用户名: 密码: 验证码:
闽江河口湿地碳氮循环关键过程对氮输入的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滨海湿地位于海陆相互作用地带,是响应全球变化和人类活动较为敏感的生态系统之一。滨海地区人口增长和工农业生产的迅速发展,使得越来越多的氮素营养通过大气干湿沉降、河流输入、地表径流、地下径流和污水排放等途径进入湿地,影响湿地碳氮生物地球化学过程。为了更深入的理解潮滩湿地碳氮循环过程对外源氮输入的响应特征,论文以闽江河口短叶茳芏和互花米草湿地为研究对象,通过野外原位观测、微区试验和实验室培养,研究了氮输入对湿地温室气体排放通量,湿地土壤碳氮化学转化过程、湿地植物生长与碳氮累积以及湿地植物残体分解及分解过程碳氮动态特征的影响,主要研究结论如下:
     (1)闽江河口短叶茳芏和互花米草湿地在植物生长初期总体表现为CO_2的汇、CH_4的源和N_2O的弱源/弱汇,互花米草入侵增加了湿地CO_2吸收和CH_4释放,但对N_2O排放无显著影响。外源氮(N1,21g N m-2a-1;N_2,42g N m-2a-1)输入对湿地CO_2、CH_4和N_2O排放具有促进作用,N1和N_2处理使短叶茳芏湿地的CO_2、CH_4及N_2O排放通量分别增加了25.80%和29.72%、31.05%和123.50%及1604%和2706%,而互花米草湿地的CO_2、CH_4及N_2O排放通量则分别增加了30.38%和28.35%、63.88%和7.55%以及1384%和1443%。
     (2)氮输入对湿地CO_2、CH_4和N_2O排放通量的影响具有明显的时间变异性,特别是N_2O排放通量,在施氮3小时后显著增加而8天后差异不显著,可见氮输入后的观测时间不同对研究结论影响较大,今后应注意加强该方面的研究。
     (3)外源氮输入对两种湿地土壤电导率(EC)、pH和氧化还原电位(Eh)均未产生显著影响。两种湿地CO_2和CH_4的排放通量与气温、地温、EC、pH和Eh均存在一定程度的相关性,但氮输入影响下其相关性有所减弱,而不同处理下的N_2O排放通量与环境因子之间的相关性并不显著。
     (4)在60%WHC和淹水条件下,不同浓度和形态的氮输入对短叶茳芏湿地土壤有机碳的累积矿化量多表现为抑制作用,而对互花米草湿地土壤的有机碳的累积矿化量则多表现为促进作用。水分条件是影响闽江河口潮汐湿地土壤有机碳矿化的重要因素,淹水条件下两种湿地土壤的有机碳矿化速率均显著低于好气条件。土壤累积矿化量(52d)、C0值、k值、C0k与土壤DOC含量和pH均呈极显著相关关系,外源氮输入引起的土壤DOC含量和pH的变化是导致土壤有机碳矿化差异的重要原因。
     (5)不同处理下互花米草湿地土壤的CH_4产生潜力均显著高于短叶茳芏湿地。氮输入对两种湿地土壤的CH_4产生潜力具有显著影响,外源氮输入引起的土壤DOC和矿质氮含量以及EC的变化是导致CH_4产生潜力变化的重要原因。
     (6)氮输入对两种湿地土壤CH_4氧化潜力的影响与外源氮的浓度和类型有关,且盐分和氮输入对湿地土壤CH_4氧化速率存在一定的交互影响,高盐输入对短叶茳芏和互花米草湿地土壤的CH_4氧化均具有抑制作用,高盐和高铵态氮输入对其抑制作用增强,而高盐和高硝态氮共同作用却对其产生了促进。
     (7)硝化细菌反硝化作用是短叶茳芏和互花米草湿地土壤N_2O产生的关键过程,对湿地N_2O排放的贡献不容忽视。硝态氮输入主要通过促进反硝化作用和其他过程从而促进了两种湿地土壤的N_2O总生产。低浓度的铵态氮输入则通过促进反硝化作用、硝化细菌反硝化作用和其他过程从而增加了短叶茳芏湿地土壤N_2O的总产生量,而中氮和高氮输入则通过抑制硝化作用、硝化细菌反硝化作用以及其他过程从而降低了湿地土壤N_2O的总产生量。而对互花米草湿地土壤来说,三种铵态氮均通过促进硝化细菌反硝化作用和其他过程从而促进了其N_2O产生,但显著低于硝态氮的促进作用。
     (8)不同形态的外源氮输入对短叶茳芏和互花米草各器官生物量、植物株高和基茎粗均具有一定程度的促进作用,且铵态氮的促进作用大于硝态氮。氮输入对两种植物不同器官的碳含量均没有显著影响,对氮含量则均具有促进作用。两种氮输入影响下短叶茳芏各器官的C/N均有所降低,且铵态氮输入影响下氮含量的增加和C/N的降低均大于硝态氮输入,但两种形态的氮对互花米草各器官C/N的影响却并不一致。
     (9)氮输入对短叶茳芏、互花米草叶和叶鞘的相对分解速率均具有一定程度的促进,但对互花米草茎的分解速率影响不大。残体相对分解速率还受分解环境变化、残体基质质量、温度条件、土壤盐分和pH等的影响。四种残体在不同分解条件下均一直表现为碳的净释放,氮输入和环境条件变化对残体碳释放的影响呈波动变化,不同处理下残体碳绝对量的变化受物质残留量的影响程度明显。在各分解小区植物残体的氮在分解过程中多表现为不同程度的净释放,氮输入在分解初期抑制了短叶茳芏残体的氮净释放,而在分解后期则促进了其氮的净释放,但氮输入对互花米草植物残体多表现为抑制其氮净释放。
Coastal wetland, located in the interaction areas between land and sea, is a veryimportant ecosystem, which is sensitive to the global change and human activities.With the population growth and rapid development of industrial and agriculturalproduction in coastal zones, the estuarine wetlands often receive more and morenitrogen (N) nutrition originated from atmospheric deposition, river input, surface andunderground runoff and pollutant discharge, which may affect the carbon (C) and Nbiogeochemical process in the wetlands. In this paper, the native Cyperusmalaccensis and invaded Spartina alterniflora wetlands in the Min River estuarywere selected as study objects in order to understand the response of C and N cycle toexogenous N addition. The observations in situ, microcosm experiments andlaboratory control experiment were performed to study the effects of N addition ongreenhouse gas emission, transformation characteristics of C and N in wetland soils,the plant growth and C and N accumulation, the litter decomposition rules and C andN dynamics in decomposition process. The main results were drawn as follows:
     (1) The C. malaccensis and S. alternifora wetlands acted as sinks of CO_2,sources of CH_4and weak sources or sinks of N_2O in the growing season. Theinvasion of S. alternifora into the Min River estuary stimulated CO_2uptake andCH_4emission, while no significant effects were found on N_2O emission. Exogenous N(N1,21g N m-2a-1; N_2,42g N m-2a-1) promoted CO_2, CH_4and N_2O emissions bothin native and in invaded tidal marsh. Compared to N0treatment, the mean gas fluxesof N1and N_2treatments increased by25.80%and29.72%for CO_2,31.05%and123.50%for CH_4, and1604%and2706%for N_2O in the C. malaccensis marsh.However, in the S. alternifora marsh, the mean gas fluxes of N1and N_2treatmentsincreased by30.38%and28.35%for CO_2,63.88%and7.55%for CH_4, and1384%and1443%for N_2O.
     (2) Significant temporal variability of CO_2, CH_4and N_2O fuxes were observedafter the N was gradually added to the native and invaded marshes. Within3hours ofN addition, N_2O fuxes were signifcantly higher in plots receiving N additionsrelative to controls. After8days, when N concentration decreased, no significant differences were found between treatments. We conclude that the overall increase ofCO_2, CH_4and N_2O emissions affected by N addition in coastal regions may besignificantly underestimated due to the short-term temporal variations of gas fuxes. Inorder to better assess the global climatic role of salt marshes as affected by N addition,the short-term temporal variability of greenhouse gas emission should receive muchmore attention.
     (3) EC, pH and Eh in different soil depths were not significantly affected by Naddition during the entire experiment. There were some significant correlationbetween CO_2(CH_4) fluxes and temperature (Ec, pH and Eh), while the correlationdecreased when N was added to the wetlands. The N_2O fluxes were not significantlycorrelated with temperature, Ec, pH and Eh.
