用户名: 密码: 验证码:
粉末固相烧结的数值模拟和理论问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固相烧结是陶瓷材料制备过程中最为关键的一步,对产品性能起着决定性作用。本文首先阐述了粉末固相烧结研究的重要意义,概述了不同烧结阶段的经典烧结理论。从物理机制、理论模型、研究方法等方面对本领域国内外研究现状进行了总结。改进和完善了固相烧结的蒙特卡罗方法和相场动力学模型,以此为基础对不稳定颈长、大孔收缩过程等典型烧结理论问题进行了研究。结合同步辐射CT (SR-CT)原位观测实验,对烧结模型作了进一步讨论,建立了基于SR-CT实验的二维、三维计算模型。通过实验和模拟结果的对比分析,提高了烧结数值模型的可靠性和实用性,实现了对真实烧结过程的预测。主要研究内容和创新之处为:
     1、改进和完善了经典固相烧结模型,通过引入多种烧结机制和动态守恒算法,解决了蒙特卡罗算法中的质量不守恒等问题,首次实现了固相烧结的三维相场模拟。
     对固相烧结微结构演化过程的计算模型进行了改进和优化。讨论了经典蒙特卡罗算法在质量不守恒、烧结机制过少等方面的不足。通过多种烧结机制的引入和动态守恒算法的运用,改进和完善蒙特卡罗模型。分析了相场模型中应力场作用下颗粒的刚体平动和转动。通过谱方法和GPU并行计算平台的引入大幅提高了相场法的计算效率,从而实现了固相烧结的三维相场模拟。结合经典烧结理论,定量分析了改进后的烧结模型,验证了模型的可靠性。
     2、揭示了不稳定颈长和大孔收缩过程中的微结构演化机理,研究了颗粒排布对不稳定颈长的影响和导致颗粒的旋转的烧结机理,分析了大孔收缩过程中控制孔隙形貌和孔隙收缩速度的关键物理机制。
     基于完善后的烧结模型对两个经典理论问题进行了研究:不稳定颈长问题和大孔收缩过程。通过对三颗粒模型的研究,证明即使颗粒的形状和接触部位完全对称,特殊的颗粒排布也会导致不稳定颈长的出现。研究了双半球模型的不稳定颈长过程,结果表明晶界应力场对颗粒的旋转过程起主导作用,而不能完全用于烧结颈的生长。研究了三维大孔收缩过程,证明了主导扩散机制主要控制孔隙形貌,而晶界应力是导致大孔收缩的主要因素。研究结果完善了经典烧结理论。
     3、首次实现了基于在线实验的同步数值模拟研究,建立了与原位实验同步的二维、三维固相烧结模型,实现了对实际烧结过程中的微结构演化和烧结参数的准确预测。
     建立了基于同步辐射CT实验的二维蒙特卡罗模型。通过从晶粒生长动力学角度对数值模型的分析,讨论了关键参数表面能和晶界能比值Jss/Jsv的确定方法,对比分析了实验和模拟得到的微结构演化过程和晶粒生长指数。首次实现了基于同步辐射CT实验的三维相场模型。分析了计算得到的三维结构,与同步辐射CT实验得到的三维重建结果进行了对比。定量分析了实验和模拟结果,验证了模型的可靠性并大幅提高了数值计算模型的实用性和预测能力。
     本文通过对烧结模型的改进和优化,对典型的烧结理论问题进行了完善。建立了基于同步辐射CT实验的二维、三维烧结模型。通过理论、实验、模拟的相互验证和支持,实现了对实际烧结过程的预测。
Solid-phase sintering is the most crucial step during the preparation of ceramic materials, and it plays a decisive role on the performance of product. The significance of powders'solid-phase sintering was described. An overview of the classic sintering theories on the different sintering stages was introduced. The research status of the area is summarized from the physical mechanism, theoretical models, research methods, and other aspects. The Monte Carlo method and the phase-field dynamic model of solid-phase sintering are improved. Based on this, some typical sintered theoretical issues such as the unstable neck growth and the large pore contraction process are researched. The sintering model was further discussed using the in situ synchrotron radiation CT (SR-CT) experiment. The establishment of a two-dimensional, three-dimensional computational model based on the SR-CT experiment is carried out. By comparative analysis of experiment and simulation results, the reliability and availability of the sintered numerical model are improved; the prediction of actual sintering process is realized.
