27(35):23-27.
    [115]肖海平,周俊虎,刘建忠,孙保民.有机钙高温脱硫特性[J].环境科学,2007,28(8):1861-1865.
    [116]肖海平,李惊涛,孙保民.有机钙助燃特性研究[J].华北电力大学学报,2008,35(1):81-85.
    [117]肖海平,李惊涛,周俊虎,孙保民,叶力平.有机钙孔隙结构与脱硫性能研究[J].环境科学,2008,29(8):2361-2365.
    [118]肖海平.有机钙同时脱硫脱硝的机理研究[D].杭州:浙江大学,2006.
    [119]杨卫娟,周俊虎,杨亮,刘建忠,黄镇宇,岑可法.醋酸镁在NO生成过程中的还原作用机理[J].浙江大学学报:工学版,2007,41(2):342-346.
    [120]Niu S L, Han K H, Lu C M, Sun R Y. Thermogravimetric analysis of the relationship among calcium magnesium acetate, calcium acetate and magnesium acetate[J]. Applied Energy,2010,87(7): 2237-2242.
    [121]Niu S L, Han K H, Lu C M. Kinetic calculations for the thermal decomposition of calcium propionate under non-isothermal conditions[J]. Chinese Science Bulletin,2011,56(12):1278-1284.
    [122]Niu S L, Han K H, Lu C M. Release of sulphur dioxide and nitric oxide and characteristic of coal combustion under the effect of calcium based organic compounds[J]. Chemical Engineering Journal,2011,168(1):255-261.
    [123]Niu S L, Han K H, Zhao J L, Lu C M. Experimental study on nitric oxide reduction through calcium propionate reburning[J]. Energy,2011,36(2):1003-1009.
    [124]牛胜利,韩奎华,路春美,吴水木.丙酸钙再燃的脱硝性能[J].煤炭学报,2011,36(6):1016-1021.
    [125]牛胜利.有机钙盐协同脱除SO2和NO的实验研究与机理分析[D].济南:山东大学,2011.
    [126]周飞,牛胜利,邹鹏,韩奎华,路春美,李刚.有机钙作用下褐煤SO2、NO析出及燃烧特性[J].燃料化学学报,2012,40(2):149-155.
    [127]周飞,牛胜利,韩奎华,邹鹏,路春美.丙酸改性钙基固硫剂在煤燃烧过程中固硫特性研究[J].热力发电,2012,41(8):24-27.
    [128]周飞.丙酸钙脱硝特性与机理研究[D].济南:山东大学,2012.
    [129]刘洪涛,牛胜利,韩奎华,路春美.有机钙硫氮协同控制技术研究[J].电力科技与环保,2010,26(2):23-25.
    [130]刘洪涛,牛胜利,韩奎华,路春美.丙酸钙高温协同脱硫脱硝的试验研究[J].煤炭学报,2010,35(5):835-839.
    [131]刘洪涛,韩奎华,路春美.基于无模式法推断木醋调质石灰石热解动力学参数[J].中国电机工程学报,2012,32(26):31-36.
    [132]刘洪涛,韩奎华,李辉,刘梦琪,路春美.木醋调质石灰石脱硫脱硝及助燃特性实验研究[J].煤炭学报,2012,37(S2):438-443.
    [133]刘洪涛,韩奎华,刘梦琪,李辉,路春美.木醋调质石灰石煅烧特性试验研究[J].电力科技与环保,2012,28(1),30-33.
    [134]刘洪涛,韩奎华,李辉,刘梦琪,路春美.木醋调质石灰石固硫性能的动力学研究[J].煤炭学报,2012,37(11):1915-1919.
    [135]刘洪涛,韩奎华,路春美.O2/CO2气氛下木醋调质石灰石直接硫化反应动力学研究[J].燃 料化学学报,2012,40(12):1505-1511.
    [136]Han D H, Sohn H Y. Calcined calcium magnesium acetate as a superior SO2 sorbent:Ⅰ. Thermal decomposition[J]. AIChE Journal,2002,48(12):2971-2977.
