用户名: 密码: 验证码:
Super-Ni/NiCr叠层复合材料与Cr18-Ni8钢高温钎焊接头组织结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级镍叠层复合材料(Super-Ni/NiCr)是近年来开发的一种新型材料,由两侧的Super-Ni复层和中间的Ni80-Cr20粉末通过真空压制而成。Super-Ni复层具有较好的耐腐蚀性、抗氧化性和韧性;Super-Ni复层包覆在NiCr基层表面,能够抑制NiCr基层的裂纹扩展,防止零部件存在裂纹和缺陷时发生瞬间破坏,提高叠层材料的整体强度。Super-Ni/NiCr叠层材料具有低密度、耐腐蚀、耐高温等优点,在航空航天、能源动力等领域具有广阔的应用前景。由于Super-Ni/NiCr叠层复合材料特殊的合金成分和结构形式,焊接时既要使Super-Ni复层和NiCr基层与焊缝之间结合良好,又要保证Super-Ni复层和NiCr基层之间的复合结构完整。因此,焊接问题是阻碍Super-Ni/NiCr叠层复合材料推广应用的关键。
     采用Ni-Cr-P系和Ni-Cr-Si-B系镍基钎料对Super-Ni/NiCr叠层复合材料与Cr18-Ni8不锈钢进行真空钎焊,控制真空度1.33×10-4~1.33×10-5Pa、保温时间20min、钎焊温度980~1060℃和1040~1120℃,获得了成型良好的Super-Ni/NiCr叠层复合材料与Crl8-Ni8不锈钢钎焊接头,剪切强度最高可达143MPa和195MPa。通过扫描电镜(SEM)、能谱分析仪(EDS)、X射线衍射仪(XRD)对不同钎焊参数获得的叠层材料/Cr18-Ni8钢钎焊接头的显微组织、元素分布、物相组成以及接头的剪切断裂行为进行研究,建立钎焊工艺参数、接头组织结构及断裂机制之间的关系,揭示钎焊接头的扩散-凝固规律。
     采用Ni-Cr-P钎料连接Super-Ni/NiCr叠层材料与Cr18-Ni8钢时,钎缝区主要由靠近两侧母材的γ-Ni固溶体、中心的γ-Ni+Ni3P共晶和少量FeNi3相组成。P元素沿晶界扩散至Super-Ni复层,形成Ni3P或Ni-P共晶;NiCr基层与Ni-Cr-P钎料之间发生固溶反应,没有形成脆性扩散反应层。
     采用Ni-Cr-Si-B钎料钎焊Super-Ni/NiCr叠层复合材料与Cr18-Ni8钢时,B元素是控制钎缝区凝固结晶及界面反应的关键。B元素扩散至叠层材料和Cr18-Ni8钢并析出硼化物,析出相形态、数量及分布受钎焊温度影响。钎焊温度为1040℃时,钎缝区由γ-Ni固溶体、Ni3Si.Ni3B以及CrB颗粒等组成,Ni3Si弥散分布在γ-Ni固溶体中。钎焊温度升高至1060~1100℃时,钎缝由γ-Ni固溶体、Ni3Si.Ni3B.CrB块状相以及Ni6Si2B等组成。钎焊温度升高至1120℃时,钎缝区由γ-Ni固溶体、Ni3Si.Ni3B等组成。非等温凝固阶段可归纳为:①剩余液相凝固形成γ-Ni(Si),剩余液相L1富B;②Ni-B二元共晶反应:L1→γ-Ni+Ni3B,剩余液相L2富Cr;③Ni-Cr-B三元共晶反应:L2→γ-Ni+Ni3B+CrB,剩余液相L3富Si;④Ni-Si-B三元共晶反应:L3→γ-Ni+Ni3B+Ni6Si2B.
