用户名: 密码: 验证码:
车辆降噪减振的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车辆的振动和噪声影响着驾驶人和乘员的舒适性,同时也是影响环境和机械可靠性的主要因素。车辆的噪声源较多,产生的机理各不相同,由机械振动产生噪声也是主要来源之一,对噪声进行有效的识别和控制涉及多个方面,要求研究人员掌握的技术包括:不同的噪声源识别方法、现代信号处理、模态分析、进排气消声器的分析与改进等。因此,如何灵活运用这些方法值得研究人员不断探讨和深入,对改善车辆的舒适性具有重要意义。
     以某型三轮摩托车为研究对象,综合运用不同噪声源识别方法,如现代信号处理、盲源分离、消声器性能分析、以及模态识别等方法,对三轮摩托车整车的噪声源进行了识别,在此基础提出了针对性的降噪措施,并试验验证了这些措施的有效性;对影响整车振动的主要零部件钢板弹簧的动力特性进行了分析。研究主要内容归纳如下:
     (1)运用不同测试方法提取了整车噪声频谱特征。综合运用传统噪声源识别方法、信号处理噪声源识别方法、以及现代噪声源识别方法—盲源分离,对三轮摩托车的噪声源进行了研究,得到了噪声源的频谱特征。基于加速通过噪声测试、近场声压测试与阵列声功率测量分析了整车加速通过噪声频谱、各传统声源噪声频谱的能量分布范围,对各噪声源进行了排序,识别出主要噪声源。
     (2)对原车排气系统进行了分析与研究。针对最大噪声源为排气系统噪声,基于有限元分析等方法对原排气系统结构性能、声学性能、空气动力性能等进行了研究,重点分析了原排气系统存在的不足,从结构、声学、流体等方面对原排气消声器进行了优化与改进,并设计了新的排气消声器。通过发动机台架试验对优化和设计的消声器进行了试验验证。
     (3)整车降噪与验证。在前阶段研究的基础上,从隔声件吸声材料与排气系统两个方面对整车降噪措施进行了试验验证分析,结果表明,吸声材料选择和新设计排气系统消声器都能有效地降低整车加速噪声。
     (4)整车振动产生噪声,针对其减振部件钢板弹簧,重点研究了其建模与分析方法。在相关激励下对板结构进行了统计能量分析,在两相关输入模型的基础上,建立多相关输入模型,研究多相关输入形式下保守和非保守耦合结构的能量分布问题,进而建立多相关激励作用下复杂耦合结构的能量平衡方程。
     (5)在对板结构统计能量分析的基础上,提出了一种计算分析渐变刚度钢板弹簧刚度特性的曲率—载荷混合法。针对共同曲率法和集中载荷法,在计算副簧为变截面簧片的渐变刚度钢板弹簧时,适应性不好、精度差等不足上,建立了具有该结构形式的渐变刚度钢板弹簧的普遍适用的力学模型,通过对某型铃木汽车的渐变刚度钢板弹簧刚度的实例计算及与实验值比较,表明本文提出的曲率——载荷混合法简便易行且有较好的精度。
     综上所述,本文系统地研究了摩托车噪声的识别与控制的方法,研究了影响车辆振动舒适性的钢板弹簧系统。综合分析方法能有效的识别和控制车辆噪声,同时对板簧系统提出的曲率——载荷混合法的分析方法,简便易行且有较好的精度,研究结果对车辆的噪声与振动控制等方面具有重要的理论意义和工程应用价值。
The vibration and noise of vehicle have not only affected the comfort of drivers andpassengers, but also been the main factors which influence the environment and reliabilityof mechanics. There are many noise sources which have different generating mechanismincluding vibration. Many aspects must be taken into consideration in the identificationand control of noise effectively, which request the researchers to master a variety oftechniques including different kinds of source identification methods, modern signalprocessing, modal analysis, analysis and improvement of intake and exhaust muffler, andso on. Therefore, researchers continue to explore how to use these methods flexibly, whichhas important meaning in improving the comfort of vehicle.