    [137]Han D H, Sohn H Y. Ca-Mg acetate as dry SO2 sorbent:Ⅱ. Sulfation of CaO in calcinations product[J]. AIChE Journal,2002,48(12):2978-2984.
    [138]Sotirchos S V, Smith A R. Experimental investigation of the decomposition and calcinations of calcium-enriched bio-oil[J]. Industrial and Engineering Chemistry Research,2003,42(10): 2245-2255.
    [139]Sotirchos S V, Smith A R. Performance of porous CaO obtained from the decomposition of calcium-enriched bio-oil as sorbent for SO2 and H2S removal[J]. Industrial and Engineering Chemistry Research,2004,43(6):1340-1348.
    [140]张谋,陈汉平,赵向富,王贤华,杨海平,张世红.富钙生物油煅烧过程中孔结构变化特性的研究[J].燃料化学学报,2011,39(6):443-448.
    [141]张谋.富钙生物油脱硫脱硝机理研究[D].武汉:华中科技大学,2012.
    [142]Hu Y Q, Kobayashi N, Hasatani M. The reduction of recycled-NOx in coal combustion with O2/recycled flue gas under low recycling ratio[J]. Fuel,2001,80(13):1851-1855.
    [143]Hu Y Q, Kobayashi N, Hasatani M. Effect of coal properties on recycled-NOx reduction in coal combustion with O2/recycled flue gas[J]. Energy Conversion and Management,2003,44(14): 2331-2340.
    [144]陈传敏,赵长遂,庞克亮,梁财.O2/CO2气氛下燃煤过程中Nx排放特性实验研究[J].东南大学学报(自然科学版),2005,35(5):738-741.
    [145]游卓,王智化,周志军,刘建忠,周俊虎,岑可法.02/CO2气氛下无烟煤及烟煤燃烧NO释放特性对比试验研究[J].中国电机工程学报,2011,31(35):53-58.
    [146]Sun S Z, Cao H L, Chen H, Wang X Y, Qian J, Wall T. Experimental study of influence of temperature on fuel-N conversion and recycle NO reduction in oxyfuel combustion[J]. Proceedings of the Combustion Institute,2011,33(2):1731-1738.
    [147]Stadler H, Christ D, Habermehl M, Heil P, Kellermann A, Ohliger A, Toporov D, Kneer R. Experimental investigation of NOx emissions in oxycoal combustion[J]. Fuel,2011,90(4): 1604-1611.
    [148]Shaddix C R, Molina A. Fundamental investigation of NOx formation during oxy-fuel combustion of pulverized coal[J]. Proceedings of the Combustion Institute,2011,33(2):1723-1730.
    [149]Jiang X M, Huang X Y, Liu J X, Han X X. NOx emission of fine-and superfine-pulverized coal combustion in O2/CO2 atmosphere [J]. Energy and Fuels,2010,24(12):6307-6313.
    [150]Niu S L, Han K H, Lu C M. Characteristic of coal combustion in oxygen/carbon dioxide atmosphere and nitric oxide release during this process[J]. Energy Conversion and Management, 2011,52(1):532-537.
    [151]Hu Y, Naito S, Kobayashi N, Hasatani M. CO2, NOx and SO2 emissions from the combustion of coal with high oxygen concentration gases[J]. Fuel,2000,79(15):1925-2932.
    [152]Watanabe H, Marumo T, Okazaki K. Effect of CO2 reactivity on NOx formation and reduction mechanisms in O2/CO2 combustion[J]. Energy and Fuels,2012,26(2):938-951.
    [153]李庆钊,赵长遂,武卫芳,陈晓平,董伟.O2/CO2气氛下燃煤NO排放特性的实验研究[J].中国电机工程学报,2009,29(23):33-39.
    [154]王宏,董学文,邱建荣,郑楚光.燃煤在O2/CO2方式下NOx生成特性的研究[J].燃料化学学报,2001,29(5):458-462.
    [155]黄晓宏,王定帮,史云烨,柳朝晖,郑楚光.O2/CO2条件下焦炭氮向NO的转化特性[J].工程热物理学报,2011,32(3):537-539.