     (4) Under60%WHC and submerged conditions, the added N of differentconcentrations and forms restrained the mineralization of soil organic carbon (SOC)in the C. malaccensis marsh and promoted the SOC mineralization in the S.alternifora marsh. Water condition was an important factor affecting the SOCmineralization in the Min River estuarine wetlands, the SOC mineralization ratesunder submerged condition were significantly lower than those under60%WHCcondition. There were significant correlations between the amounts of cumulative C,C0, k or C0k and the DOC contents or pH, suggesting that the changes of DOC and pHaffected by N input might be two of the important reasons that led to the differencesof SOC mineralization.
     (5) The CH_4production potential of different treatments in the S. alterniforamarsh were higher than those in the C. malaccensis marsh. N addition significantlyaffected the the CH_4production potential of the two marsh soils. The changes ofDOC and mineral N contents and EC in soils affected by N input might be theimportant reasons that led to the differences of CH_4production potential.
     (6) The CH_4oxidation potential were affected by the concentrations and forms ofadded N. There were interaction effects of N and salinity addition. Salinity additiondecreased the CH_4oxidation rate both in C. malaccensis and in S. alterniforawetland soils. The interaction of salinity and NH_4+-N addition inhibited the CH_4oxidation, while the interaction of salinity and NO3--N addition increased the CH_4oxidation.
     (7) The nitrifier denitrification is an important process of N_2O production inthe C. malaccensis and S. alternifora wetland soils, which can not be ignored when we study the N_2O production in wetland ecosystems. Nitrate N inputincreased the total N_2O production by promoting denitrification and other process.Low ammonium N addition increased the total N_2O production by promotingdenitrification, nitrifier denitrification and other process, however, the middle andhigh ammonium N addition decreased the total N_2O production by inhibitingnitrification, nitrifier denitrification and other proces in the C. malaccensiswetland soils. Three concentrations of ammonium N input increased the totalN_2O production by promoting nitrifier denitrification and other process in the S.alternifora wetland soils, but the increase were significantly lower than those ofnitrate N addition treatments.
     (8) Different forms of exogenous N input promoted the biomass of different organs,plant height and stem diameter of C. malaccensis and S. alternifora, and thepromotions of ammonium N were greater than those of nitrate N. There were nosignificant difference between treatments in TC contents of different organs of plants,while the N addition increased the N content in different organs. The C/N of differentorgans of C. malaccensis decreased as affected by the N addition, and the decreaseas effected by the ammonium N input were greater than those of nitrate N. The effectsof two forms of added N on C/N of S. alternifora were not consistent.
     (9) Nitrogen addition promoted the relative decomposition rate of C. malaccensislitters, leaf and leaf sheath litters of S. alternifora, while little effects were observedon the decomposition of stem litter of S. alternifora. In addition, relativedecomposition rate of litters were also affected by environment change, substratequality, temperature conditions, salinity and pH of soils. The C in litters in differentdecomposition sub-zones showed release at all times, the effects of N addition andchange of decompositon environment on C release in litters showed fluctuated change.The mass remaining rates significantly affected the C absolute contents. The N inlitters in different decomposition sub-zones showed release, the effects of N additionpromoted N release of C. malaccensis litter in the period of0~43d, while inhibited Nrelease in the periods of72~345d. However, N addition inhibited N release in S.alternifora litters.
引文
Aber J D, Magill A, McNulty S G, el a1. Forest biogeochemistry and primary production alteredby nitrogen saturation. Water, Air, and Soil Pollution,1995,85:1665-1670.
    Aber J D, McDowell W, Nadelhoffer K J, et a1. Nitrogen saturation in Northern forest ecosystems,hypotheses revisited. Bioscience,1998,48:921-934.
    Adams M A, neson P, Binkley D, et a1. Soil functional responses to excess nitrogen inputs atglobal scales. Ambio,2004,33(8):530-536.
    Adamsen A P S, King G M. Methane consumption in temperate and subarctic forest soils: rates,vertical zonation, and responses to water and nitrogen. Applied and EnvironmentalMicrobiology,1993,59:485-490.
    Aelion C M, Shaw J N, Wahl M. Impact of suburbanization on ground water quality anddenitrification in coastal aquifer sediments. Journal of Experimental Marine Biology andEcology,1997,213(1):31-51.
    Alexander R B, Smith R A, Schwartz G E. Effect of stream channel size on the delivery ofnitrogen to the Gulf of Mexico. Nature,2000,403:758-761.
    Allison S D, LeBauer D S, Ofrecio M R, et al. Low levels of nitrogen addition stimulatedecomposition by boreal forest fungi. Soil Biology and Biochemistry,2009,41:293-302.
    Anderson T H, Joergensen R G. Relationship between SIR and FE estimates of microbial biomassC in deciduous forest soils at different pH. Soil Biology and Biochemistry,1997,29(7):1033-1042.
    Banik A, Sen M, Sen S P. Effects of inorganic fertilizers and micronutrients on methaneproduction from wetland rice (Oryza sativa L.). Biology and Fertility of Soils,1996,21:319-322.
    Bardgett R D, Lovell R D, Hobbs P J, et al. Seasonal changes in soil microbial communities alonga fertility gradient of temperate grasslands. Soil Biology and Biochemistry,1999,31:1021-1030.
    Barford C, Lajtha K. Nitrification and nitrate reductase rate along a secondary successionalgradient. Plant and soil,1992,145:1-10.
    Bauer G A, Bazzaz F A, Minocha R, et al. Effects of chronic N additions on tissue chemistry,photosynthetic capacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.)stand in the NE United States. Forest Ecology and Management,2004,196:173-186.
    Bender M, Conrad R. Kinetics of methane oxidation in oxic soils. Chemosphere,1993,26(1-4):687-696.
    Berg B, Matzner E. Effect of N deposition on decomposition of plant litter and soil organic matterin forest ecosystems. Environmental Reviews,1997,5:1-25.
    Berg B, Meentemeyer V. Litter quality in a north European transect versus carbon storagepotential. Plant and Soil,2002,242:83-92.
    Berger T W, Glatzel G. Response of Quercus petraea seedlings to nitrogen fertilization. ForestEcology and Management,2001,149:1-14.
    Blagodatskaya E V, Anderson T H. Adaptive responses of soil microbial communities underexperimental acid stress in controlled laboratory studies. Applied Soil Ecology,1999,11:207-216.
    Bloom A J, Sukrapanna S S, Warner R L. Root Respiration Associated with Ammonium andNitrate Absorption and Assimilation by Barley. Plant Physiology,1992,99:1294-1301.
    Bobbink R, Hornung M, Roelofs J G M. The effects of air-borne nitrogen pollutants on speciesdiversity in natural and semi-natural European vegetation. Journal of Ecology,1998,86:717-738.
    Borken W, Beese F, Brumme R, et al. Long-term reduction in nitrogen and proton inputs did notaffect atmospheric methane uptake and nitrous oxide emission from a German spruce forestsoil. Soil Biology and Biochemistry,2002;34:1815-1819
    Bouwman A F. Conclusions and recommendations of the Conference Working Groups. In:Bouwman (eds.). Soils and the Greenhouse effects. Chichester: John Wiley&Sons,1990.
    Bouwman A F. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere.In: Bouwman A F. Soil and the Greenhouse Effec. Chichester: John Wiley&Sons,1990.61-127.
    Bowden R D, Davidson E, Savage K, et al. Chronic nitrogen additions reduce total soil respirationand microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology andManagement,2004,196:43-56.
    Bowden R D, Steudler P A, Melillo J M, et a1. Annual nitrous oxide fluxes from temperate forestsoils in the northeastern United States. Jounal of Geophysical Research,1990,95:13997-14005.
    Bowden W B. Gaseous nitrogen emissions from undisturbed terrestrial ecosystems: an assessmentof their impacts on local and global nitrogen budgets. Biogeochemistry,1986,2:249-279.
    Boyer E W, Howarth R W, Galloway J N, et al. Riverine nitrogen export from the continents to thecoasts. Globle Biogeochemical Cycles,2006,20: GB1S91.
    Bradford MA, Ineson P, Wookey PA, and Lappin-Scott HM. The effects of acid nitrogen and acidsulphur deposition on CH4oxidation in a forest soil: a laboratory study. Soil Biology andBiochemistry,2001,33:1695-1702.