     Taking a certain type of motor tricycle as the research object, an integrated use ofnoise source identification methods which includes signal processing, blind sourceseparation, muffler performance analysis, and modal analysis method are used to identifynoise sources of the motor tricycle. Then, some noise reduction measures are raised andverified by experiment. At last, dynamic characteristics of leaf springs that have a greatinfluence on the vibration of vehicle are analyzed. The main contents of the study aresummarized as follows:
     (1) The noise spectral characteristics of the vehicle are extracted by using variousmethods. By making an integrated use of traditional methods of noise source identification,signal processing of noise source identification and modern methods of noise sourceidentification-blind source separation, the main noise source of the motor tricycle arefound. In the course of the study, the spectral characteristics of the noise source areidentified and extracted. By analyze the energy distribution of the noise spectrum ofvehicle acceleration and traditional source based on the sound power and arraymeasurements, the main noise source is identifieded. The improvement program of theacoustic pieces preliminarily is proposed.
     (2) The original car exhaust system are analyzed and studied. Take the exhaust noiseas the largest noise source. By using other methods based on finite element analysis thestructure performance of acoustic performance and aerodynamic performance of theoriginal exhaust system is studed. The original exhaust muffler has been optimized andimproved from the structure, acoustics and fluid, then design a new exhaust muffler. Through the engine bench test, the improved measures of the muffler and designed mufflerare verified. The vehicle's exhaust muffler is determine
     (3) of The motorcycle noise source is reducted and verified. Vehicle noise reductionmeasures have been tested and verified from sound-absorbing material and exhaust mufflerthese two aspects based on the first stage of the study. The sound pressure level and soundpressure spectral characteristics of vehicle acceleration of the vehicle whether hasimproved or not has been compared.
     (4)Statistical energy analysis has been worked on the board structure under therelevant incentive. In two related input model, by establish multi-related input model, theenergy distribution of the conservative and non-conservative coupling structure under themulti-related input and establish an energy balanced equation of complex couplingstructure under the multi-related excitation are sdutied.
     (5)On the basis of statistical energy analysis of the board structure, to the stiffness ofleaf spring of gradient stiffness, a curvature-load hybrid method is proposed. To thecommon curvature law and the concentrated load method, when calculate the leaf springof gradient stiffness whose vice-spring is variable cross-section spring, the adaptation isnot good and the precision is poor. A mechanical model of general application of the leafspring of gradient stiffness is builded. Compare the example calculations and theexperimental value of a certain type of Suzuki car's leaf spring of gradient stiffness, itshows the text proposed the curvature-load hybrid method is simple and has goodaccuracy.
     In summary, in this study we studied the noise source identification and noise controland leaf spring system which is very important to vehicle vibration comfort.Comprehensive analysis method can effectively identify and control vehicle noise, whilethe curvature-loads mixed method of analysis was put forward to study the leaf springsystem. The method is simple and has good accuracy and the results of has importanttheoretical significance and value to vehicle noise and vibration control in engineering.
引文
[1]福田基一,奥田囊介.噪声控制与消声器设计[M].国防工业出版社,1982:13-22.
    [2]李家华.环境噪声控制[M].北京:冶金工业出版社,2001:23-50.
    [3]马大猷,沈壕.声学手册[M].北京:科学出版社,1983:100-150.
    [4]何渝生.汽车噪声控制[M].北京:机械工业出版社,1999:20-95.
    [5]金岩,郝志勇,刘永.摩托车噪声源的识别与控制[J].汽车工程,2007,29(6):520-523.
    [6]吴正权.摩托车排气噪声探源及防治[J].摩托车技术,2003(1):10-15.
    [7]杨诚.车外加速噪声识别与控制的研究[D].重庆:重庆大学,2004:14-21.
    [8]徐中明,王朝国.降低摩托车排气噪声的试验研究[J].摩托车技术,1997(3):12-15.
    [9]刘恩泽,严济宽,陈端石.噪声主动控制系统研究概况及发展趋势[J].噪声与振动控制,1999(3):2-6.
    [10]邓兆祥,李克强,何渝生,等.汽车噪声声强测量分析系统的开发及应用[J].汽车工程,1994(5):283-288.
    [11]姜勇.摩托车主要噪声源及其控制方法[J].摩托车技术,2003(4):13-14.
    [12]谢德云. JS125摩托车噪声控制研究[D].重庆:重庆大学,2008:10-14.
    [13]任武超,罗浩锋,潘虹等.结合多种方法进行六缸柴油机噪声源识别研究[J].内燃机工程,2008,2(29):66-70.
    [14]周涌麟,李树珉.汽车噪声原理检测与控制[M].北京:中国环境科学出版社,1992:141-147.
    [15]宋艳华,姜哲.测量点位置对声源识别的影响[J].振动与冲击,2008,3(27):35-37.