    [156]张永春,张军,刘杨先,赵亮,谢芳,陈洁,盛昌栋.O2/CO2气氛下混煤燃烧过程中NOx排放特性[J].东南大学学报(自然科学版),2010,40(5):992-996.
    [157]张永春,张军,盛昌栋,赵亮,谢芳,陈洁,刘杨先.02/N2、02/CO2和O2/CO2/NO气氛下煤粉燃烧NOx排放特性[J].化工学报,2010,61(1):159-165.
    [158]周俊虎,赵玉晓,刘建忠,杨卫娟,周志军,岑可法.低Nq煤粉燃烧器技术的研究进展与前景展望[J].热力发电,2005,34(8):1-6.
    [159]周俊虎,赵琛杰,许建华,周志军,黄镇宁,刘建忠,岑可法.电站锅炉空气分级低NO,燃烧技术的应用[J].中国电机工程学报,2010,30(23):19-23.
    [160]Smoot L D, Hill S C, Xu H. NOx control through reburning[J]. Progress in Energy and Combustion Science,1998,24(5):385-408.
    [161]Su Y, Gathitu B B, Chen W Y. Efficient and cost effective reburning using common wastes as fuel and additives[J]. Fuel,2010,89(9):2569-2582.
    [162]Luan T, Wang X D, Hao Y Z, Cheng L. Control of NO emission during coal reburning[J]. Applied Energy,2009,86(9):1783-1787.
    [163]Shen B X, Yao Q, Xu X C. Kinetic model for natural gas reburning[J]. Fuel Processing Technology,2004,85(11):1301-1315.
    [164]韩奎华.先进再燃脱硝优化试验与机理研究[D].济南:山东大学,2007.
    [165]韩奎华,刘志超,高攀,路春美,程中杰,丁立新.生物质再燃脱硝特性的试验研究[J].煤炭学报,2008,33(5):570-574.
    [166]熊志波,韩奎华,高攀,李英杰,路春美.褐煤再燃/先进再燃脱硝特性[J].煤炭学报,2011,36(9):1543-1548.
    [167]高攀,路春美,韩奎华,甄天雷,丁立新.天然气/液化气先进再燃脱硝特性研究[J].煤炭学报,2007,32(11):1191-1195.
    [168]韩奎华,路春美,牛胜利,高攀.气体先进再燃脱硝试验研究[J].中国电机工程学报,2009,29(20):47-51.
    [169]牛胜利,韩奎华,路春美.生物质先进再燃脱硝特性研究[J].燃料化学学报,2010,38(6):745-751.
    [170]高攀.先进再燃及选择性非催化脱硝优化实验与机理研究[D].济南:山东大学,2008.
    [171]Han K H, Niu S L, Lu C M. Experimental study on biomass advanced reburning for nitrogen oxides reduction[J]. Process Safety and Environmental Protection,2010,88(6):425-430.
    [172]Hampartsoumian E, Folayan O O, Nimmo W, Gibbs B M. Optimisation of NOx reduction in advanced coal reburning systems and the effect of coal type[J]. Fuel,2003,82(4):373-384.
    [173]Rota R, Zanoelo E F, Antos D, Morbidelli M, Carra S. Analysis of the thermal DeNOx process at high partial pressure of reactant[J]. Chemical Engineering Science,2000,55(6):1041-1051.
    [174]Rota R, Antos D, Zanoelo E F, Morbidelli M. Experimental and modeling analysis of the NOxOUT process[J]. Chemical Engineering Science,2002,57(1):27-38.
    [175]Javed M T, Irfan N, Gibbs B M. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction[J]. Journal of Environmental Management,2007,83(3):251-289.
    [176]Rota R, Zanoelo E F. Influence of oxygenated additives on the NOxOUT process efficiency[J]. Fuel,2003,82(7):765-770.
    [177]Han K H, Lu C M. Kinetic model and simulation of promoted selective non-catalytic reduction by sodium carbonate[J]. Chinese Journal of Chemical Engineering,2007,15(4):512-519.
    [178]Niu S L, Han K H, Lu C M. An experimental study on the effect of operating parameters and sodium additive on the NOxOUT process[J]. Process Safety and Environmental Protection,2011, 89(2):121-126.