    Bremner J M. Sources of nitrous oxide in soils. Nutrient Cycling in Agroecosystems,1997,49:7-16
    Butterbach-Bahl K, Gasche R, Breuer L, et al. Fluxes of NO and N2O from temperate forest soils:impact of forest type, N deposition and of liming on the NO and N2O emissions. NutrientCycling in Agroecosystems,1997,48:79-90.
    Cai Z C, Mosier A R. Effect of NH4Cl addition on methane oxidation by paddy soils. Soil Biologyand Biochemistry,2000,32(11-12):1537-1545.
    Carroll J A, Caporn S J M, Johnson D, et al. The interactions between plant growth, vegetationstructure and soil processes in semi-natural acidic and calcareous grasslands receivinglong-term inputs of simulated pollutant nitrogen deposition. Environmental Pollution,2003,121:363-376.
    Cartaxana P, Lloyd D. N2, N2O and O2Profiles in a Tagus Estuary Salt Marsh. Estuarine, Coastaland Shelf Science,1999,48(6):751-756.
    Castro M S, Peterjohn W T, et a1.Effects of nitrogen fertilization on the fluxes of N2O, CH4, andCO2from soils in a Florida slash pine plantation. Canadian Journal of Forest Research,1994,24:9-13.
    Chapuis-Lardy L, Wrage N, Metay A, et al. Soils, a sink for N2O? A review. Global ChangeBiology,2007,13:1-17.
    Chen Y, H gberg P. Gross nitrogen mineralization rates still high14years after suspension of Ninput to a N-saturated forest. Soil Biology and Biochemistry,2006,38:2001-2003.
    Cheng X L, Peng R H, Chen J Q, et al. CH4and N2O emissions from Spartina alterniflora andPhragmites australis in experimental mesocosms. Chemosphere,2007,68(3):420-427.
    Chi Z-F, Lu W-J, Li H, and Wang H-T. Dynamics of CH4oxidation in landfill biocover soil:Effect of O2/CH4ratio on CH4metabolism. Environmental Pollution,2012,170:8-14.
    Clark C M, Cleland E E, Collins S L, et a1. Environmental and plant community determinants ofspecies loss following nitrogen enrichment. Ecology Letters,2007,10:596-607.
    Coatanza R, Arge R, Groot R D, et al. The value of the world's ecosystem servieces and naturalcapital. Nature,1997,387:253-260.
    Compton J E, Watrud L S, Porteous L A, et al. Response of soil microbial biomass andcommunity composition to chronic nitrogen additions at Harvard forest. Forest Ecology andManagement,2004,196:143-158.
    Cotrufo M F, Ineson P, Roberts D. Decomposition of birch leaf litters with varying C-to-N ratios.Soil Biology and Biochemistry,1995,27:1219-1221.
    De Visscher A, and Cleemput OV. Induction of enhanced CH4oxidation in soils: NH4+inhibitionpatterns. Soil Biology and Biochemistry,2003,35:907-913.
    Dise N B, Matzner E, Forsius M. Evaluation of organic C:N ratios as an indicator of nitrateleaching in conifer forests across Europe. Environmental Pollution,1998,102(S1):453-456.
    Dubey SK, Sinha ASK, and Singh JS. Differential inhibition of CH4oxidation in bare, bulk andrhizosphere soils of dryland rice field by nitrogen fertilizers. Basic and Applied Ecology,2002,3:347-355.
    Ellert B H. Gregorich E G. Management-induced changes in the actively cycling fractions of soilorganic matter. In: Mcfee W W, Kelly J M. eds. Carbon Forms and Functions in Forest Soils.Wisconsin, Madison, USA: Soil Science Society of America, lnc.,1995,119-138.
    Emmett B A. The impact of nitrogen on forest soils and feedbacks on tree growth. Water, Air&Soil Pollution,1999,116:65-74.
    Falkengren-Grerup U, Brunet G, Diekmann M. Nitrogen mineralisation in deciduous forest soilsin south Sweden in gradients of soil acidity and deposition. Environmental Pollution,1998,102(Suppl.1):415-420.
    Fang H J, Cheng S L, Yu G R, et al. Responses of CO2efflux from an alpine meadow soil on theQinghai Tibetan Plateau to multi-form and low-level N addition. Plant and Soil,2012,351:177-190.
    Fenn M E, Poth M A, Aber J D, et al. Nitrogen excess in North American ecosystems:Predisposing factors, ecosystem responses, and management strategies. EcologicalApplications,1998,8:706-733.
    Field C B, Chapin III F S, Matson P A, et al. Responses of terrestrial ecosystems to the changingatmosphere: a resource-based approach. Annual Review of Ecology, Evolution, andSystematics,1992,23:201-35.
    Fierer N, Schimel J P. A proposed mechanism for the pulse in carbon dioxide productioncommonly observed following the rapid rewetting of a dry soil. Soil Science Society ofAmerica Journal,2003,67(3):798-805.
    Flanagan P W, Vancleve K. Nutrient Cycling in Relation to Decomposition and Organic-MatterQuality in Taiga Ecosystems. Canadian Journal of Forest Research-Revue Canadienne DeRecherche Forestiere,1983,13:795-817.
    Fog K. The effect of added nitrogen on the rate of decomposition of oganici matter. BiologicalReviews,1988,63:433-462.
    Foster N W. Reactions of15N-labelled urea with jack pine forest-floor materials. Soil Biology andBiochemistry,1985,17:699-703.
    Fox T R. Sustained productivity in intensively managed forest plantations. Forest Ecology andManagement,2000,138:187-202.
    Freeman C, Ostle N, Kang H. An enzymic ‘latch’ on a global carbon store: a shortage of oxygenlocks up carbon in peatlands by restraining a single enzymes. Nature,2001,409,149.
    Frey S D, Knorr M, Parrent J L, et al. Chronic nitrogen enrichment affects the structure andfunction of the soil microbial community in temperate hardwood and pine forests. ForestEcology and Management,2004,196:159-171.
    Galicia L, García-Oliva F. The effects of C, N and P additions on soil microbial activity under tworemnant tree species in a tropical seasonal pasture. Applied Soil Ecology,2004,26:31-39.
    Galloway J N, Cowling E B. Reactive nitrogen and the world:200years of change. AMBIO,2002,31:64-71.
    Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles: past, present, and future.Biogeochemistry,2004,70:153-226.
    Galloway J N, Levy H, Kasibhatla P S. Year2020: Consequences of population growth anddevelopment on deposition of oxidized nitrogen. AMBIO,1994,23(2):120-123.
    Gough L, Osenberg C W, Gross K L, et al. Fertilization effects on species density and primaryproductivity in herbaceous plant communities. Oikos,2000,89,428–439.
    Grybos M, Davranche M, Gruau G, et al. Increasing pH drives organic matter solubilization fromwetland soils under reducing conditions. Geoderma,2009,154(1/2):13-19.
    Gulis V, Suberkropp K. Leaf litter decomposition and microbial activity in nutrient-enriched andunaltered reaches of a headwater stream. Freshwater Biology,2003,48:123–134.
    Gulledge J, Hrywna Y, Cavanaugh C, et al. Effects of long-term nitrogen fertilization on theuptake kinetics of atmospheric methane in temperate forest soils. FEMS MicrobiologyEcology,2004,49:389-400.
    Gundersen P, Callesen I, de vries W. Nitrate leaching in forest ecosystems is related to forest floorC/N ratios. Environmental Pollution,1998,102:403-407.
    Guo L P, Lin E D. Carbon sink in cropland soils and the emission of greenhouse gases from paddysoils: a review of work in China. Chemosphere: Global Change Science,2001,3(4):413-418.
    Hall S J, Matson P A. Nitrogen oxide emissions after nitrogen additions in tropical forests. Nature,1999,400:152-155.
    H ttenschwiler S, K ner C. Biomass allocation and canopy development in spruce modelecosystems under elevated CO2and increased N deposition. Oecologia,1998,113,104-l14.
    Henry H A L, Cleland E E, Field C B, et al. Interactive effects of elevated CO2, N deposition andclimate change on plant litter quality in a California annual grassland. Oecologia,2005,142:456-473.