     等温凝固阶段在NiCr基层孔隙端口形成γ-Ni固溶体,抑制液态钎料渗入孔隙,削弱钎缝与NiCr基层之间的结合面积。对叠层材料/Cr18-Ni8(?)钢钎焊接头的剪切强度及断口形貌进行分析,采用Ni-Cr-P钎料时,钎焊接头断裂于钎缝区Ni-P共晶。采用Ni-Cr-Si-B钎料时,Super-Ni复层钎缝区沿钎缝区与复层之间的Ni3B扩散反应层断裂,呈沿晶脆性断裂;NiCr基层钎缝区呈沿钎缝区共晶组织及界面附近NiCr基层的混合断裂方式。
Super-Ni/NiCr laminated composite is a newly developed material composed of super-Ni cover layer and Ni80-Cr20powder by vacuum pressing. Super-Ni cover layer is featured with good toughness, oxidation resistance and corrosion resistance at elevated high temperature. Super-Ni cover layer is able to suppress crack propagation in NiCr base layer, which will prevent instantaneous destruction of the components. Super-Ni/NiCr laminated composite is an attractive candidate in aerospace, energy and power industries due to its low density, good oxidation resistance and corrosion resistance. Two main difficulties in the welding of Super-Ni/NiCr laminated composite were identified. First, both Super-Ni cover layer and NiCr base layer should have good combination with weld metal. Second, it is important to keep the structure integrity of Super-Ni/NiCr laminated composite after welding. Therefore, welding is the key problem impeding the engineering application of Super-Ni/NiCr laminated composite.
     The joints of Super-Ni/NiCr laminated composite to Cr18-Ni8steel were established by vacuum brazing technology using Ni-Cr-P and Ni-Cr-Si-B nickel-based filler metal. Good combination between Super-Ni/NiCr laminated composite and Cr18-Ni8steel was prepared at980~1060℃and1040~1120℃for20min under a vacuum of1.33×10-4~1.33×10-5Pa. Shear strength of the brazed joints reached143MPa and195MPa. Microstructure, elemental distribution, phase constitution and shear strength were investigated by means of scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) and electromechanical universal testing machine. The relationship between brazing parameters, microstructure and fracture mechanism was proposed. The diffusion-solidification behavior of the brazed joint was revealed.
     The brazed region was mainly composed of γ-Ni solid solution, eutectic of γ-Ni(P) and M3P, and some FeNi3when Super-Ni/NiCr laminated composite and Cr18-Ni8steel was brazed with Ni-Cr-P filler metal. P diffused into Super-Ni cover layer along grain boundaries leading to the precipitation of Ni-P eutectic. There was only solution reaction without brittle reaction layer between Ni-Cr-P filler metal and NiCr base layer.
     When Super-Ni/NiCr laminated composite and Cr18-Ni8steel was brazed with Ni-Cr-Si-B filler metal, element B was the key factor controlling the solidification and interface reaction. When the brazing temperature was1040℃, the brazed region constituted of γ-Ni, Ni3Si, Ni3B, CrB particles. And the Ni3Si dispersed in y-Ni. When the brazing temperature was1060~1100℃, the brazed region constituted of γ-Ni, Ni3Si, Ni3B, blocky CrB and Ni6Si2B. When the brazing temperature was1120℃, the brazed region constituted of γ-Ni, Ni3Si, Ni3B. The athermally solidified stage was concluded as following:①the residual luquid solidified into y-Ni solid solution and the residual luquid L1was rich in B;②Ni-B binary eutectic reaction:L1→γ-Ni+Ni3B and the residual luquid L2was rich in Cr;③Ni-Cr-B ternary eutectic reaction:L2→γ-Ni+Ni3B+CrB and the residual luquid L3was rich in Si;④Ni-Si-B ternary eutectic reaction:L3→γ-Ni+Ni3B+Ni6Si2B.