    [16]陈达亮,舒歌群,卫海桥等.基于边界元法的近场声全息实验研究[J].中国机械工程学报,2009,2:159-162.
    [17]丁渭平.一种用于车内结构声源辨识的方法[J].汽车工程,2002,2(24):154-148.
    [18]丁渭平.车辆乘坐室内地平噪声声源识别研究[J].中国机械工程,2003,3(14):262-265.
    [19]金岩,常志权.频谱分析技术在车辆NVH故障诊断中的应用[J].噪声与振动控制,2010,1:110-113.
    [20]尹可,宋向荣客车.异常振动噪声的分析和控制[J].噪声与振动控制,2011,4:102-105.
    [21]闫立平.用相干功率谱识别主噪声源[J].合肥工业大学学报,2002,3(25):468-471.
    [22]蒋维铭,余新木,乔秀娟.用相干分析法识别车辆噪声源[J].武汉工学院学报,1987,3:30-39.
    [23]梁兴雨,舒歌群.基于相干功率谱分析的复杂柴油机噪声源识别[J].内燃机学报,2006,24(4):344-350.
    [24]吴旭东,左曙光,卢勇.偏相干分析在燃料电池轿车噪声源识别中的应用[J].噪声与振动控制,2008,3:81-84.
    [25]安木金,李舜酩,张袁元等.多相关子系统输入中输入的相干性分析[J].中国机械工程,2010,21:2609-2613.
    [26]张明瀚.基于时延估计的声源定位系统研究[D].重庆:重庆大学,2009.5:34-56.
    [27]俘德纯,王晓峰.复倒频谱分析与相位展开的研究[J].上海交通大学学报,1986,6(20):56-65.
    [28] K. R. Fyfe and E. D. S. Munck. Analysis of computed order tracking [J].Mechanical systemsand signal processing,1997,11(2):187-205.
    [29]龙月泉,石晓辉,施全.基于阶次跟踪的变速箱噪声源识别[J].噪声与振动控制,2008,28(6):77-81.
    [30]陈书明,王登峰,陈鑫.小波变换在轿车车内噪声源识别中的应用研究[J].噪声与振动控制,2009,4(2):88-92.
    [31]贾继德,陈剑,邱峰.基于时频分析的客车加速通过噪声声源识别[J].汽车工程,2007,7(29):620-622.
    [32] Brtihl S, Rmer A. Acoustic noise source modeling based on microphone array measurement[J]. Journal of Sound and Vibration,2000,231(3):611-617.
    [33] Dan Li, Yu Hen Hu. Energy-based collaborative source localization using acousticmicrosensor array [J]. EURASIP Journal on Applied Signal Processing,2003:321-337.
    [34]张袁元,李舜酩,贺岩松,等.摩托车整车噪声分析与消声器改进[J].振动与冲击,2011,30(2):263-266.
    [35]周广林,陈剑,毕传兴,等.基于扫描声强法的声功率测量扫描路径误差研究[J].振动工程学报,2003,1:23-28.
    [36]舒歌群,郝志勇,谭从民.内燃机噪声测量中的声强测试技术[J].内燃机学报,1998,(01):156-161.
    [37]罗禹贡,杨殿阁,郑四发,等.基于近场声全息理论的运动声源动态识别方法[J].声学学报,2004,29(3):226-230.
    [38]孙玉.基于声全息技术的噪声源识别方法研究[D].哈尔滨:哈尔滨工程大学,2007:23-37.
    [39]周广林,陈心昭,陈剑,等.声全息技术的研究现状与展望[J].声学技术,2003,22(2):120-125.
    [40]邓江华,顾灿松,刘献栋,等.基于声阵列技术的汽车噪声源识别及贡献量分析[J].振动工程学报,2010.6(23):630-635.
    [41]张金圈,毕传兴,陈心昭. Beamforming方法的阵列研究及其在噪声源识别中的应用[J].噪声与振动控制,2009,6(3):54-58.
    [42]江浩斌,周孔亢.农用运输车钢板弹簧选型与计算机辅助参数设计[J].江苏理工大学学报(自然科学版),2000,21(1):19-23.
    [43]王秉刚.我国汽车平顺性试验研究工作概况及展望[J].汽车工程,1988(3):24-27
    [44]彭莫,高军.变截面钢板弹簧的设计计算[J].汽车工程,1992(3):156-169.
    [45]郑银环.汽车钢板弹簧计算模型研究[D].武汉:武汉理工大学,2005:14-21.