    Heutsch B W. Methane oxidation in soils of two long-term fertilization experiments in Germany.Soil Biology and Biochemistry,1996,28:773-782.
    Hobbie S E, Gough L. Litter decomposition in moist acidic and non-acidic tundra with differentglacial histories. Oecologia,2004,140:113-124.
    H gberg M N, H gberg P, Myrold D D. Is microbial community composition in boreal forest soilsdetermined by pH, C-to-N ratio, the trees, or all three? Oecologia,2007,150:590-601.
    Holland E A, Dentene F J R, Braswell B H, et al. Contemporary and Pre-Industrial GlobalReactive Nitrogen Budgets. Biogeochemistry,1999,46:7-43.
    Houghton R A. Terrestrial carbon sinks-Uncertain explanations. Biologist,2002,49(4):155-160.
    IPCC. Changes in Atmospheric Constituents and in Radioactive Forcing. In: Climate Change: ThePhysical Science Basis. Contribution of Working Group I to the Fourth Assessment Report ofthe Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge,United Kingdom and New York, NY, USA.2007.
    Irving A M, Brian K S, Hans B, et al. Controls on soil cellulose decomposition along a salinitygradient in a Phragmites australis wetland in Denmark. Aquatic Botany,1999,64:381-398.
    Jacinathe P A, Groffman. Microbial nitrogen cycling processes in a sulfidic coastalmarsh. WetlandEcology and Management,2006,14:123-131.
    Jacobson TKB, Bustamante MMDC, and Kozovits AR. Diversity of shrub tree layer, leaf litterdecomposition and N release in a Brazilian Cerrado under N, P and N plus P additions.Environmental Pollution,2011,159:2236-2242
    Jiang C, Yu G, Fang H, et al. Short-term effect of increasing nitrogen deposition on CO2, CH4andN2O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China. AtmosphericEnvironment,2010,44:2920-2926.
    Jiang L F, Luo Y Q, Chen J K, et al. Ecophysiological characteristics of invasive Spartinaalterniflora and native species in salt marshes of Yangtze River estuary, China. Estuarine,Coastal and Shelf Science,2009,81(1):74-82.
    Johnson D W, Cheng W, Burke I C. Biotic and abiotic nitrogen retention in a variety of forestsoils. Soil Science Society of America Journal,2000,64:1503-1514.
    Kao-kniffin J, Freyre D S, Balser T C. Methane dynamics across wetland plant species.Aquatic Botany,2010,93:107-113.
    Karl J M, Agustin M and Friedrich O B. Chemical composition of throughfall, soil water, leavesand leaf litter in a beech forest receiving long term application ammonium sulphate. Plantand Soil,1998,201:217-230.
    Kelley K R, Stevenson F J. Organic forms of N in soil. In: Piccolo, A.,(Ed.), Humic Substances inTerrestrial Ecosystems, Elsevier, Amsterdam,1996,407-427.
    Kiehl J T, Trenberth K E. Earth's annual global mean energy budget. Bulletin of the AmericanMeteorological Society,1997,78:197-208.
    King G M, Schnell S. Ammonium and Nitrite Inhibition of Methane Oxidation by Methylobacter-Albus Bg8and Methylosinus-Trichosporium Ob3b at Low Methane Concentrations. Appliedand Environmental Microbiology,1994,60:3508-3513.
    King G M, Schnell S. Effect of Increasing Atmospheric Methane Concentration on AmmoniumInhibition of Soil Methane Consumption. Nature,1994,370:282-284
    King G M, Schnell S. Effects of ammonium and non-ammonium salt additions on methaneoxidation by Methylosinus trichosporium OB3b and Maine forest soils. Applied andEnvironmental Microbiology,1998,64:253-257.
    Kitzler B, Zechmeister-Boltenstern S, Holtermann C, et al. Nitrogen oxides emission from twobeech forests subjected to different nitrogen loads. Biogeosciences,2006,3:293-310
    Kludze H K, Delaune R D, Patrick W H. Aerenchyma formation and methane and oxygenexchange in rice. Soil Science Society of America Journal,1993,57(2):386-391.
    Knorr M, Frey S D, Curtis P S. Nitrogen additions and litter decomposition: A meta-analysis.Ecology,2005,86:3252-3257.
    Koch M S, Maltby E, Oliver G A, et al. Factors controlling denitrification rates of tidal mudflatsand fringing salt marshes in south-west England. Estuarine, Coastal and Shelf Science,1992,34(5):471-485.
    Kralova M, Masscheleyn P H, Lindau C W, et al. Production of dinitrogen and nitrous oxide insoil suspensions as affected by redox potentia1. Water, Air and Soil Pollution,1992,6l:37-45.
    Krasakopoulou E, Rapsomanikis S, Papadopoulos A, et al. Partial pressure and air-sea CO2flux inthe Aegean Sea during February2006. Continental Shelf Research,2009,29:1477-1488.
    Kuperman R G. Relationships between soil properties and community structure of soilmacroinvertebrates in oak-hickory forests along an acidic deposition gradient. Applied SoilEcology,1996,4:125-137.
    Law C S, Rees A P, Owens N J P. Temporal variability of denitrification in estuarine sediments.Estuarine, Coastal and Shelf Science,1991,33(1):37-56.
    Ledgard S F, Jarvis S C, Hatch D J. Short-term nitrogen fuxes in grassland soils under differentlong-term nitrogen management regimes. Soil Biology and Biochemistry,1998,30:1233-1241.
    Lekkerkerk L, Lundkvist H, gren G, et al. Decomposition of heterogeneous substrates anexperimental investigation of a hypothesis on substrate and microbial properties. Soil Biologyand Biochemistry,1990,22:161-167.
    Lelieveld J, Crutzen P J. Indirect chemical effects of methane on climate warming. Nature,1992,355:339-342.
    Levenson H. Coastal systems:on the margin. In:H.Suzanne Bolton(ed.). Coastal wetlands. NewYork:American Society of Civil Engineers,1991.
    Li X G, Li F M, Ma Q F, et al. Interactions of NaCl and Na2SO4on soil organic C mineralizationafter addition of maize straws. Soil Biology and Biochemistry,2006,38:2328-2335.
    Liang C, Das K C, McClendon R W. The influence of temperature and moisture contents regimeson the aerobic microbial activity of a biosolids composting blend. Bioresource Technology,2003,86(2):131-137.
    Liao Y C, Fan H B, Li Y Y, et al. Effects of simulated nitrogen deposition on growth andphotosynthesis of1-year-old Chinese fir (Cunninghamia lanceolata) seedlings. ActaEcologica Sinica,2010,30:150-154.
    Lindahl B D, Ihrmark K, Boberg J, et al. Spatial separation of litter decomposition and mycorrhizanitrogen uptake in a boreal forest. New Phytologist,2007,173:611-620.
    Linn D M, Doran J W. Effect of water-filled pore space on carbon dioxide and nitrous oxideproduction in tilled and nontilled soils. Soil Science Society of America Journal,1984,48(6):1267-1272.
    Liu L and Greaver T L,2009. A review of nitrogen enrichment effects on three biogenic GHGs:the CO2sink may be largely offset by stimulated N2O and CH4emission. Ecology Letters,12:1103-1117.
    Liu X J, Zhang Y, Han W X. Enhanced nitrogen deposition over China. Nature,2013,494:459-462.
    Liu Z G., Zou X M. Exotic earthworms accelerate plant litter decomposition in a Puerto Ricanpasture and wet forest. Ecological. Applications,2002,12(5):1406-1417.
    Lopez-Zamora I, Duryea ML, Wild C M, et al. Effects of pine needle removal and fertilization ontree growth and soil P availability in a Pinus elliottii Engelm. var. elliottii stand. ForestEcology and Management,2001,148:125-134.
    Lorenz K, Preston C M, Raspe S, et al. Litter decomposition and humus characteristics inCanadian and German spruce ecosystems: information from tannin analysis and13C CPMASNMR. Soil Biology and Biochemistry,2000,32:779-792.
    Lovell R D, Jarvis S C, Bardgett R D. Soil microbial biomass and activity in long-term grassland:effects of management changes. Soil Biology and Biochemistry,1995,7:969-975.
    Lovett G M, Weathers K C, Arthur M A, et al. Nitrogen cycling in a northern hardwood forest: dospecies matter? Biogeochemistry,2004,67:289-308.