     γ-Ni solid solution forming in the isothermally solidified stage prevented the infiltration of liquid filler metal into porosities of NiCr base layer, which decreased the combination area between the brazed region and NiCr base layer. The shear strength test and fracture morphology analysis was conducted. The Super-Ni/NiCr laminate/Cr18-Ni8brazed joint fractured along the Ni-P eutectic in the brazed region when brazed with Ni-Cr-P filler metal. When brazed with Ni-Cr-Si-B filler metal, the brazed region of Super-Ni cover layer fractured along the Ni3B interface displaying intergranular brittle fracture. The brazed region of NiCr base layer fractured along a mixed path along eutectic in brazed region and NiCr base layer near the interface.
引文
[1]王增强.高性能航空发动机制造技术及其发展趋势[J].航空制造技术,2007,(1):52-55.
    [2]傅恒志.未来航空发动机材料面临的挑战与发展趋向[J].航空材料学报,1998,18(4):52-61.
    [3]I. A. Podchernyaeva, A. D. Panasyuk, M. A. Teplenko, V. I. Podol' Skii. Protective Coatings on Heat-resistance Nickel Alloys (review)[J]. Powder Metallurgy And Metal Ceramics,2000,39 (9-10):434-444.
    [4]程云庚.高温无机涂层[M].上海:上海科学出版社,1996.
    [5]余金山,夏长清,吴建生.表面涂层-高温合金之间的高温过程研究[J].宇航材料工艺,2005,(5):48-51.
    [6]M. E. Beliskii. A Method of Manufacture and Some Properties of Sintered 20Cr-80Ni Nichrome[J]. Powder Metallurgy And Metal Ceramics,1965,4 (9): 741-745.
    [7]徐强,张幸,韩杰才,赫晓东.先进高温材料的研究现状和展望[J].固体火箭技术,2002,25(3):51-55.
    [8]T. Hupf, C. Cagrana, E. Kaschnitz, G. Pottlachera. Thermophysical properties of Ni80Cr20[J]. Thermochimica Acta,2009,494:40-44.
    [9]陈亚莉.未来航空发动机涡轮叶片用材的最新形式—微叠层复合材料[J].航空工程与维修,2001,(5):10-12.
    [10]张俊红,黄伯云,周科朝.李志友,何双珍,刘咏.贺跃辉.包套轧制制备TiAl基合金板材[J].中国有色金属学报,2001,11(6):1055-1058.
    [11]王良.我国航空发动机制造技术的现状与挑战[J].航空制造技术.2008,(25):32-37.
    [12]夏春智,李亚江,U. A. Puchkov,王娟Super-Ni叠层复合材料与18-8钢TIG焊接头区显微组织的研究[J].中国有色金属学报,2010,20(6):1149-1154.
    [13]李亚江,夏春智,U. A. Puchkov,王娟Super-Ni/NiCr叠层复合材料与Cr18-Ni8不锈钢的焊接性[J].焊接学报,2010,31(2):13-16.
    [14]C. Z. Xia, Y. J. Li, J. Wang, U. A. Puchkov, Y. N. Jiang. Studies on weldability of nichrome-laminated powder alloy using TIG welding[J]. Kovove Materialy-Metallic Materials,2010,48:257-263.
    [15]C. Z. Xia, Y. J. Li, U. A. Puchkov, J. Wang. Microstructural study of super Ni laminated composite/1 Cr18Ni9Ti steel dissimilar welded joint[J]. Materials Science and Technology,2010,26 (11):1342-1358.
    [16]钟元.一代材料,一代飞机-曹春晓院士从材料进化史看中国大飞机项目[J].航空制造技术,2008,(1):36-39.
    [17]Jang-Kyo Kim, Tong-Xi Yu. Forming and failure behavior of coated, laminated and sandwiched sheet metals:a review[J]. Journal of Materials Processing Technology,1997,63:33-42.
    [18]沈强,王传彬,张联盟.钨合金-钼叠层飞片的热压烧结连接[J].焊接学报,2000,21(2):26-29.