    [46]秦志敏,潘宇臣.变截面钢板弹簧的设计计算[J].汽车工程,1995(2):108-112.
    [47]郑银环,张仲甫.多片钢板弹簧的优化设计[J].现代机械,2004(5):10-11.
    [48]王其东,方锡邦,卢剑伟,等.汽车钢板弹簧多体动力学建模及动特性仿真研究[J].肥工业大学学报,1999(6):35-39.
    [49]马大猷.噪声控制学[M].北京:科学技术出版社,1987:406-423.
    [50]苏梅,包铁成,毕凤荣.摩托车噪声源识别方法研究[J].小型内燃机与摩托车,2006.35(2):45-47.
    [51]陈世荣.摩托车消声器消声性能的计算机仿真与计算[D].天津:天津大学,2007,6:2-5.
    [52]张云飞.摩托车排气净化消声器设计方法与研究[D].武汉:武汉理工大学,2009,6:3-8.
    [53]朱才朝,黄泽好,唐倩.齿轮传动系统对摩托车噪声的影响[J].重庆大学学报,2005(5):156-161.
    [54]王银.摩托车噪声屏蔽隔声理论与试验研究[D].杭州:浙江大学,2006:2-8.
    [55]任武超,罗浩锋,潘虹等.结合多种方法进行六缸柴油机噪声源识别研究[J].内燃机工程,2008,2(29):66-70.
    [56] Lasch R H, Caille Lowe D. Component analysis in financial time series. IEEE Proceedingsof the IEEE/IAFE Conferences on Computational Intelligence for Financial Engineering.1999:183-190.
    [57] Zhao J, Wen J, Luo S. Face recognition: a facial action reconstruction and ICA representationapproach[C]. Proceedings of International Conferences on Info-tech and Info.2001.3:456-461.
    [58] Gonzalez-Serrano F J, Molina-Bulla H Y'Murillo—Fuentes J J. Independent componentanalysis applied to digital image watermarking[C]. IEEE Proceedings of InternationalConference on Acoustics, Speech, and Signal Processing(ICASSP’01),2001,3:1997-2000.
    [59]梅铁民.盲源信号分离时域与频域算法研究[D].大连:大连理工大学,2005:28-116.
    [60] Burel G. Blind separation of sources: a nonlinear neural algorithm [J]. Neural Network,1992,Vol.5:937-947.
    [61] Pearlmuter B, Parra L. A context-sensitive generalization of ICA [C]. In InternationalConference on Neural Information Processing,1996:151-157.
    [62] Hermann L and Yang H H. Penpectives and limitations of self-organizing maps[C]. InICONIP’96, HongKong,1996:129-134.
    [63] Lin J. and Cowan J. Faithful representation of separable input distributions [J]. NeuralComputation,1997:1305-1320.
    [64] Yang H H. Amari S and Cichochi A. Information-theoretic approach to blind Separation ofsources in non-linear mixture[J]. Signal Processing,1998,64(3):291-300.
    [65] Taleb A and Intten C. Nonlinear Source separation: The post nonlinear mixtures. Inproceeding of Europ. Symp. On Artificial Neural Network (ESANN’1997), Binges, Belgium,1997:79-284.
    [66]司春棣,陈恩利,杨绍普,等.基于声阵列技术的汽车噪声源识别研究试验[J].振动与冲击,2009,28(6):171-174.
    [67] K. R. Fyfe and E. D. S. Munck. Analysis of computed order tracking [J].Mechanical systemsand signal processing,1997,11(2):187-205.
    [68]龙月泉,石晓辉,施全.基于阶次跟踪的变速箱噪声源识别[J].噪声与振动控制,2008,28(6):77-81.
    [69]朱才朝,秦大同,姚雪燕,等.摩托车噪声控制的试验研究[J].噪声与振动控制,2002,4:39-42.
    [70] Brtihl S, Rmer A. Acoustic noise source modeling based on microphone array measurement[J]. Journal of Sound and Vibration,2000,231(3):611-617.
    [71] Dan Li, Yu Hen Hu. Energy-based collaborative source localization using acousticmicrosensor array. EURASIP Journal on Applied Signal Processing.2003,321-337.
    [72]张袁元,李舜酩,贺岩松,等.摩托车整车噪声分析与消声器改进[J].振动与冲击,2011,30(2):263-2668.
    [73]周广林,陈剑,毕传兴,等.基于扫描声强法的声功率测量扫描路径误差研究[J].振动工程学报,2003,1:23-28.