     1. The computing models of the microstructure evolution during solid-phase sintering are improved. The deficiencies of classic Monte Carlo algorithm are discussed, such as not conserved in the quality, and the sintering mechanism is not enough. The dynamic conservation algorithms and a variety of sintering mechanism are introduced, improve and perfect the Monte Carlo model. A three-dimensional solid-phase sintering phase field simulation is achieved for the first time In the international arena. Particles rigid body translational and rotational in the stress field is analyzed. By spectral method and GPU parallel computing platform, a substantial increase in the computational efficiency of the phase-field method is carried out. Classical sintering theory and quantitative analysis of the improved sintering model verified the reliability of the model.
     2. Two classical sintering theory are researched based on the improved models: the unstable neck growth and large pore contraction process. By researching the three-particle model, it is verified that even if the shape of the particles and the contact portion is completely symmetrical, the special particle arrangement will lead to the emergence of unstable neck growth. The double hemisphere model is used to research the unstable neck long process. The results show that the grain boundary stress field during rotation of the particles plays a dominant role. The3D large pore contraction proved dominant diffusion mechanism controlled pore morphology; grain boundary stress is a major factor leading to the large pore contraction. The research, results improve the classical sintering theory.
     3. Two-dimensional Monte Carlo model based on synchrotron radiation CT experiment are realized. Grain growth kinetics analysis of the numerical model is carried out to discuss the method for determining the key parameters-ratio of surface energy and grain boundary energy (Jss/Jsv). The comparative analysis of the experimental and simulated microstructure evolution and grain growth index is finished. A three-dimensional phase-field model based on synchrotron radiation CT experiment for the first time. The three-dimensional structure obtained from the simulation is analyzed and compared with synchrotron radiation CT three-dimensional reconstruction of the experimental results. The quantitative analysis of the experimental and simulation results verified the reliability of the model. The usefulness and predictive ability of the numerical model are dramatically increased.
     In this paper, the improvement and optimization of the sintering model are achieved. Some typical sintering theoretical issues are improved. Two-dimensional, three-dimensional sintering model based on synchrotron radiation CT experiment are established. A prediction of the actual sintering process is achieved through mutual authentication by theory, experiment, and simulation.
引文
[1]Steinborn C, Herrmann M, Keitel U, et al. Correlation between microstructure and electrical resistivity of hexagonal boron nitride ceramics[J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY,2013,33(6):1225-1235.
    [2]Wang L L, Mei L, He G, et al. Crystallization and fluorescence properties of Ce:YAG glass-ceramics with low SiO2 content[J]. JOURNAL OF LUMINESCENCE, 2013,136:378-382.
    [3]Maglia F, Tredici I G, Anselmi-Tamburini U. Densification and properties of bulk nanocrystalline functional ceramics with grain size below 50 nm[J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY,2013,33(6):1045-1066.
    [4]Kuhnlein T, Stiegelschmitt A, Roosen A, et al. Development of a model for the sintering of PZT multilayer ceramics and their dielectric properties [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY,2013,33(5):991-1000.
    [5]Tseng C F, Lu S C. Influence of SrTiO3 modification on dielectric properties of Mg(Zr0.05Ti0.95)O-3 ceramics at microwave frequency[J]. MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2013,178(6):358-362.
    [6]Xu G G, Ma Y H, Ruan G Z, et al. Preparation of porous A12TiO5 ceramics reinforced by in situ formation of mullite whiskers[J]. MATERIALS & DESIGN,2013,47:57-60.
    [7]Nadaraia L, Jalabadze N, Chedia R, et al. Production of nanopowder and bulk aluminate ceramic scintillators[J]. CERAMICS INTERNATIONAL,2013,39(3):2207-2214.
    [8]Kweon S H, Im M, Han G, et al. Sintering behavior and dielectric properties of KCa2Nb3O10 ceramics[J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013,33(5):907-911.
    [9]张国强,赵严,宁永权.不同颗粒级配电熔刚玉对多孔氧化铝基陶瓷型芯性能的影响[J].铸造技术,2012,33(11):1289-1291.
    [10]杜波,赵乾,周济,等.陶瓷基负磁导率材料的制备和性能[J].稀有金属材料与工程,2007,36(z1):502-504.
    [11]谭小耀,孟波,杨乃涛.陶瓷中空纤维透氧膜的制备与性能[J].无机材料学报,2006,21(1):245-249.