    Magenheimer J F, Moore T R, Chmura G L, et al. Methane and carbon dioxide flux from amacrotidal salt marsh, Bay of Fundy, New Brunswick. Estuaries,1996,19(1):139~145.
    Magill A H, Aber J D, Hendfieks J J, et a1. Biogeochemical response of forest ecosystems tosimulated chronic nitrogen deposition. Ecologicl Applications,1997,7:402-415.
    Magill A H, Aber J D. Long-term effects of experimental nitrogen additions on foliar litter decayand humus formation in forest ecosystems. Plant and Soil,1998,203:301-311.
    Magill A H, and Aber J D. Dissolved organic carbon and nitrogen relationships in forest litter asaffected by nitrogen deposition. Soil Biology and Biochemistry,2000,32:603-613.
    Manning P, Saunders M, Bardgett RD, et al. Direct and indirect effects of nitrogen deposition onlitter decomposition. Soil Biology and Biochemistry,2008,40:688-698.
    Mansson K F, Falkengren-Grerup U. The effect of nitrogen deposition on nitrification, carbon andnitrogen mineralisation and litter C:N ratios in oak (Quercus robur L.) forests. ForestEcology and Management,2003,179:455-467.
    Marschner B, Bredow A. Temperature effects on release and ecologically relevant properties ofdissolves organic carbon in sterilized and biologically active soil samples. Soil Biology andBiochemistry,2002,34:459-466.
    Martikainen P J. Microbial processes in boreal forest soils as affected by forest managementpractices and atmospheric stress. Soil Biochemistry,1996,9:195-232.
    Matson P A, Gower S T, Volkmann C, et al. Soil nitrogen cycling and nitrous oxide flux in aRocky Mountain Douglas-Fir forest: Effects of fertilization, irrigation, and carbon addition.Biogeochemistry,1992,18:101-117.
    Matson P A, Lohse K, Hall S. The globalization of nitrogen deposition: Consequences forterrestrial ecosystems. Ambio,2002,31(2):113-119.
    Menéndez M, Carlucci D, Pinna M, et al.2003. Effect of nutrients on decomposition of Ruppiacirrhosa in a shallow coastal lagoon. Hydrobiologia,506:729-735.
    Menéndez M. Response of early Ruppia cirrhosa litter breakdown to nutrient addition in a coastallagoon affected by agricultural runoff. Estuarine, Coastal and Shelf Science,2009,82:608-614.
    Micks P, Downs M R, Magill A H, et al. Decomposing litter as a sink for15N-enriched additionsto an oak forest and a red pine plantation. Forest Ecology and Management,2004,196:71-87.
    Min K, Kang H, and Lee D. Effects of ammonium and nitrate additions on carbon mineralizationin wetland soils. Soil Biology and Biochemistry,2011,43:2461-2469.
    Mladenoff D J. Dynamics of nitrogen mineralization and nitrification in hemlock and hardwoodtreefall gaps. Ecology,1987,68(5):1171-1180.
    Mo J M, Fang Y T, Xu G L, el a1. The short-term responses of soil CO2emission and CH4uptaketo simulated N deposition in nursel and forests of Dinghushan in subtropical China. ActaEcologica Sinica,2005,25(4):682-690.
    Mooney H, Vitousek P M, Matson P A. Exchange of materials between terrestrial ecosystems andthe atmosphere. Science,1987,238:926-932.
    Moseman-Valtierra S, Gonzalez R, Kroeger K D, et al. Short-term nitrogen additions can shift acoastal wetland from a sink to a source of N2O. Atmospheric Environment,2011,45(26):4390-4397.
    Mu oz-HincapiéM, Morell J M, Corredor J E. Increase of nitrous oxide flux to the atmosphereupon nitrogen addition to red mangroves sediments. Marine Pollution Bulletin,2002,44(10):992-996.
    Nadelhoffer K J, Emmett B A, Gundersen P, et al. Nitrogen deposition makes a minorcontribution to carbon sequestration in temperate forests. Nature,1999,398:145-148
    Nakaji T, Fukami M, Dokiya Y, et a1. Effects of high nitrogen load on growth, photosynthesis andnutritrient status of Cryptomeria japoniea and Pinus densifolra seedlings. Trees,2001,15:453-461.
    Nakaji T, Takenaga S, Kuroha M, et al. Photosynthetic response of Pinus densiflora seedlings tohigh nitrogen load. Environmental Sciences,2002,9(4):269-282.
    Neff J C, Townsend A R, Gleixner G, et al. Variable effects of nitrogen additions on the stabilityand turnover of soil carbon. Nature,2002,419:915-917.
    Neuvonen S, Suomela J. The effect of simulated acid rain on pine needle and birch leaf litterdecomposition. Journal of Applied Ecology,1990,27:857-872.
    Nixon S W. Coastal marine eutrophication-a definition, social causes, and future concerns.Ophelia,1995,41:199-219.
    Nohrstedt H O. Response of coniferous forest ecosystems onmineral soils to nutrient additions: areview of Swedish experiences. Scandinavian Journal of Forest Research,2001,16:555-573.
    Paquin R, Margolis H A, Doucet R, et al. Physiological responses of black spruce layers andplanted seedlings to nutrient addition. Tree Physiol,2000,20:229-237.
    Paterson E. Importance of rhizodeposition in the coupling of plant and microbial productivity.European Journal of Soil Science,2003,54:741-750.
    Pearson J, Stewart G R. The deposition of atmospheric ammonia and its effects on plants. NewPhytologist,1993,125:283-305.
    Pennanen T, Fritze H, Vanhala P, et al. Structure of a microbial community in soil after prolongedaddition of low levels of simulated acid rain. Applied and Environmental Microbiology,1998,64:2173-2180.
    Persson T, Karlsson P S, Seyferth U, et al. Carbon mineralisation in European forest soils. In:Schulze, E.-D.(Ed.), Ecological Studies-Carbon and Nitrogen Cycling in European ForestEcosystems. Springer, Berlin,2000a,257-275.
    Persson T, Rudebeck J H, Jussy J H, et al. Soil nitrogen turnover-mineralisation, nitrification anddenitrificationin European forest soils. In: Schulze, E.-D.(Ed.), Ecological Studies-Carbonand Nitrogen Cycling in European Forest Ecosystems. Springer, Berlin,2000b:295-331.
    Prescott C E. Does nitrogen availability control rates of litter decomposition in forests? Plant andSoil,1995,168-169:83-88.
    Priemé A, Christensen S. Seasonal and spatial variation of methane oxidation in a Danish spruceforest. Soil Biology and Biochemistry,29:1165-1172.
    Prinn R G, Cunnold D M, Rasmussen R. Atmospheric emissions and trends of nitrous oxidededuced from ten years of ALE-GAGE data. Journal of Geophysical Research,1990,95:18369-18385.
    Rao L E, Parker D R, Bytnerowicz A, et al. Nitrogen mineralization across an atmosphericnitrogen deposition gradient in Southern California deserts. Journal of Arid Environments,2009,73:920-930.
    Reay D S, Nedwell D B. Methane oxidation in temperate soils: effects of inorganic N. SoilBiology and Biochemistry,2004;36:2059-2065
    Riffaldi R, Saviozzi A, Levi-Minzi R. Carbon mineralization kinetics as influenced by soilproperties. Biology and Fertility of Soils,1996,22:293-298.
    Rinnan R, Michelsen A, B th E, et al. Mineralization and carbon turnover in subarctic heath soilas affected by warming and additional litter. Soil Biology and Biochemistry,2007,39:3014-3023.
    Roache M C, Bailey P C, Boon P I. Effects of salinity on the decay of the freshwater macrophyte,Triglochin procerum. Aquatic Botany,2006,84:45-52.
    Rob S E W L, Willy J W. Effects of water acidification on the decomposition of Juncus bulbosus L.Aquatic Botany,1988,31(1-2):57-81.
    Robertson G P, Tiedje J M. Nitrous oxide sources in aerobic soils: nitrifcation, denitrifcation andother biological processes. Soil Biology and Biochemistry,1987,19:187-193.
    Rodhe H. A comparison of the contribution of various gases to the greenhouse effect. Science,1990,248:1217-1219
    Roelofs J G M, Kempers A J, Houljk A L F M, et a1. The effect of air-borne ammonium sulphateon pinus nigravar maritime in The Netherlands. Plant and Soil,1985,84:45-56.