    [19]杨益航,王德志,林高用,段柏华,柳华炎,邹艳明.磁屏Cu-Fe-Cu叠层材料的轧制复合[J].复合材料学报,2012,29(4):126-131.
    [20]雷虎,崔舜,周增林,康志军,林晨光,李明,李增德Cu/Mo/Cu(?)(?)面层状复合材料的研究进展[J].粉末冶金技术,2011,29(3):218-223.
    [21]Hiroaki Matsumoto, Sadao Watanabe, Shuji Hanada. Fabrication of pure Al/Mg-Li alloy clad plate and its mechanical properties[J]. Journal of Materials Processing Technology,2005,169 (1):9-15.
    [22]X. P. Zhang, T. H. Yang, J. Q. Liu, X. F. Luo, J. T. Wang. Mechanical properties of an Al/Mg/Al trilaminated composite fabricated by hot rolling[J]. Journal of Materials Science,2010,45 (13):3457-3464.
    [23]杨婷慧,张新平,顾春飞,罗秀芳,郁伟恒,廖益传.热轧制镁基叠层复合材料的力学性能[J].中国有色金属学报,2010,20(10):1889-1894.
    [24]孟军.纯镍材有色金属反应器设备研制[J].火箭推进,2006,32(4):43-47.
    [25]李智伟.镍基高温合金空心球多孔材料的制备与性能研究[D].哈尔滨:哈尔滨工业大学,2008.
    [26]陈燕俊,周世平,杨富陶.层叠复合材料结构技术进展[J].材料科学与工程,2002,20(1):140-142.
    [27]马培燕,傅正义.微叠层结构材料的研究现状[J].材料科学与工程,2002,20(4):589-593.
    [28]G. S. Was, T. Foecke. Deformation and fracture in microlaminates[J]. Thin Solid Films,1996,286:1-31.
    [29]D. R. Lesuer, C. K. Syn, O. D. Sherby, J. Wadsworth, J. J. Lewandowski, W. H. Hunt. Mechanical behavior of laminated metal composite[J]. International Materials Reviews,1996,41:169-197.
    [30]W. J. Clegg, K. Kendall, N. Men. Alford, T. W. Button, J. D. Birchall. A simple way to make tough ceramics[J]. Nature,1990,347 (10):455-457.
    [31]M. Li, W. O. Soboyejo. An investigation of the effects of ductile-layer thickness on the fracture behavior of nickel aluminum microlaminates[J]. Metallurgical and Materials Transaction A,2000,31 A:1385-1399.
    [32]D. R. Bloyer, K. T. Venkateswara Rao, R. O. Ritchie. Laminated Nb/Nb3Al composites:effect of layer thickness on fatigue and fracture behavior[J]. Materials science and engineering A,1997,239-240:393-398.
    [33]Hee Y. Kim, Dong S. Chung, Soon H. Hong. Reaction synthesis and microstructure of NiAl/Ni micro-laminated composites[J]. Materials Science and Engineering A,2005,396:376-384.
    [34]Ma Li, Sun Yue, Li Yao. Preparation and performance of large-sized Ti/Ti-Al microlaminated composite[J]. Rare Metal Materials And Engineering,2008,37 (2):325-329.
    [35]马李,孙跃,赫晓东EB-PVD工艺制备Ti/Ti-Al超薄多层复合材料的微观结构与性能研究[J].航空材料学报,2008,28(1):5-8.
    [36]张海泉,张彦华,李刘合,张行安,马翔生.电子束焊接热冲击对GH4133A的微裂纹损伤研究[J].材料工程,2001,(2):36-39.
    [37]Paolo Ferro, Andrea Zambon, Franco Bonollo. Investigation of electron-beam welding in wrought Inconel 706-experimental and numerical analysis[J]. Materials Science and Engineering A.2005,392:94-105.