    [12]肖鹏,熊翔,张红波,等.C/C-SiC陶瓷制动材料的研究现状与应用[J].中国有色金属学报,2005,15(5):667-674.
    [13]陈明和,傅桂龙,张中元,等.SiC陶瓷在航天器高温结构件研制中的应用[J].南京航空航天大学学报,2000,32(2):132-136.
    [14]陈岚,李锐星,梁焕珍,等.Zr02陶瓷的制备及应用研究进展[J].功能材料, 2002,33(2):129-132,135.
    [15]章中良.陶瓷对陶瓷人工髋关节假体在临床中的应用[J].按摩与康复医学(下旬刊),2010,1(2):17-19.
    [16]许峰.陶瓷固相烧结的同步辐射CT技术研究[D].中国科学技术大学固体力学,2008.
    [17]叶日晴.陶瓷烧结理论中的若干问题[D].中国科学技术大学固体力学,2000.
    [18]景晓宁.陶瓷烧结数值模拟和同步辐射三维形貌实验观测[D].中国科学技术大学固体力学,2003.
    [19]Ouyang R H, Liu J X, Li W X. Atomistic Theory of Ostwald Ripening and Disintegration of Supported Metal Particles under Reaction Conditions[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,2013,135(5):1760-1771.
    [20]Li D, Chen S, Shao W Q, et al. Densification evolution of TiO2 ceramics during sintering based on the master sintering curve theory[J]. MATERIALS LETTERS, 2008,62(6-7):849-851.
    [21]Tanaka H. New theory of transformation induced grain growth in porous SiC[J]. SIAIONS AND NON-OXIDES,2009,403:169-172.
    [22]Bruchon J, Pino-Munoz D, Valdivieso F, et al. Finite Element Simulation of Mass Transport During Sintering of a Granular Packing. Part I. Surface and Lattice Diffusions[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY,2012,95(8SI):2398-2405.
    [23]Liu F R, Zhang Q, Zhou W P, et al. Micro scale 3D FEM simulation on thermal evolution within the porous structure in selective laser sintering[J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY,2012,212(10):2058-2065.
    [24]Wei S, Zhang Z H, Shen X B, et al. Numerical Simulation for Residual Stresses of the Spark Plasma Sintered Ti-TiB Composites[J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE,2012,9(9SI):1180-1184.
    [25]A1 Zaitone B, Schmid H J, Peukert W. Simulation of structure and mobility of aggregates formed by simultaneous coagulation, sintering and surface growth[J]. JOURNAL OF AEROSOL SCIENCE,2009,40(11):950-964.
    [26]Baglyuk G A, Maidanyuk A P, Shtern M B. Simulation of the Equal-Channel Angular Extrusion of Porous Blanks using Different Deformation Patterns[J]. POWDER METALLURGY AND METAL CERAMICS,2013,51(9-10):503-508.
    [27]施剑林.高性能陶瓷与先进陶瓷固相烧结理论研究进展[J].世界科技研究与发展,1998(05):124-128.
    [28]施剑林.固相烧结——Ⅰ气孔显微结构模型及其热力学稳定性,致密化方程[J].硅酸盐学报,1997(05):3-17.
    [29]施剑林.固相烧结Ⅱ——粗化与致密化关系及物质传输途径[J].硅酸盐学报, 1997(06):33-44.
    [30]施剑林.固相烧结——Ⅲ实验:超细氧化锆素坯烧结过程中的晶粒与气孔生长及致密化行为[J].硅酸盐学报,1998(01):4-16.
    [31]Choi S Y, Kang S. Sintering kinetics by structural transition at grain boundaries in barium titanate[J]. ACTA MATERIALIA,2004,52(10):2937-2943.
    [32]Herring C. Citation Classic-Diffusional Viscosity Of A Polycrystalline Solid[J]. CURRENT CONTENTS/PHYSICAL CHEMICAL & EARTH SCIENCES,1979(35):P16.
    [33]Herring C. Diffusional Viscosity Of A Polycrystalline Solid[J]. JOURNAL OF APPLIED PHYSICS,1950,21(5):437-445.
    [34]Kuczynski G C. Self-Diffusion In Sintering Of Metallic Particles [J]. TRANSACTIONS OF THE AMERICAN INSTITUTE OF MINING AND METALLURGICAL ENGINEERS, 1949,185(2):169-178.