    [179]韩奎华,路春美,王永征,牛胜利,刘志超,郝卫东.选择性非催化还原脱硝特性试验研究[J].中国电机工程学报,2008,28(14):80-85.
    [180]刘洪涛,牛胜利,韩奎华,路春美.非催化烟气还原脱硝法脱硝特性的试验研究[J].动力工程,2009,29(9):850-853.
    [181]Li J H, Chang H Z, Ma L, Hao J M, Yang R T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-A review[J]. Catalysis Today,2011,175(1): 147-156.
    [182]祝社民,李伟峰,陈英文,沈树宝.烟气脱硝技术研究新进展[J].环境污染与防治,2005,27(9):699-703.
    [183]Gimenez-Lopez J, Aranda V, Millera A, Bilbao R, Alzueta M U. An experimental parametric study of gas reburning under conditions of interest for oxy-fuel combustion[J]. Fuel Processing Technology,2011,92(3):582-589.
    [184]Normann F, Andersson K, Johnsson F, Leckner B. NOx reburning in oxy-fuel combustion:A comparision between solid and gaseous fuels[J]. International Journal of Greenhouse Gas Control, 5(S1):S120-S126.
    [185]谢芳,张军,盛昌栋,张永春,陈浩.O2/CO2气氛下CH4再燃还原NO的实验研究[J].工程热物理学报,2010,31(9):1599-1602.
    [186]谢芳,张军.气体再燃还原NOx机理的研究进展[J].锅炉技术,2011,42(6):37-40,44.
    [187]刘洪涛,韩奎华,路春美,李辉.O2/CO2气氛下木醋调质石灰石再燃/先进再燃脱硝性能研究[J].燃料化学学报,2013,41(2):228-234.
    [188]Onda K, Kasuga Y, Kato K, Fujiwara M, Tanimoto M. Electric discharge removal of SO2 and NOx from combustion flue gas by pulsed corona discharge[J]. Energy Conversion and Management, 1997,38(10-13):1377-1387.
    [189]罗永刚,李大骥,杨亚平.活性炭联合脱硫脱硝工艺[J].热能动力工程,2001,16(4):444-446.
    [190]Cramariuc R, Marin Gh, Martin D, Cramariuc B, Teodorescu I, Munteanu V, Ghiuta V. Contribution to electrical discharge electron beam system for flue gas cleaning method[J]. Radiation Physics and Chemistry,2000,57(3-6):501-505.
    [191]程琰.湿式吸收法同时烟气脱硫脱氮技术进展[J].化工环保,2006,26(3):209-212.
    [192]徐社阳,陈就记,曹德榕.木醋液的成分分析[J].广州化学,2006,31(3):28-31.
    [193]王海英,杨国亭,周丹.木醋液研究现状及其综合利用[J].东北林业大学学报,2004,32(5):55-57.
    [194]赵敏孟.木醋液的功能研究及其在畜禽生产上的应用[J].中国饲料添加剂,2011,9:1-3.
    [195]王海英,杨国亭.三种木醋液基本参数和组分分析[J].国土与自然资源研究,2005(4):91-92.
    [196]周岭,万传星,蒋恩臣.棉杆与杂木木醋液成分比较分析[J].华南农业大学学报,2009,30(2):22-25.
    [197]翟梅枝,何文君,王磊,郭景丽.3种木醋液化学成分与抑菌活性研究[J].西北植物学报,2010,30(6):1247-1252.
    [198]Yatagai M, Nishimoto M, Hori K, Ohira T, Shibata A. Termiticidal activity of wood vinegar, its components and their homologues[J]. Journal of Wood Science,2002,48(4):338-342.
    [199]平安,杨国亭,于学军.木醋液在农业上的应用研究进展[J].中国农学通报,2009,25(19):244-247.
    [200]潘永亮,杜金芳,孙鑫河.木醋液在农业生产上的应用与发展[J].现代化农业,1999,2:9-10.