    Rückauf U, Jürgen A, Rolf R, et al. Nitrate removal from drained and reflooded fen soils affectedby soil N transformation processes and plant uptake. Soil Biology and Biochemistry,2004,36:77-90.
    Schimel D S. Terrestrial ecosystems and the carbon cycle. Global Change Biology,1995(1):77-91.
    Setia R, Marschner P, Baldock J, et al. Salinity effects on carbon mineralization in soils of varyingtexture. Soil Biology and Biochemistry,2011,43:1908-1916.
    Seto A, Seto M. Relationship between rate of carbon dioxide evolution, microbial biomass carbon,and amount of dissolved organic carbon as affected by temperature and water content of aforest and an arable soil. Communications in Soil Science and Plant Analysis,1999,30(19):2593-2605.
    Shaver G R, Bret-Harte S M, Jones M H, et a1. Species composition interacts with fertilizer tocontrol long-term change in tundra productivity. Ecology,2001,82:3163-3181.
    Simas T, Nunes J P, Ferreria J G. Effects of global climate change on coastal salt marshes.Ecological Modeling,2001,139:1-15.
    Sj berg G, Bergkvist B, Berggren D, et al. Long-term N addition effects on the C mineralizationand DOC production in mor humus under spruce. Soil Biology and Biochemistry,2003,35:1305-1315.
    Sj berg R M, Persson T. Turnover of carbon and nitrogen in coniferous forest soils of differentN-status and under different15NH4-N application rate. Environ Pollut,1998,102(S1):385-393.
    Smaill S J, Clinton P W, Greenfield L G. Nitrogen fertiliser effects on litter fall, FH layer andmineral soil characteristics in New Zealand Pinus radiata plantations. Forest Ecology andManagement,2008,256:564-569.
    Smith C J, DeLaune R D, Patrick W H. Nitrous oxide emission from Gulf Coast wetlands.Geochimica et Cosmochimica Acta,1983,47(10):1805-1814.
    Smith C T, Lowe A T, Skinner M F, et a1. Response of radiata pine forests to residuemanagementand fertilisation across a fertility gradient in New Zealand. Forest Ecology and Management,2000,138:203-223.
    Solga A, Burkhardt J, Zechmeister HG, et al. Nitrogen content,15N natural abundance and biomassof the two pleurocarpous mosses Pleurozium schreberi (Brid.) Mitt. and Scleropodium purum(Hedw.) Limpr. in relation to atmospheric nitrogen deposition. Environmental Pollution,2005,134:465-473.
    Steudler P A, Melillo J M, Bowden R D, et a1. The effects of natural and human disturbances onsoil nitrogen dynamics and trace gas fluxes in Puerto Rican wet forest. Biotropica,1991,23(4a):356-363.
    Stienstra A W, Gunnewick P K, Laanbroek H J. Repression fo nitrification in soils under climaxgrassland vegetation. FEMS Microbiology Ecology,1994,14:45-52.
    Strauss E A. The effects of organic carbon and nitrogen availability on nitrification rates instream sediments. A doctor degree dissertation of Notre Dame, Indiana.2000.
    Suding K N, Collins S L, Gough L, et a1. Functional-and abundance-based mechanisms explaindiversity loss due to N fertilization. Proceedings of the Natural Academy of Sciences,2005,102:4387-4392.
    Taylor A A, De-Felice J, Havill DC. Seasonal variation in nitrogen availability and utilisation in anacidic and calcareous soil. New Phytologist,1982,92:141-152.
    Tietema A, Riemer L, Verstraten J M, el a1. Nitrogen cycling in acid forest soils subject toincreased atmospheric nitrogen input. Forest Ecology and Management,1993,57:29-44.
    van Cleemput O, Baert L. Nitrite: a key compound in N loss processes under acidconditions?Plant and Soil,1984,76:233-241.
    Venterea R T, Groffman P M, Verchot L V, et al. Nitrogen oxide gas emissions from temperateforest soils receiving long-term nitrogen inputs. Global Change Biology,2003,9:346-357.
    Vestgarden L S, Kj naas O J. Potential nitrogen transformations in mineral soils of two coniferousforests exposed to different N inputs. Forest Ecology and Management,2003,174:191-202.
    Vestgarden L S, Selle L T, Stuanes A O. In situ soil nitrogen mineralisation in a Scots pine (Pinussylvestris L.) stand: effects of increased nitrogen input. Forest Ecology and Management,2003,176:205-216.
    Vitousek P M, Aber J, Howarth R W, et al. Human alteration of the global nitrogen cycle: sourcesand consequences. Ecological Applications,1997,7:737-750.
    Vitousek P M, Turnet D R, Parton W J, et al. Litter decomposition on the Mauna Loaenvironmental matrix, Hawaii: patterns, mechanisms and models. Ecology,1994,75(2):418-429.
    Waldrop M P, Zak D R, Sinsabaugh R L, et al. Nitrogen deposition modifies soil carbon storagethrough changes in microbial enzymatic activity. Ecological Applications,2004,14:1172-1177.
    Wang Z P, Delaune R D, Masscheleyn P H, et al. Soil redox and pH effects on methane productionin a flooded rice soil. Soil Science Society of America Journal,1993,57:382-385.
    Wang Z P, Lindau C W, Delaune R D, el al. Methane emissions and entrapment in flooded ricesoils as affected by soil properties. Biology and Fertility of Soil,1993,(16):163-168.
    Webster E A, Hopkins D W. Contributions from different microbial processes to N2O emissionsfrom soil under different moisture regimes. Biology and Fertility of Soils,1996,22:331-335.
    Wedin D A, Tilman D. Infuence of nitrogen loading and species composition on the carbonbalance of grasslands. Science,1996,274:1720-1723.
    Weston N B, Vile M A, Neubauer S C, et al. Accelerated microbial organic matter mineralizationfollowing salt water intrusion into tidal freshwater marsh soil. Biogeochemistry,2011,102:135-151.
    Whalen S C, Reeburgh W S. Effect of nitrogen fertilization on atmospheric methane oxidation inboreal forest soils. Chemosphere-Global Change Science,2000,2:151-157.
    Whalen S C. Infuence of N and non-N salts on atmospheric methane oxidation by upland borealforest and tundra soils. Biology and Fertility of Soils,2000,31:279-287
    Wheatley R E, Ritz K, Crabb D, et al. Temporal variations in potential nitrification dynamics insoil related to differences in rates and types of carbon and nitrogen inputs. Soil Biology andBiochemistry,2001,33:2135-2144
    Whytemare A R, Edmonds R L, Abet J N, et al. Influence of excess nitrogen deposition on a whitespruce (Picea glauea). stand in Southero maska. Biogeochemistry,1997,38:173-187.
    Wrage N, Velthof G L, van Beusichem M L, et al. Role of nitrifier denitrification in theproduction of nitrous oxide. Soil Biology and Biochemistry,2001,33:1723-1732.
    Wrage N, Velthof G L, Laanbroek H J, et al. Nitrous oxide production in grassland soils: assessingthe contribution of nitrifier denitrification. Soil Biology and Biochemistry,2004,36(2):229-236.
    Xu X K, Inubushi K. Effects of N sources and methane concentrations on methane uptakepotential of a typical coniferous forest and its adjacent orchard soil. Biology and Fertility ofSoils,2004,40:215-221
    Yang X, Warren M, Zou X. Fertilization responses of soil litter fauna and litter quantity, quality,and turnover in low and high elevation forests of Puerto Rico. Applied Soil Ecology,2007,37:63-71.
    Zhang G, Taylor G J. Effects of biololgical inhibitious on kinetics of aluminum uptake by excisedroots and Durified cel1wal1material of aluminum-tolerance and aluminum-sensitivecuhivars of Triticum aestivum L. Plant Physiology,1992,138:533-539.
    Zhang J, Li Z, Ning T, et al. Methane uptake in salt-affected soils shows low sensitivity to saltaddition. Soil Biology and Biochemistry,2011,43:1434-1439.
    Zhang L H, Song C C, Wang D X, et al. Effects of exogenous nitrogen on freshwater marsh plantgrowth and N2O fluxes in Sanjiang Plain, Northeast China. Atmospheric Environment,2007,41:1080-1090.