    [35]Coble R L. A Model For Boundary Diffusion Controlled Creep In Polycrystalline Materials [J]. JOURNAL OF APPLIED PHYSICS,1963,34(6):1679.
    [36]Coble R L. Sintering Crystalline Solids.1. Intermediate And Final State Diffusion Models [J]. JOURNAL OF APPLIED PHYSICS,1961,32(5):787.
    [37]Mahalle A M, Jajoo B N. An approach for modeling and simulation of sintered Bronze foam sink for high heat dissipation[J]. APPLIED THERMAL ENGINEERING, 2013,51(1-2):899-907.
    [38]Xing J, Sun W M, Rana R S.3D modeling and testing of transient temperature in selective laser sintering (SLS) process[J]. OPTIK,2013,124(4):301-304.
    [39]Wakai F. Mechanics of viscous sintering on the micro-and macro-scale[J]. ACTA MATERIALIA,2013,61(1):239-247。
    [40]Varnik F, Rios A, Gross M, et al. Simulation of viscous sintering using the lattice Boltzmann method[J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING,2013,21(0250032).
    [41]Bruchon J, Drapier S, Valdivieso F.3D finite element simulation of the matter flow by surface diffusion using a level set method[J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING,2011,86(7):845-861.
    [42]Miyata N, Shiogai T, Yamagishi C, et al. Development of simulation model for normal sintering of Al2O3 by finite element method[J]. JOURNAL OF THE CERAMIC SOCIETY OF JAPAN,1998,106(6):565-569.
    [43]Yu H H, Suo Z. A finite element method for simulating interface motion[J]. COMPUTATIONAL AND MATHEMATICAL MODELS OF MICROSTRUCTURAL EVOLUTION,1998,529:113-124.
    [44]Petrosyan G L, Askidzhyan G K. Determination By The Finite-Element Method Of Optimum Parameters Of The Process Of Testing Flat Sintered Specimens In Compression Under Plane Deformation Conditions[J]. SOVIET POWDER METALLURGY AND METAL CERAMICS,1989,28(10):756-759.
    [45]Mori K, Osakada K. Analysis Of The Forming Process Of Sintered Powder Metals By A Rigid Plastic Finite-Element Method[J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES,1987,29(4):229-238.
    [46]Dong H, Moon K S, Wong C P. Molecular dynamics study of nanosilver particles for low-temperature lead-free interconnect applications[J]. JOURNAL OF ELECTRONIC MATERIALS,2005,34(1):40-45.
    [47]Kadau K, Germann T C, Lomdahl P S, et al. Molecular-dynamics study of mechanical deformation in nano-crystal line aluminumfJ]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2004,35A(9):2719-2723.
    [48]Chatterjee A, Kalia R K, Nakano A, et al. Sintering, structure, and mechanical properties of nanophase SiC:A molecular-dynamics and neutron scattering study[J]. APPLIED PHYSICS LETTERS,2000,77(8):1132-1134.
    [49]Mazzone A M. Coalescence of metallic clusters:a study by molecular dynamics[J]. PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 2000,80(1):95-111.
    [50]王珉,艾兴,赵军,等.陶瓷材料烧结过程晶粒生长的元胞自动机模拟[J].人工晶体学报,2011,40(3):737-742.
    [51]Matsubara H, Nomura H, Kitaoka S. Design of ceramic microstructures by the Monte Carlo simulations[J]. SCIENCE OF ENGINEERING CERAMICS II,1999,2:35-38.
    [52]Liu J S, Sabatti C. Simulated sintering:Markov chain Monte Carlo with spaces of varying dimensions[J]. BAYESIAN STATISTICS 6,1999:389-413.
    [53]Akhtar M K, Lipscomb G G, Pratsinis S E. Monte-Carlo Simulation Of Particle Coagulation And Sintering[J]. AEROSOL SCIENCE AND TECHNOLOGY,1994,21(l):83-93.
    [54]Asp K, Agren J. Phase-field simulation of sintering based on vacancy diffusion effect of anisotropy[J]. Solid-Solid Phase Transformations in Inorganic Material 2005, Vol 2, 2005:741-746.
    [55]Jing X N, Ni Y, He L H, et al.2-D phase-field simulation of pore evolution in sintering ceramics[J]. JOURNAL OF INORGANIC MATERIALS,2002,17(5):1078-1082.