    [74] Aapo Hyvarinen. Survey on Independent Component Analysis, Laboratory of Computer andInformation Science. Helsinki University of Technology. PO. Box5400, FIN-02015HUT,Finland.
    [75] A. Bell and T Sejnowski. An information-maximization approach to blind separation andblind deconvolution. Neural Computation,1995,7:1129-1159.
    [76]钱苏翔,杨世锡,焦卫东,等.基于独立分量分析与小波包分解的混叠声源信号波形恢复[J].中国机械工程,2010(24):2956-2961.
    [77]张西宁,穆安乐,温广瑞.一种新的盲声源信号分离方法及其应用[J].西安交通大学学报,2005,39(1):6-8.
    [78]吴小培.独立分量分析及其在脑电信号处理中的应用[D].北京:中国科学技术大学,2002:24-36.
    [79] C. JuRen, A. Herault. Blind separation of sources, Part I: An adaptive algorithm based onneuromimetic architecture, signal processing,1991,24:1-10.
    [80] J. F Cardoso, A. Souloumiac, Blind beamforming for non-Gaussian signals, IEE ProceedingsVol140, No6, DECEMBER,1993.
    [81]刘剑,罗虹,邓兆祥.汽车排气消声器的实验与改进设计[J].重庆大学学报,2003,26(3):126-129.
    [82]王诗恩,高宗英.抗性消声器的插入损失模型及其应用平[J].内燃机工程,1996,17(3):35-40.
    [83]张新玉,赵振宇,张文平.预测柴油机排气消声器消声量试验方法研究[J].内燃机工程,2004,25(4):42-45.
    [84]葛蕴珊,张宏波,宋艳冗.汽车排气消声器的三维声学性能分析[J].汽车工程,2006,28(1):51-55.
    [85]张晓龙,李功宇,扩张式消声器消声特性理论研究和实验分析[J].噪声与振动控制,2008(1):105-107.
    [86]魏春源,张卫正,葛蕴珊.高等内燃机学[M].北京:北京理工大学出版社,2001:54-55.
    [87]马开柱,陈剑,王建楠.排气系统模态分析及悬挂点位置优化[J].机械设计与制造,2008(11):154-159.
    [88]傅志方.模态分析理论与应用[M].上海:上海交通大学出版社,2000:206-305
    [89]李德葆,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001:108-260.
    [90]左鹤声,彭玉莺.振动试验模态分析[M].北京:中国铁道出版社.1995:115-305.
    [91]刘敬平,邓帮林,杜标,等.某轿车排气系统振动分析[J].振动与冲击,2011(8):56-71.
    [92]李松波.车辆排气系统振动建模与动力学特性研究[D].上海:上海交通大学,2008:34-56.
    [93]方建华.基于CFD的工程机械抗性消声器设计与性能分析[D].济南:山东大学.2009:23-45.
    [94] Yoshihiro Isshiki,Yuzuru Shimamoto,Tomoyuki Wak.Simulation Prediction of PressureLosses and Acoustic Characteristics in Silencers by Numerical simulation [C]. SAEPaper960637,1996.
    [95]方忠甫.汽车排气消声器的数值分析研究[D].合肥:合肥工业大学,2006:10-25.
    [96]杨良君,刘侍刚.内插管扩张腔消声器实验分析[J].浙江海洋学院学报.2002,21(2):195-198.
    [97]黄冠鑫,闫兵,涂启养.基于SYSNOISE软件的穿孔管消声器声学性能分析[J].内燃机,2011(3):56-62.
    [98]李丰,黄协清,王广庭.复杂腔体扩张室消声器消声性能数值计算[J].噪声与振动控制,2004(1):43-48.
    [99]费维.汽车排气消声器的声学特性计算及其优化设计[D].合肥:合肥工业大学,2004:15-32.
    [100]季振林.直通穿孔管消声器声学性能计算及分析[J].哈尔滨工程大学学报,2005(03):36-41.
    [101]徐贝贝,季振林,康钟绪.均匀流直通穿孔管消声器声学特性预测的有限元法[J].噪声与振动控制,2010(4):67-71.
    [102]胡启国,雷旭东,许秀梅.基于SYSNOISE的消声器消声性能仿真研究[J].农业装备与车辆工程,2011(10):55-61.
    [103]刘名,翁建生.排气系统振动分析和悬挂点位置优化[J].噪声与振动控制,2010(5):88-93.
    [104]贺岩松,张袁元,赵勤.摩托车排气管的振动特性研究[J].噪声与振动控制,2008,28(6):91-96.