    [38]刘秀波,虞钢,庞铭.宋天麟,范莉,周晓京.K418合金和42CrMo钢激光焊焊缝的微观组织[J].材料热处理学报.2009,30(6):126-129.
    [39]O. A. Ojo, N. L. Richards, M. C. Chaturvedi. Microstructural study of weld fusion zone of TIG welded IN 738LC nickel-based superalloy[J]. Scripta Materialia,2004,51:683-688.
    [40]关桥.发动机叶片与部件修复工程中的焊接技术[J].航空工艺技术,1993,(2):2-12.
    [41]C. Selcuk, S. Bond, P. Woollin. Joining processes for powder metallurgy parts: a review[J]. Powder Metallurgy,2010,53 (1):7-11.
    [42]Powder Metal Technologies and Applications[M]. ASM International:ASM Handbook,1998.
    [43]Adem Kurt, Hankan Ates. Effect of porosity on thermal conductivity of powder metal materials[J]. Materials and Design,2007,28:230-233.
    [44]Adem Kurt, Hankan Ates, K. Karacif. Exploring the weldability of powder metal parts[J]. Welding Journal,2004,83 (12):34-37.
    [45]Mel M. Schwartz. Brazing-second edition[M]. Ohio USA:ASM International, 2003.
    [46]Jack Hamill. Weld techniques give powder metal a different dimension[J]. Metal Powder Report,2007,62 (5):22-24,26-27,29-31.
    [47]Jack A. Hamill, Peter Wirth. Laser weldig P/M for automotive applications[C]. SAE International Congress and Exposition, Detroit, Michigan USA,1994.
    [48]E. O. Correa, S. C. Costa, J. N. Santos. Weldability of iron-based powder metal materials using pulsed plasma arc welding process[J]. Journal Of Materials Processing Technology,2008,198 (1-3):323-329.
    [49]E. O. Correa, S. C. Costa, J. N. Santos. Studies on weldability of iron-based powder metal alloys using pulsed gas tungsten arc welding process[J]. Journal Of Materials Processing Technology,2008,209 (8):3937-3942.
    [50]Adem Kurt, Ilyas Uygur, Hankan Ates. Effects of temperature on the weldability of powder metal parts joined by diffusion welding[J]. Materials Science Forum,2007,546-549:667-670.
    [51]R. K. Saha, S. Wei, T. I. Khan. A comparison of microstructural developments in TLP diffusion bonds made using ODS Ni alloy[J]. Materials Science and Engineering A,2005,406 (1-2):217-319.
    [52]F. Jalilian, M. Jahazi, R. A. L. Drew. Microstructural evolution during transient liquid phase bonding of Inconel 617 using Ni-Si-B filler metal[J]. Materials Science and Engineering A,2006,423 (1-2):269-281.
    [53]O. A. Idowu, N. L. Richards, M. C. Chaturvedi. Effect of bonding temperature on isothermal solidification rate during transient liquid phase bonding of Inconel 738LC superalloy[J]. Materials Science and Engineering A,2005,397 (1-2):98-112.
    [54]N. P. Wikstrom, O. A. Ojo, M. C. Chaturvedi. Influence of process parameters on microstructure of transient liquid phase bonded Inconel 738LC superalloy with Amdry DF-3 interlayer[J]. Materials Science and Engineering A,2006, 417 (1-2):299-306.
    [55]M. Pouranvari, A. Ekrami, A. H. Kokabi. Solidification and Solid State Phenomena during TLP bonding of IN718 Superalloy Using Ni-Si-B ternary filler alloy[J]. Journal of Alloy and Compounds,2013,563:143-149.
    [56]K. Tokoro, N. P. Wikstrom, O. A. Ojo, M. C. Chaturvedi. Variation in diffusion-induced solidification rate of liquated Ni-Cr-B insert during TLP bonding of Waspaloy superalloy[J]. Materials Science and Engineering A,2008, 477:311-318.