    [56]程远方,果世驹,赖和怡.烧结理论进展——1.烧结单元模型建立方法之比较[J].粉末 冶金技术,1999(03):216-221.
    [57]Harmer M A. Synthesis Of Spherical Submicron Borosilicate Powders[J]. JOURNAL OF MATERIALS SCIENCE LETTERS,1995,14(13):971-974.
    [58]Matsubara H. Computer simulations for the design of microstructural developments in ceramics[J]. COMPUTATIONAL MATERIALS SCIENCE,1999,14(1-4):125-128.
    [59]黄春跃,周德俭,李达钧.Surface Evolver软件在材料科学研究中的应用[J].桂林电子工业学院学报,2000(03):50-54.
    [60]张海.基于蒙特卡罗方法的晶粒生长模拟系统研究[D].中南大学,2007.
    [61]曾忠晨.陶瓷晶粒生长仿真的数据结构分析及程序实现[D].厦门大学,2002.
    [62]Harker D, Parker E R. Grain Shape And Grain Growth[J]. TRANSACTIONS OF THE AMERICAN SOCIETY FOR METALS,1945,34:156-201.
    [63]Nosonovsky M, Zhang X Y, Esche S K. Scaling of Monte Carlo simulations of grain growth in metals[J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING,2009,17(0250042).
    [64]Hassold G N, Chen I W, Srolovitz D J. Computer-Simulation Of Final-Stage Sintering.1. Model, Kinetics, And Microstructure[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY,1990,73(10):2857-2864.
    [65]Chen I W, Hassold G N, Srolovitz D J. Computer-Simulation of Final-Stage Sintering.2. Influence Of Initial Pore-Size[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1990,73(10):2865-2872.
    [66]Braginsky M, Tikare V, Olevsky E. Numerical simulation of solid state sinteringfJ]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES,2005,42(2):621-636.
    [67]Tikare V, Braginsky M, Olevsky E A. Numerical simulation of solid-state sintering:I, sintering of three particles[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2003,86(1):49-53.
    [68]孙建波.陶瓷固相烧结的计算机模拟[D].佳木斯大学材料加工工程,2005.
    [69]Chen L Q. Phase-field models for microstructure evolution[J]. ANNUAL REVIEW OF MATERIALS RESEARCH,2002,32:113-140.
    [70]Wang Y U. Computer modeling and simulation of solid-state sintering:A phase field approach[J]. ACTA MATERIALLIA,2006,54(4):953-961.
    [71]Kumar V, Fang Z Z, Fife P C. Phase field simulations of grain growth during sintering of two unequal-sized particles[J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2010,528(1):254-259.
    [72]景晓宁,赵建华,何陵辉.固相烧结后期晶粒和气孔拓扑生长演化的二维相场模拟[J]. 材料科学与工程学报,2003,21(2):170-173.
    [73]景晓宁,胡小方,赵建华,等.SXR-CT技术应用研究烧结陶瓷三维微结构拓扑形貌[J].材料科学与工程学报,2003,21(3):327-330.
    [74]景晓宁,倪勇,何陵辉,等.陶瓷烧结过程孔隙演化的二维相场模拟[J].无机材料学报,2002,17(5):1078-1082.
    [75]罗述东,易健宏,彭元东.微波烧结硬质合金工艺的升温速度分析[J].稀有金属材料与工程,2010,39(5):820-823.
    [76]郝洪顺,徐利华,黄勇,等.导热相复合陶瓷微波烧结传热模式数值分析[J].无机材料学报,2009,24(4):864-868.
    [77]林枞,徐政,彭虎,等.微波烧结氧化锌压敏电阻的致密化和晶粒生长[J].无机材料学报,2007,22(5):917-921.
    [78]卢斌,赵桂洁,彭虎,等.微波低温烧结制备氮化铝透明陶瓷[J].无机材料学报,2006,21(6):1501-1505.
    [79]范景莲,黄伯云,刘军,等.微波烧结原理与研究现状[J].粉末冶金工业,2004,14(1):29-33.
    [80]许峰,胡小方,赵建华,等.氮化硅陶瓷烧结微结构演化的同步辐射CT实时研究[J].化学学报,2009,67(11):1205-1210.
    [81]杜继香.烧结初期非等径双球模型颈长的模拟[D].西安理工大学材料科学与工程,2008.
    [82]贾磊,谢辉,吕振林.Mo粉末烧结现象与烧结机制研究[J].铸造技术,2008,29(3):395-399.