    [201]朴哲,闫吉星,崔香兰,刘跃春,初人合,廉瑞德.木醋液的精制及其有效成分研究[J].林产化学与工业,2003,23(2):17-20.
    [202]王海英,杨国亭,刘志明.柞木木醋液酚类物质的组分分析[J].林产化学与工业,2005, 25(S):143-145.
    [203]张洪.燃煤流化床高效脱硫剂的开发研究[D].北京:清华大学,1992.
    [204]梁建民.工业含碱固体废弃物固硫性能的试验研究[D].济南:山东大学,2005.
    [205]韩奎华,路春美,王永征,程世庆.贫煤和无烟煤及混煤燃烧硫析出特性研究[J].煤炭转化,2004(4):42-46.
    [206]赵改菊.含碱工业废弃物硫化反应特性与机理实验研究[D].济南:山东大学,2007.
    [207]张韦.柴油机富氧燃烧及排放的实验研究与理论计算[D].天津:天津大学,2010.
    [208]张引弟.乙烯火焰反应动力学简化模型及烟黑生成模拟研究[D].武汉:华中科技大学,2011.
    [209]鲍振博,靳登超,刘玉乐,郭俊旺.生物质气化中焦油的产生及处理方法[J].农机化研究,2011(8):172-176.
    [210]Pichon S, Black G, Chaumeix N, Yahyaoui M, Simmie J M, Curran H J, Donohue R. The combustion chemistry of a fuel tracer:Measured flame speeds and ignition delays and a detailed chemical kinetic model for the oxidation of acetone[J]. Combustion and Flame,2009,156(2): 494-504.
    [211]Brown M E. Introduction to thermal analysis:techniques and applications[M]. Boston:Kluwer Academic Publishers,2001:127.
    [212]Ozawa T. A new method of analyzing thermogravimetric date[J]. Bulletin of the Chemical Society of Japan,1965,38(11):1881-1886.
    [213]Flynn J H, Wall L A. A quick, direct method for the determination of activation energy from thermo-gravimetric date[J]. Journal of Polymer Science, Part B:Polymer Letters,1966,4(5): 323-328.
    [214]Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957,29(11):1702-1706.
    [215]Ozawa T. Estimation of activation energy by isoconversion methods[J]. Thermochimica Acta, 1992,203(1):159-165.
    [216]Friedman H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry, Application to a phenolic plastic[J]. Journal of Polymer Science, Part C:Polymer Symposia,1964,6(1):183-195.
    [217]Ozawa T. Applicability of Friedman plot[J]. Journal of Thermal Analysis and Calorimetry, 1986,31(3):547-551.
    [218]Starink M J. A new method for the derivation of activation energies from experiments performed at constant heating rate[J]. Thermochimica Acta,1996,288(1-2):97-104.
    [219]Doyle C D. Kinetic analysis of thermogravimetric date[J]. Journal of Applied Polymer Science, 1961,5(15):285-292.
    [220]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001:127-131.
    [221]陈鸿伟,王威威,黄新章,赵争辉.纤维素生物质热解试验及其最概然机理函数[J].动力工程学报,2011,31(9):709-714.
    [222]李小民,林其钊.玉米秆热解的最概然机理[J].化工学报,2012,63(8):2599-2605.
    [223]Tonbul Y. Pyrolysis of pistachio shell as a biomass[J]. Journal of Thermal Analysis and Calorimetry,2008,91(2):641-647.
    [224]lisa K, Hupa M. Sulphur absorption by limestone at pressurized fluidized bed conditions[C]. Twenty-Third Symposium (International) on Combustion,1991, Orleans, France.
    [225]Alvarez E, Gonzalez J F. High pressure thermogravimetric analysis of the direct sulfation of Spanish calcium-based sorbents[J]. Fuel,1999,78(3):341-348.
    [226]陈甘棠.化学反应工程,第2版[M].杭州:化学工业出版社,1990,171-173.
    [227]Szekely J, Evans J W, Sohn H Y. Gas-solid reactions[M]. New York:Academic Press,1976, 65-175.
    [228]Frenklach M, Bowman T, Smith G, Gardiner B. GRI-Mech 3.0,1990.