    [57]张胜,侯金保,郭德伦,张蕾.MGH956合金TLP连接机理及接头组织分析[J].焊接学报,2004,25(3):43-48.
    [58]Wen-shiang Chen, Ren-kae Shiue. Brazing Inconel 625 Using Two Ni/(Fe)-Based Amorphous Filler Foils[J]. Metallurgical and Materials Transactions A,2012,43 (7):2177-2182.
    [59]M. Pouranvari, A. Ekrami, A. H. Kokabi. Microstructure-properties relationship of TLP-bonbed GTD-111 nickel-base superalloy[J]. Materials Science and Engineering A,2008,490 (1-2):229-234.
    [60]李晓红,张海泉,张彦华.钎焊接头界面断裂力学试验研究[J].航空工艺技术,1999,(1):25-28.
    [61]A. Ghoneim, O. A. Ojo. Microstructure and mechanical response of transient liquid phase joint in Haynes 282 superalloy[J]. Materials Characterization,2011, 62(1):1-7.
    [62]Michael Weinstein, Robert L. Peaslee, Forbes M. Miller. How to Choose Nickel-Based Filler Metals For Vacuum Brazing[J]. Welding Journal,2009, (4): 59-61.
    [63]庄鸿寿,E.罗格夏特.高温钎焊[M].北京:国防工业出版社,1989.
    [64]印有胜.镍基钎料的钎缝脆性及其影响因素[J].焊接学报,1997,18(3):134-140.
    [65]周媛,毛唯,李晓红BNi82CrSiB钎料钎焊DD6单晶合金接头组织及力学性能研究[J].材料工程,2007,(5):3-6.
    [66]刘文慧,郭少庆,叶雷,毛唯,周标.采用BNi68CrWB钎料钎焊GH783的接头组织与性能[J].材料工程,2010,(6):73-78.
    [67]毛唯,李晓红,程耀永,陈云峰.IC10与GH3039高温合金的真空钎焊[J].焊接,2004,(7):17-20.
    [68]梁海,毛唯,孙计生.K465铸造高温合金高温钎焊接头的显微组织[J].材料工程,2005,(9):7-11.
    [69]张丽霞,冯吉才.GH3044镍基合金钎焊接头的界面组织和强度分析[J].材料科学与工艺,2009,17(6):770-773.
    [70]G. Srinivasan, A. K. Bhaduri, S. K. Ray, V. Shankar. Vacuum brazing of Inconel 600 sleeve to 316L stainless steel sheath of mineral insulated cable[J]. Journal of Materials Processing Technology,2008,198:73-76.
    [71]M. Pouranvari, A. Ekrami, A. H. Kokabi. Microstructure development during transient liquid phase bonding of GTD-111 nickel-based superalloy[J]. Journal of Alloys And Compounds,2008,461 (1-2):641-647.
    [72]M. Pouranvari, A. Ekrami, A. H. Kokabi. Effect of bonding temperature on microstructure development during TLP bonding of a nickel base superalloy[J]. Journal of Alloys And Compounds,2009,469:270-275.
    [73]M. Pouranvari, A. Ekrami, A. H. Kokabi. TLP bonding of cast IN718 nickel based superalloy:Process-microstructure-strength characteristics[J]. Materials Science and Engineering A,2013,568:76-82.
    [74]Wu Xiaowei, R. S. Chandel, Hang Li, H. P. Seow, Shichun Wu. Induction brazing of Inconel 718 to Inconel X-750 using Ni-Cr-Si-B amorphous foil[J]. Journal of Materials Processing Technology,2000,104:34-43.
    [75]Wu Xiaowei, Roop Singh Chandel, Seow Hong Pheow, Hang Li. Brazing of Inconel X-750 to stainless steel 304 using induction process[J]. Materials Science and Engineering A,2000,288 (1):84-90.