    [83]许峰,胡小方,赵建华,等.铝粉固相烧结过程中的微结构演化[J].材料研究学报,2008,22(5):473-478.
    [84]江帆,胡小方,许峰,等.陶瓷粉末烧结演化的同步辐射CT观测[J].实验力学,2007,22(5):477-482.
    [85]臧纯勇,汤慧萍,王建永.烧结金属多孔材料力学性能的研究进展[J].稀有金属材料与工程,2009,38(z1):437-442.
    [86]李伯琼,陆兴,侯健,等.烧结多孔钛的显微组织和孔隙特征:第六届中国功能材料及其应用学术会议,武汉,2007[C].
    [87]施剑林.固相烧结--Ⅲ实验:超细氧化锆素坯烧结过程中的晶粒与气孔生长及致密化行为[J].硅酸盐学报,1998,26(1):1-13.
    [88]Sheldon B W, Rankin J. Surface roughening and unstable neck formation in faceted particles: II, mathematical modeling[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1999,82(7):1873-1881.
    [89]Rankin J, Sheldon B W. Surface roughening and unstable neck formation in faceted particles: I, experimental results and mechanisms[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY,1999,82(7):1868-1872.
    [90]Zhou H, Derby J J. Three-dimensional finite-element analysis of viscous sintering[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY,1998,81(3):533-540.
    [91]Rankin J, Boatner L A. Unstable Neck Formation During Initial-Stage Sintering[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY,1994,77(8):1987-1990.
    [92]Sheldon B W, Rankin J. Step-energy barriers and particle shape changes during coarsening[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2002,85(3):683-690.
    [93]Exner H E, Bross P. Material Transport Rate And Stress-Distribution During Grain-Boundary Diffusion Driven By Surface-Tension[J]. ACTA METALLURGICA, 1979,27(6):1007-1012.
    [94]Rankin J, Boatner L A. Unstable Neck Formation During Initial-Stage SinteringfJ]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY,1994,77(8):1987-1990.
    [95]Pan J, ChNg H N, Cocks A. Sintering kinetics of large pores[J]. MECHANICS OF MATERIALS,2005,37(6):705-721.
    [96]Pan J Z, Cocks A, Rodel J, et al. Densification of Powder Compact Containing Large and Small Pores[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2009,92(7):1414-1418.
    [97]Slamovich E B, Lange F F. Densification of Large Pores.2. Driving Potentials And Kinetics[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1993,76(6):1584-1590.
    [98]Slamovich E B, Lange F F. Densification Of Large Pores.1. Experiments[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY,1992,75(9):2498-2508.
    [99]Xu F, Hu X F, Miao H, et al. In situ investigation of ceramic sintering by synchrotron radiation X-ray computed tomography [J]. OPTICS AND LASERS IN ENGINEERING, 2010,48(11SI):1082-1088.
    [100]Lange F F. Densification of powder compacts:An unfinished story[J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY,2008,28(7):1509-1516.
    [101]Exner H E, Muller C. Particle Rearrangement and Pore Space Coarsening During Solid-State Sintering[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2009,92(7):1384-1390.
    [102]Francois B, Delmas R, Cizeron G, Et Al. Inhibition Of Sintering By Developing Gas Pressure In Pores[J]. MEMOIRES SCIENTIFIQUES DE LA REVUE DE METALLURGIE, 1967,64(12):1079.
    [103]Wakai F, Akatsu T, Shinoda Y. Shrinkage and disappearance of a closed pore in the sintering of particle cluster[J]. ACTA MATERIALIA,2006,54(3):793-805.
    [104]Flinn B D, Bordia R K, Zimmermann A, et al. Evolution of defect size and strength of porous alumina during sintering[J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2000,20(14-15):2561-2568.
    [105]牛玉,许峰,胡小方,等.铝素坯烧结过程微结构演化的实时观测[J].实验力学,2012(02):140-147.
    [106]许峰,胡小方,卢斌,等.碳化硼固相烧结微观结构演化的同步辐射CT观测[J].无机材料学报,2009(01):175-181.
    [107]林芸,柴东朗.粉末冶金烧结工艺研究中的原位观察法[J].福建分析测试,2011(01):50-53.
    [108]林芸,柴东朗,张文兴.具有共晶反应的纯金属粉末烧结过程的原位观察[J].粉末冶金工业,2006(02):14.