    Zhang W L, Zeng C S, Tong C, et al. Analysis of the expanding process of the SpartinaAlterniflora salt marsh in Shanyutan Wetland, Minjiang River Estuary by remote sensing.Procedia Environmental Sciences,2011,10:2472-2477.
    Zhang Y H, Ding W X. Diel methane emissions in stands of Spartina alternifora and Suaedasalsa from a coastal salt marsh. Aquatic Botany,2011,95,262-267.
    Zheng X H, Fu C B, Xu X K, et al. The Asian nitrogen cycle case study. Ambio,2002,31:79-87.
    艾金泉,方伟城,陈丽娟.闽江河口湿地生态退化现状与保护对策.云南地理环境研究,2009,21(3):37-41.
    白军红.向海沼泽湿地系统氮素生物地球化学过程研究.中国科学院研究生院(东北地理与农业生态研究所)博士学位论文.2003.
    陈亨霖,兰樟仁,张东水.遥感技术支持下的闽江口湿地动态变化研究.福建林业科技,200431(3):1-5.
    陈宁.闽江河口湿地资源和保护对策.福建环境,2003,20(6):42-44.
    陈秋风.杉木人工林林木养分和凋落物分解对模拟氮沉降的响应.福州:福建农林大学,2006.
    陈铁晗.长乐闽江河口湿地水禽及保护对策研究.林业勘察设计,2003(2):37-40.
    陈宜瑜.中国湿地研究.长春:吉林科学技术出版社.1995.
    陈友铃,唐兆和.闽江口湿地的鸟类研究.应用与环境生物学报,2001,7(3):271-276.
    丁维新,蔡祖聪.温度对甲烷产生和氧化的影响.应用生态学报,2003,14(4):604-608.
    窦晶鑫,刘景双,王洋,等.小叶章对氮沉降的生理生态响应.湿地科学,2009,7(1):40-46.
    窦晶鑫,刘景双,王洋,等.模拟氮沉降对湿地植物生物量与土壤活性碳库的影响.应用生态学报,2008,19(8):1714-1720.
    杜睿,王庚辰,吕达仁.内蒙古典型草原土壤N2O产生的机理探讨.中国环境科学,2000,20(5):387-391.
    段洪浪,刘菊秀,邓琦,等. CO2浓度升高与氮沉降对南亚热带森林生态系统植物生物量积累及分配格局的影响.植物生态学报,2009,33(3):570-579.
    段雷,郝吉明,谢绍东,等.用稳态法确定中国土壤的硫沉降和氮沉降临界负荷.环境科学,2002,23(2):7-12.
    鄂焱,仝川,王维奇,等.底物和电子受体对互花米草湿地沉积物甲烷产生潜力的影响.湿地科学与管理,2010,6(1):49-54.
    方运霆,莫江明, Gundersen P,等.森林土壤氮素转换及其对氮沉降的响应.生态学报,2004,24(7):1523-1531.
    方运霆,莫江明, PER GUNDERSEN,等.森林土壤氮素转换及其对氮沉降的响应.生态学报,2004,24(7):1523-1531.
    方运霆,莫江明,周国逸,等.鼎湖山主要森林类型植物胸径生长对氮沉降增加的初期响应.热带亚热带植物学报,2005,13(3):198-204.
    封磊,洪伟,吴承祯,等.闽江口湿地土壤-植物体系有机碳的分布特征.福建林学院学报,2008,28(1):9-13.
    葛瑞娟,宋长春,侯翠翠,等.氮输入对小叶章不同生长阶段土壤CH4氧化的影响.中国环境科学,2010(8):1097-1102.
    郝晓晖.长期施肥对亚热带稻田土壤有机碳氮及微生物学特性的影响.武汉:华中农业大学,2008.
    侯晓龙,黄建国,刘爱琴.福建闽江河口湿地土壤重金属污染特征及评价研究.农业环境科学学报,2009,28(11):2302-2306.
    胡智强,贾瑞霞,王维奇,等.闽江河口红树林沉积物碳、氮、磷含量及储量特征.黑龙江科技信息,2010(32):33-33.
    黄佳芳,仝川,刘泽雄,肖海燕,张林海.沼泽湿地互花米草植物体传输与排放甲烷特征.植物学报,2011,46(5):534-543.
    黄玉梓,樊后保,李燕燕,等.氮沉降对杉木人工林生长及林下植被碳库的影响.生态环境学报,2009,18(4):1407-1412.
    贾瑞霞,仝川,王维奇,等.闽江河口盐沼湿地沉积物有机碳含量及储量特征.湿地科学,2008,6(4):492-499.
    江传捷,郑汉钊.闽江河口潮区界上延变动成因初探.水利科技,1997,4(73):48-51.
    李德军,莫江明,方运霆,等.氮沉降对森林植物的影响.生态学报,2003,23(9):1891-1900.
    李德军,莫江明,方运霆,等.模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响.植物生态学报,2005,29(4):543-549.
    李德军,莫江明,方运霆,等.模拟氮沉降对三种南亚热带树苗生长和光合作用的影响.生态学报,2004,24(5):876-882.
    李德军,莫江明,彭少麟,等.南亚热带森林两种优势树种幼苗的元素含量对模拟氮沉降增加的响应.生态学报,2005,25(9):2165-2172.
    李贵才,韩兴国,黄建辉,等.森林生态系统土壤氮矿化影响因素研究进展.生态学报,2001,21(7):1187-1195.
    李建兵,黄冠华.盐分对粉壤土氮转化的影响.环境科学研究,2008,21(5):98-103.
    李梅,聂呈荣,李锐,等.外来植物入侵机制研究进展.广东农业科学,2005,2:93-96.
    李庆军,阴黎明,王力华,等.不同土壤水分条件下模拟氮沉降对文冠果结实的影响.辽宁林业科技,2010(3):1-3,13.
    李顺姬,邱莉萍,张兴昌.黄土高原土壤有机碳矿化及其与土壤理化性质的关系.生态学报,2010,30(5):1217-1226.
    李英臣,宋长春,刘德燕,等.不同氮输入梯度下草甸沼泽土反硝化损失和N2O排放.环境科学研究,2009,22(9):1103-1107.
    林璐莹.闽江河口咸草与光滩湿地CH4排放通量对比研究.福建师范大学硕士学位论文.2008.
    刘白贵,仝川,罗榕婷.闽江河口湿地3种主要植物冬春季枯落物分解特征.福建师范大学学报:自然科学版,2008,24(2):80-85.
    刘伯锋,郭玉民.闽江河口湿地水禽资源及其保护.野生动物,2003,24(4):6-7.
    刘苍字,贾海林,陈祥锋.闽江河口沉积结构与沉积作用.海洋与湖沼,2001,32(2):177-184.
    刘德燕,宋长春,黄靖宇.沼泽湿地植物光合特性及固“碳”潜势对外源氮输入的响应.环境科学学报,2008,28(2):305-312.
    刘德燕,宋长春,孙丽.外源氮输入对湿地植物生长及光合特征的影响.中国环境科学,2007,27(4):513-517.
    刘德燕,宋长春,王丽,等.外源氮输入对湿地土壤有机碳矿化及可溶性有机碳的影.环境科学,2008,29(12):3525-3530.
    刘德燕,宋长春.湿地植物小叶章对外源氮输入的响应.应用生态学报,2008,19(12):2599-2604.
    刘德燕,宋长春.外源氮输入对沼泽湿地小叶章枯落物性质及其早期分解的影响.湿地科学,2008,6(2):235-241.
    刘剑秋,陈炳华,方玉霖,等.闽江河口湿地维管植物区系研究.福建师范大学学报:自然科学版,2006,22(2):89-94.
    刘剑秋,曾从盛,陈宁,等.闽江河口湿地的生物多样性及其可持续发展策略.湿地科学与管理;2005,1(1):27-30.
    刘剑秋,曾从盛,陈宁.闽江河口湿地研究.北京:科学出版社,2006.
    刘景双,孙雪利,于君宝.三江平原小叶章、毛果苔草枯落物中氮素变化分析.应用生态学报,2000,11(6):898-902.
    刘景双,王金达,李仲根,等.三江平原沼泽湿地N2O浓度与排放特征初步研究.环境科学,2003,24(1):33-39.
    刘文飞,樊后保,张子文,等.杉木人工林针叶养分含量对模拟氮沉降增加的响应.应用与环境生物学报,2008,14(3):319-323.