    [76]M. A. Arafin, M. Medraj, D. P. Turner, P. Bocher. Effect of alloying elements on the isothermal solidification during TLP bonding of SS 410 and SS 321 using a BNi-2 interlayer[J]. Materials Chemistry and Physics,2007,106: 109-119.
    [77]Peter K. Sokolowski, Thomas F. Murphy, Bruce A. Lindsley. Considerations in sinter-brazing PM components[C]. International Conference on Powder Metallurgy and Particulate Materials, Florda USA,2010.
    [78]高海燕,贺跃辉,沈培智,江垚,黄伯云,徐南平.FeAl多孔材料与不锈钢的焊接[J].中国有色金属学报,2009,19(1):90-95.
    [79]Esa Vuorinen. Controlling infiltration when brazing P/M parts and during manufacture of aluminum metal composites[D]. Lulea Sweden:Lulea University of Technology,2004.
    [80]张启运,庄鸿寿.钎焊手册[M].北京:机械工业出版社,2008.
    [81]Y. Suezawa. A study of Ag-Cu brazed joint strength of sintered steel[J]. Proc of an International Conference on Fracture Mechanics and Technology,1977,11: 439-450.
    [82]H. Y. Gao, Y. H. He, P. Z. Shen, J. Zou, N. P. Xu, Y. Jiang, B. Y. Huang, C. T. Liu. Congenerous and heterogeneous brazing of porous FeAl intermetallics[J]. Powder Metallurgy,2011,54 (2):142-147.
    [83]C. C. Lin, C. H. Shu, C. Chen, R. K. Shiue, H. J. Shy. Brazing porous tungsten and molybdenum using palladium and titanium foils[J]. International Journal of Refractory Metals and Hard Materials,2012,31:284-287.
    [84]夏春智Super-Ni/NiCr叠层复合材料TIG接头区微观结构及应力分布研究[D].济南:山东大学,2010.
    [85]王文先,张亚楠,崔泽琴,闫兴贵.双面超薄不锈钢复合板激光焊接接头组织性能研究[J].中国激光,2011,38(5):1-6.
    [86]L. Kruger, F. Trommer, B. Wielage, S. Mucklich, L. W. Meyer, K. S. Vecchio, M. A. Meyers. Brazing of Metal Intermetallic Laminate (MIL) TiAl3-Ti-6Al-4V Composites[C]. Proc. Welding and Brazing Conf., San Diego, 2003.
    [87]Gavin Stratford, Alun Battenbough, Lydia Lee, Mike Weinstein. Comparing High-Temperature Nickel Brazing Filler Metals[J]. Welding Journal,2011,3: 54-59.
    [88]T. M. Maciel, I. T. Chang, M. Strangwood, W. B. de Castro. Brazing of Al2O3 with rapidly solidified melt spun Ni-Cr-P alloy ribbons[J]. Materials Science Forum,2006,530-531:473-477.
    [89]何鹏,冯吉才,周恒.不同钎料对Ti3Al基合金钎焊接头强度及界面微观组织的影响[J].中国有色金属学报,2005,15(1):24-32.
    [90]Nicolas Serres, Francoise Hlawka, Sophie Costil, Cecile Langlade, Frederique Machic. Microstructures and mechanical properties of metallic NiCrBSi and composite NiCrBSi-WC layers manufactured via hybrid plasma/laser process[J]. Applied Surface Science,2011,257 (12):5132-5137.
    [91]C. L. Ou, D. W. Liaw, Y. C. Du, R. K. Shiue. Brazing of 422 stainless steel using the AWS classification BNi-2 Braze alloy[J]. Journal of Materials Science, 2006,41 (19):6353-6361.
    [92]L. Sanchez, D. Carrillo, E. Rodriguez, F. Aragon, J. Sotelo, F. Toral. Development of high precision joints in particle accelerator components performed by vacuum brazing[J]. Journal of Materials Processing Technology, 2011,211 (8):1379-1385.