    [109]Lall A A, Seipenbusch M, Rong W Z, et al. On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis:II. Comparison of measurements and theory[J]. JOURNAL OF AEROSOL SCIENCE,2006,37(3):272-282.
    [110]果世驹.一个简单实用的模拟工具:通用综合烧结曲线[J].粉末冶金材料科学与工程,2010(03):199-205.
    [111]宋久鹏,BARRIERE Thierry,柳葆生,等.氧化铝陶瓷粉末固相烧结过程模拟[J].西南交通大学学报,2008(02):275-279.
    [112]田栋,高仙,马非,等.基于Monte Carlo方法对陶瓷微观结构演化的模拟[J].材料导报,2010(12):80-83.
    [113]谢辉,孙军,杨刘晓,等.Mo粉末烧结过程的相场模拟[J].铸造技术,2006(12):1366-1369.
    [114]Kopayev A V, Bushkova V S. Application of the Electron Theory of Sintering to the Ferrite Systems[J]. ACTA PHYSICA POLONICA A,2010,117(1):30-33.
    [115]Kornyushin Y. Thermodynamic theory of sintering and swelling[J]. METALLOFIZIKA I NOVEISHIE TEKHNOLOGH,2007,29(7):949-970.
    [116]Laptev A V. Theory and technology of sintering, thermal and chemicothermal treatment-Densification of WC-Co alloys in solid-phase sintering (review)[J]. POWDER METALLURGY AND METAL CERAMICS,2007,46(7-8):317-324.
    [117]Samoilovich Y A. Developing A Theory Of The Refining Of Metal In Tundishes Based On Postulates Of Fluid Mechanics[J]. METALLURGIST,2009,53(9-10):613-622.
    [118]Tanaka H. New theory of transformation induced grain growth in porous SiC[M]//STAFA-ZURICH:TRANS TECH PUBLICATIONS LTD,2009:169-172.
    [119]Yang F Z, Meng G Y, Zhou J Q, et al. Tool materials design and the sintering optimization based on interface strengthening theory[M]//STAFA-ZURICH:TRANS TECH PUBLICATIONS LTD,2011:447-451.
    [120]Nothe M, Schulze M, Grupp R, et al. Investigation of sintering of spherical copper powder by micro focus computed tomography (muCT) and synchrotron tomography[J]. Materials Science Forum,2007,539-543:2657-2662.
    [121]Nothe M, Schulze M, Grupp R, et al. Analysis of particle rearrangement during sintering by micro focus computed tomography (mu CT)[M]//STAFA-ZURICH:TRANS TECH PUBLICATIONS LTD,2007:493-496.
    [122]Olmos L, Takahashi T, Bouvard D, et al. Analysing the sintering of heterogeneous powder structures by in situ microtomography[J]. PHILOSOPHICAL MAGAZINE, 2009,89(32):2949-2965.
    [123]Lame O, Bellet D, Di Michiel M, et al. Bulk observation of metal powder sintering by X-ray synchrotron microtomography[J]. ACTA MATERIALLIA,2004,52(4):977-984.
    [124]Grupp R, Nothe M, Kieback B, et al. Cooperative material transport during the early stage of sintering[J]. NATURE COMMUNICATIONS,2011,2(298).
    [125]Bernard D, Gendron D, Heintz J M, et al. First direct 3D visualisation of microstructural evolutions during sintering through X-ray computed microtomoaraphy[J]. ACTA MATERIALLIA,2005,53(1):121-128.
    [126]Olmos L, Martin C L, Bouvard D, et al. Investigation of the Sintering of Heterogeneous Powder Systems by Synchrotron Microtomography and Discrete Element Simulation[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY,2009,92(7):1492-1499.
    [127]Tikare V, Braginsky M, Bouvard D, et al. Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3D powder compact[J]. COMPUTATIONAL MATERIALS SCIENCE,2010,48(2):317-325.
    [128]涂望明,魏友国,施少敏.MATLAB在数字图像处理中的应用[J].微计算机信息,2007(06):299-300.
    [129]张明真汪可.计算机图像处理技术ADOBE PHOTOSHOP CS2[M].2007.
    [130]章毓晋.图像处理和分析基础[M].2002.
    [131]邓继忠,张泰岭.数字图像处理技术[M].2005.
    [132]王慧琴.数字图像处理[M].2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700