    刘兴土.我国湿地的主要生态问题及治理对策.湿地科学与管理,2007,3(1):18-22.
    刘兴土.沼泽学概论.吉林科学技术出版社.2006.
    刘泽雄,朱瑞琴,姚顺,等.闽江河口咸草湿地冬季甲烷和二氧化碳通量及影响因子分析.湿地科学与管理,2010(3):46-49.
    卢昌义,叶勇,林鹏,等.海南海莲红树林土壤CH4的产生及其某些影响因素.海洋学报,1998,20(6):132-138.
    鲁显楷,莫江明,彭少麟,等.鼎湖山季风常绿阔叶林林下层3种优势树种游离氨基酸和蛋白质对模拟氮沉降的响应.生态学报,2006,26(3):743-753.
    吕宪国.湿地科学研究进展及研究方向.中国科学院院刊,2002,3:170-172.
    罗美娟,黄炜娟,谭芳林,等.闽江河口湿地主要植物群落生物量研究.防护林科技,2009(6):1-3.
    马学慧,刘兴土,吕宪国.湿地甲烷排放研究简述.地理科学,1995,15(2):163-169.
    莫江明,方运霆,徐国良,等.鼎湖山苗圃和主要森林土壤CO2排放和CH4吸收对模拟N沉降的短期响应.生态学报,2005,25(4):682-690.
    牟晓杰.黄河口滨岸潮滩翅碱蓬湿地系统氮的生物循环特征.中国科学院研究生院(烟台海岸带研究所)硕士学位论文.2010.
    沈善敏.中国土壤肥力.北京:中国农业出版社.1998.
    施明乐.长乐闽江河口湿地生态旅游开发研究.湿地科学与管理,2006,2(3):16-20.
    宋长春,张丽华,王毅勇,等.淡水沼泽湿地CO2、CH4和N2O排放通量年际变化及其对氮输入的响应.环境科学,2006,27(12):2369-2375.
    宋学贵,胡庭兴,鲜骏仁,等.川西南常绿阔叶林凋落物分解及养分释放对模拟氮沉降的响应.应用生态学报,2007,18(10):2167-2172.
    孙志高,刘景双,王金达.三江平原典型湿地系统大气湿沉降中氮素动态及其生态效应.水科学进展,2007,18(2):182-191.
    遆超普,颜晓元.基于氮排放数据的中国大陆大气氮素湿沉降量估算.农业环境科学学报,2010,29(8):1606-1611.
    仝川,刘白贵.不同水淹环境下河口感潮湿地枯落物分解及营养动态.2009,28(1):118-128.
    仝川,柳铮铮,曾从盛,等.模拟SO2-4沉降对河口潮汐湿地甲烷排放通量的影响.中国环境科学,2010(3):302-308.
    仝川,闫宗平,王维奇,等.闽江河口感潮湿地入侵种互花米草甲烷通量及影响因子.地理科学,2008,28(6):826-832.
    万晓飞,钟春棋,胡晓辉.闽江河口区湿地资源评价与保护对策研究.长江大学学报:农学卷,2008,5(2):57-60.
    王洋,刘景双,孙志高,等.湿地系统氮的生物地球化学研究概述.湿地科学,2006,4(4):311-320.
    王宝霞,曾从盛,陈丹,等.互花米草入侵对闽江河口芦苇湿地土壤有机碳的影响.中国水土保持科学,2010,8(5):114-118.
    王长科,吕宪国,蔡祖聪,罗勇.氮肥对三江平原沼泽土氧化CH4的影响.地理科学,2005,4:490-494.
    王德宣,丁维新,王毅勇.若尔盖高原与三江平原沼泽湿地CH4排放差异的主要环境影响因素.湿地科学,2003,1(1):63-67.
    王维奇,仝川,曾从盛.不同质地湿地土壤碳、氮、磷计量学及厌氧碳分解特征.中国环境科学,2010(10):1369-1374.
    王维奇,曾从盛,仝川.闽江河口湿地土壤甲烷产生潜力动态及对氮输入的响应.农业系统科学与综合研究,2010,26(2):209-213.
    王维奇,曾从盛,仝川.闽江口芦苇湿地土壤甲烷产生与氧化能力研究.湿地科学,2008,6(1):60-68.
    王洋,刘景双,孙志高,等.湿地系统氮的生物地球化学研究概述.湿地科学,2006,4(4):311-320.
    王智平,胡春胜,杨居荣.无机氮对土壤甲烷氧化作用的影响.应用生态学报,2003,14(2):305-309.
    徐治国,何岩,闫百兴,等.湿地植物对外源氮、磷输入的响应研究.环境科学研究,2007,20(1):64-68.
    杨红霞,王东启,陈振楼,等.长江口崇明东滩潮间带甲烷(CH4)排放及其季节变化.地理科学,2007,27(3):408-413.
    游文辉.闽江口鳝鱼滩湿地现状与保护对策.福建环境,2003,20(4):42-44.
    曾从盛,雷波,王维奇,等.闽江河口蔗草湿地CH4排放特征.湿地科学,2009,7(2):142-147.
    曾从盛,王维奇,仝川.不同电子受体及盐分输入对河口湿地土壤甲烷产生潜力的影响.地理研究,2008,27(6):1321-1330.
    曾从盛,张林海,仝川.闽江河口湿地芦苇和互花米草氮、磷养分季节动态.湿地科学,2009,7(1):16-24.
    翟继红,曾从盛,仝川,等.闽江河口湿地沉积物有机磷和无机磷含量及垂直分布特征.亚热带资源与环境学报,2010,5(1):9-14.
    张炜,莫江明,方运霆,等.氮沉降对森林土壤主要温室气体通量的影响.生态学报,2008,28(5):2309-2319.
    张国森,陈洪涛,张经,等.长江口地区大气湿沉降中营养盐的初步研究.应用生态学报,2003,14(7):1107-1111.
    张丽华,宋长春,王德宣.氮输入对沼泽湿地碳平衡的影响.环境科学,2006,27(7):1257-1263.
    张丽华,宋长春,王德宣.沼泽湿地CO2、CH4和N2O排放对氮输入的响应.环境科学学报,2005,25(8):1112-1118.
    张林海,曾从盛,仝川.闽江河口湿地芦苇和互花米草生物量季节动态研究.亚热带资源与环境学报,2008,3(2):25-33.
    张林海,曾从盛,仝川.闽江河口湿地优势植物生物量与土壤因子灰色关联分析.首都师范大学学报:自然科学版,2010(4):88-93.
    张林海,曾从盛,仝川.生源要素有效性及生物因子对湿地土壤碳矿化的影响.生态学报,2011,31(18):5387-5395.
    张维娜,廖周瑜.氮沉降增加对森林植物影响的研究进展.环境科学导刊,2009,28(3):21-24.
    张文菊,童成立,杨钙仁,等.水分对湿地沉积物有机碳矿化的影响.生态学报,2005,25(2):249-253.
    赵光影,刘景双,王洋,等. CO2浓度升高和氮输入影响下湿地生态系统CO2排放研究.农业现代化研究,2009,30(2):220-224.
    郑彩红,曾从盛,陈志强,等.闽江河口区湿地景观格局演变研究.湿地科学,2006,4(1):29-35.
    郑丽娟.福建闽江河口湿地观鸟旅游发展分析[J].湿地科学与管理,2009(3):25-28.
    钟春棋曾从盛柳铮铮.闽江河口湿地资源动态变化的分形研究.湿地科学与管理,2007,3(3):50-53.
    钟春棋,郑彩红.基于TM影像的闽江口湿地信息提取及其动态变化研究.国土资源遥感,2008(1):38-42.
    周薇,王兵,李钢铁.大气氮沉降对森林生态系统影响的研究进展.中央民族大学学报:自然科学版,2010(1):34-40.
    周亮进,涂燕玉,宋永昌.闽江河口湿地生物多样性及其保护.生态科学,2006,25(4):330-334,338.
    周亮进.闽江河口湿地景观格局动态研究.华东师范大学博士学位论文.2007.
    周亮进.闽江河口湿地生态脆弱性评价.亚热带资源与环境学报,2008,3(3):25-31.
    周旺明,王金达,刘景双,等.降雪对三江平原小叶章湿地系统氮输入及生态效应.水科学进展,2009,20(1):99-104.
    庄晨辉.滨海湿地旅游资源开发.中国林业出版社.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700