    [93]W. V. Knopp. Brazing problems in powder metallurgy[J]. The International Journal of Powder Metallurgy and Powder Technology,1975,11 (1):63-65.
    [94]长崎诚三,平林真.二元合金状态图集[M].北京:冶金工业出版社,2004.
    [95]张新平,史耀武,任耀文.镍基非晶态及晶态钎料真空钎焊工艺性能的比较[J].焊接学报,1996,17(4):205-211.
    [96]黄文哲,周钢,田蕃,王善元.三种NiCrSiB钎料钎焊低碳钢时液.固相相互作用动态过程研究[J].焊接学报,1987,8(2):57-68.
    [97]M. Pouranvari, A. Ekrami, A. H. Kokabi. Microstructure development during transient liquid phase bonding of GTD-111 nickel-based superalloy[J]. Journal Of Alloys And Compounds,2008,461:641-647.
    [98]张新平,史耀武,任耀文Ni82.5Cr7Si4.5B3Fe3多元非晶态合金钎料的晶化行为及其真空钎焊特性[J].西安交通大学学报,1993,27(5):57-64.
    [99]J. Ruiz-Vargas, N. Siredey-Schwaller, N. Gey, P. Bocher, A. Hazotte. Microstructure Development During Isothermal Brazing of Ni/BNi-2 Couples[J]. Journal of Materials Processing Technology,2013,213 (1):20-29.
    [100]W. F. Gale, E. R. Wallach. Microstructure development in transient liquid-phase bonding[J]. Metallurgical Transactions A,1991,22 (10): 2451-2457.
    [101]陶杰,姚正军,薛烽.材料科学基础[M].北京:化学工业出版社,2011.
    [102]Jiasheng Zou, Zhiguo Jiang, Qizhang Zhao, Zheng Chen. Brazing of Si3N4 with amorphous Ti40Zr25Ni15Cu20 filler[J]. Materials Science and Engineering A,2009,507 (1-2):155-160.
    [103]邹家生,许志荣,初雅杰,陈光.非晶态焊接材料的特性及其应用[J].材料导报,2004,18(4):17-20.
    [104]F. Jalilian, M. Jahazi, R. A. L. Drew. Microstructural evolution during transient liquid phase bonding of Inconel 617 using Ni-Si-B filler metal[J]. Materials Science and Engineering A,2006,423:269-281.
    [105]方洪渊,冯吉才.材料连接过程中的界面行为[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [106]俞伟元.非晶态钎料的钎焊性能及其连接机理[D].兰州:兰州理工大学,2009.
    [107]Xinjian Yuan, Chung Yun Kang, Myung Bok Kim. Microstructure and XRD analysis of brazing joint for duplex stainless steel using a Ni-Si-B filler metal[J]. Materials Characterization,2009,60 (9):923-931.
    [108]Tatsuya Tokunaga, Kazumasa Nishio, Hiroshi Ohtani, Mitsuhiro Hasebe. Phase Equilibria in the Ni-Si-B System[J]. Materials Transactions,2003,44 (9): 1651-1654.
    [109]S. K. Tung, L. C. Lim, M. O. Lai. Microstructural evolution and control in BNi-4 brazed joints of nickel 270[J]. Scripta Materialia,1995,33 (8): 1253-1259.
    [110]马力,贺定勇,李晓延,蒋建敏,王立志Al-Mg-Zn(?)(?)料钎焊镁合金AZ31B接头的显微组织和性能[J].焊接学报,2009,30(11):61-64.
    [111]宋建岭,林三宝,杨春利,范成磊.镍基合金/不锈钢惰性气体钎焊接头的特性[J].中国有色金属学报,2008,18(5):838-843.
    [112]秦明礼,曲选辉,段柏华,徐征宙,郭世柏.无压烧结制备高致密度AIN-BN复合陶瓷[J].无机材料学报,2005,20(1):245-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700