    [229]Lissianski V V, Zamansky V M, Maly P M. Effect of metal-containing additives on NOx reduction in combustion and reburning[J]. Combustion and Flame,2001,125(3):1118-1127.
    [230]韩奎华,路春美.先进再燃脱硝机理与添加剂增效机理[J].煤炭转化,2007,30(1):89-96.
    [231]Lissianski V V, Maly P M, Zamansky V M. Utilization of iron additives for advanced control of NOx emissions from stationary combustion sources[J]. Industrial and Engineering Chemistry Research,2001,40(15):3287-3293.
    [232]Dagaut P, Luche J, Cathonnet M. Experimental and kinetic modeling of the reduction of NO by propene at 1 atm[J]. Combustion and Flame,2000,121(4):651-661.
    [233]Dagaut P, Luche J, Cathonnet M. Experimental and kinetic modeling of the reduction of NO by isobutene in a JSR at 1 atm[J]. International Journal of Chemical Kinetics,2000,32(6):365-377.
    [234]Dagaut P, Luche J, Cathonnet M. Reduction of NO by propane in a JSR at 1 atm:Experimental and kinetic modeling[J]. Fuel,2001,80(7):979-986.
    [235]Dagaut P, Ristori A, El Bakali A, Cathonnet M. Experimental and kinetic modeling study of the oxidation of n-propylbenzene[J]. Fuel,2002,81(2):173-184.
    [236]Alzueta MU, Serinyel Z, Simmie J M, Curran H J. Oxidation of acetone and its interaction with nitric oxide[J]. Energy and Fuels,2010,24(3):1511-1520.
    [237]Glarborg P, Alzueta M U, Kim D J. Kientic modeling of hydrocarbon/nitric oxide interactions in a flow reactor[J]. Combustion and Flame,1998,115(1-2):1-27.
    [238]Zabetta E C, Hupa M. A detailed kinetic mechanism including methanol and mitrogen pollutants relevant to the gas-phase combustion and pyrolysis of biomass-derived fuels[J]. Combustion and Flame,2008,152(1-2):14-27.
    [239]Glarborg P, Kim D J, Miller J A, Kee R J, Coltrin M E. Modeling the thermal DENOx process in flow reactors. Surface effects and nitrous formation[J]. International Journal of Chemical Kinetics, 1994,26(4):421-436.
    [240]Miller J A, Glarborg P. Modeling the formation of N2O and NO2 in the Thermal De-NOx process[J]. Springer Series in Chemical Physics,1996,61:318-333.
    [241]Li J, Zhao Z W, Kazakov A, Dryer F L. An updated comprehensive kinetic model of hydrogen combustion[J]. International Journal of Chemical Kinetics,2004,36(10):566-575.
    [242]周建平,姚洪,徐涛,刘一兵,曾汉才.炉内喷钙脱硫对SO2和NOx排放的影响[J].热力发电,1998,3:4-8,20.
    [243]张东平,池涌,严建华,李香排,曹玉春,岑可法.燃煤流化床钙基脱硫剂对NO转变率的影响及机理[J].环境科学,2003,24(1):143-146.
    [244]侯祥松,李金平,张海,赵石铁,吕俊复,岳光溪.石灰石脱硫对循环流化床中NOx生成和排放的影响[J].电站系统工程,2005,21(1):5-7,16.
    [245]Hampartsoumian E, Nimmo W, Gibbs B M. Nitrogen sulpher interactions in coal flames[J]. Fuel,2001,80(7):887-897.
    [246]樊越胜,邹峥,高巨宝,曹子栋.煤粉在富氧条件下燃烧特性的实验研究[J].中国电机工程学报,2005,25(24):118-121.
    [247]李庆钊,赵长遂.02/CO2气氛煤粉燃烧特性试验研究[J].中国电机工程学报,2007,27(35):39-43.
    [248]时钧,汪家鼎,余国琮,陈敏恒.化学工程手册,第二版,上卷[M].北京:化学工业出版社,1996:1-31.
    [249]http://garfield.chem.elte.hu/Combustion/mechanisms/LeedsSOx52.dat.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700