    [105]张建,顾崇衔.任意激励关系下非保守耦合振子能量分布与功率流的一般特征[J].应用力学学报,1991,8(1):27-32.
    [106]张建.相似耦合系统的统计能量分析[J].声学学报,2002,27(2):102-106.
    [107]姚德源,王其政.统计能量分析原理及其应用[M].北京:北京理工大学出版社,1995:23-102.
    [108] Stimpson, G.J. Prediction Sound Power Radiator from Built-up Structural Using StatisticalEnergy Analysis [J]. Journal of Sound and Vibration,1986,107:107-120.
    [109] Lyon R.H. Statistical energy analysis of dynamics systems: theory and applications[M].MIT Press, Cambridge, Massachusetts and London, England,1975.
    [110] Fahy F J. Statistical energy analysis: a critical overview[J]. Philosophical Transactions ofthe Royal Society of London A,1994,346(1681):431-447.
    [111]刘玉友.复杂耦合结构振动噪声控制的统计能量分析[D]:济南:山东大学,2000:33-45.
    [112] Norton M. P. Loss and coupling factors and coupling damping in non conservativelycoupled cylindrical shells [J]. Proceedings Inter-Noise,1987, Beijing, China, pp.651-654.
    [113] Sun J C. Distributive relationships of dissipated energy by coupling damping innon-conservatively coupled structures [J]. Proceedings Inter-Noise,1988, Avignon, France,pp.323-329.
    [114] Sun J C. Power flow and energy balance of non-conservatively coupled structures [J].Journal of Sound and Vibration,1987,112, pp.321-343.
    [115] Fahy F J, Yao D Y. Power Flow between Non-conservatively Coupled Oscillators [J].Journal of sound and Vibration,1987,114(1):1-11.
    [116]张建,顾崇衔.相关激励形式下保守和非保守耦合振子的能量分布与功率流[J].声学学报,1993,18(3):186-195.
    [117]廖庆斌,李舜酩.统计能量分析中的响应统计估计及其研究进展[J].力学进展,2007,37(3):337-345.
    [118]姚德源,王其政.统计能量分析原理及其应用[M].北京:北京理工大学出版社,1995:103-186.
    [119]孙进才.复杂结构的损耗因子和耦合损耗因子的测量方法[J].声学学报,1995,20(2):127-132.
    [120]江浩斌,周孔亢.农用运输车钢板弹簧选型与计算机辅助参数设计[J].江苏理工大学学报(自然科学版),2000,21(1):19-23.
    [121] Kim T, Moon W, Kim S. Influences of leaf shapes performance of progressive multi-leafsprings[J]. International Journal of Vehicle Design,2004,34(1):65-836.
    [122] kim S, Moon W, Yoo Y. An efficient method for calculating the nonlinear stiffness ofprogressive multi-leaf springsr [J]. International Journal of Vehicle Design,2002,29(4):403-422.
    [123]胡国友,夏品奇,杨劲松.渐变刚度钢板弹簧刚度特性计算的曲率—载荷混合法[J].南京航空航天大学学报,2008,40(1):46-50.
    [124] Ekiei B. Multi-response optimization in a three-link leaf-spring model [J]. InternationalJournal of Vehicle Design,2005,38(4):326-346.
    [125]林金木.渐变刚度钢板弹簧的有限元计算[J].农业机械学报,1996(27):155-160.
    [126]王庆五.用搜索法求解渐变刚度钢板弹簧刚度和应力[J].汽车技术,2004(17):15-18.
    [127]田光宇,刘惟信,徐天安.求解多片钢板弹簧刚度与应力的新模型[J].汽车工程,1997,19(1):29-33.
    [128]刘惟信.汽车设计[M].北京:清华大学出版社,2001:431-483.
    [129]张宁.汽车钢板弹簧设计[D].长春:吉林大学,2007:23-67.
    [130]张立军,郁工瑞.钢板弹簧新的设计方法及其在设计中的应用[J].汽车工程,1994,16(1):1-8.
    [131]郑银环.汽车钢板弹簧计算模型研究[D].武汉:武汉理工大学,2000:45-67.
    [132]诌海荣,黄其柏.国内外汽车钢板弹簧设计与分析方法的发展进程[J].上海汽车,2004,3(1):37-42.
    [133]胡勇.微型载货汽车钢板弹簧结构分析及刚度计算[J].昌河科技,1999(3):7-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700